
Structured Data
Manager
Software Version 24.3.0

API Reference Guide

Document Release Date: July 2024
Software Release Date: July 2024

Legal notices
Copyright 2017-2024 Open Text

The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are as
may be set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. Open Text shall not be liable for technical or editorial
errors or omissions contained herein. The information contained herein is subject to change without notice.

Documentation updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/support-and-services/documentation/.

Support
Visit the MySupport portal to access contact information and details about the products, services, and support
that OpenText offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

l View information about all services that Support offers
l Submit and track service requests
l Contact customer support
l Search for knowledge documents of interest
l View software vulnerability alerts
l Enter into discussions with other software customers
l Download software patches
l Manage software licenses, downloads, and support contracts

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted to
sign in.

API Reference Guide

Structured Data Manager (24.3.0) Page 2 of 50

https://www.microfocus.com/support-and-services/documentation/
https://mysupport.microfocus.com/

Contents

About this document 5
Intended audience 5
Prerequisites 5
Related documentation 5

Chapter 1: Use the Groovy script API 7
About Groovy scripts in Structured Data Manager 7

Retrieve valid values 7
Modify the createArchiveAccess job 8
Modify running jobs 8
Register pre-created owner mappings 8
Modify cartridges and components 9

Run Structured Data Manager Groovy scripts 9
Chapter 2: JobConfiguration 11

getActions 11
getActionParams 11
getActionParamTypes 12
getActionTypes 12
getAllJobs 12
getJobParams 13
getMappedTable 13

Chapter 3: ArchiveAccessConfiguration 15
Constants 15
addAddedDependency 16
addExcludedIndex 17
addObjectExclusion 17
addObjectOwnerPair 18
addPrimaryObject 19
addTextReplacer 20
cloneDatabaseLinks 21
generateLaCleanupStmts 22
generateLaPurgeSnapshotStmts 23
genericSqlConnection 23
removeAddedDependency 24
removeObjectExclusion 24
removeObjectOwnerPair 25
removePrimaryObject 26

API Reference Guide

Structured Data Manager (24.3.0) Page 3 of 50

removeTextReplacer 26
Chapter 4: RuntimeJobConfiguration 28

forceSkipAction 28
cancelJob 29
interruptJob 29

Chapter 5: OwnerMapping 30
getOwnerMappings 30
addHistoryOwnerMapping 30
removeHistoryOwnerMapping 31

Chapter 6: Configuration 33
createProductPropertyType 33
getProductConfigs 35
getProductConfigValue 35
setProductConfigValue 35
getCartridgeConfigs 36
getCartridgeConfigValue 36
listBusinessFlowCartridges 37
setCartridgeConfigValue 37

Glossary 42

Index 48

Send documentation feedback 50

API Reference Guide

Structured Data Manager (24.3.0) Page 4 of 50

About this document
The Structured Data Manager API enables you to modify certain behaviors of the software. This
guide provides information about:

l the Groovy script API files supplied with Structured Data Manager

l how to run the Groovy script API files

Intended audience

This guide is intended for users running the Groovy script API files.

Prerequisites

Prerequisites for using this product include:

l Knowledge of operating systems

l Database knowledge

l Application knowledge

Related documentation

Document Name Description

Structured Data
Manager Certification
Matrix

Provides information about supported Operating Systems, databases,
browsers, software integrations and other technology stacks.

Structured Data
Manager Concepts
Guide

Explains the major concepts of database archiving in general and
Structured Data Manager in particular.

Structured Data
Manager Developer’s
Guide

Explains how to use the Designer component to design, build, test, and
deploy your archiving projects.

Structured Data
Manager Installation
Guide

Explains how to install the product.

Structured Data
Manager Release Notes

Lists any items of importance that were not captured in the regular
documentation.

Structured Data
Manager Runtime Guide

Explains how to use the Web Console component to run, monitor, and
administer business flows that move data to and from the database.

Structured Data Explains how to diagnose and resolve errors, and provides a list of

API Reference Guide

Structured Data Manager (24.3.0) Page 5 of 50

Document Name Description

Manager
Troubleshooting Guide

common errors and solutions.

Structured Data
Manager Tutorial

Provides step-by-step instructions to build a sample archiving module,
deploy, run, and troubleshoot errors in it.

Structured Data
Manager Upgrade
Guide

Explains how to upgrade the product and archive schema generated by
the earlier versions of the product.

Structured Data
Manager Discovery
Guide

Explains the purpose, how to install and use Discovery.

API Reference Guide

Structured Data Manager (24.3.0) Page 6 of 50

Chapter 1: Use the Groovy script API
OpenText provides pre-packaged Groovy script API calls you can use to customize your Structured
Data Manager.

In this chapter:

l About Groovy scripts in Structured Data Manager

l Run Structured Data Manager Groovy scripts

About Groovy scripts in Structured Data Manager

You can run the Groovy script APIs from the command line by entering all the necessary parameters,
or you can edit the scripts to create reusable customizations.

The following are instructions for:

l Retrieve valid values

l Modify the createArchiveAccess job

l Modify running jobs

l Register pre-created owner mappings

l Modify cartridges and components

TIP: OpenText strongly recommends implementing API calls using the Groovy script APIs. If you
are upgrading from a previous version of the software, and are using Javascript APIs, see the
Structured Data Manager 6.1 API Reference Guide.

Retrieve valid values

Use the following to query for valid values for your customizations:

Groovy script file name For a list of required parameters and description
of returned values, see

getActions.groovy getActions

getActionParams.groovy getActionParams

getActionParamTypes.groovy getActionParamTypes

getActionTypes.groovy getActionTypes

getAllJobs.groovy getAllJobs

getJobParams.groovy getJobParams

Structured Data Manager (24.3.0) Page 7 of 50

Modify the createArchiveAccess job

Use the following to modify the createArchiveAccess job:

Groovy script file name For a list of required parameters, see

addAddedDependency.groovy addAddedDependency

addObjectExclusion.groovy addObjectExclusion

addObjectOwnerPair.groovy addObjectOwnerPair

addPrimaryObject.groovy addPrimaryObject

addTextReplacer.groovy addTextReplacer

cloneDatabaseLinks.groovy cloneDatabaseLinks

removeAddedDependency.groovy removeAddedDependency

removeObjectExclusion.groovy removeObjectExclusion

removePrimaryObject.groovy removePrimaryObject

removeTextReplacer.groovy removeTextReplacer

Modify running jobs

If you need to cancel a job or mark a certain action to be skipped so you can complete or restart a job,
then use one of the following Groovy scripts.

NOTE: OpenText recommends contacting OpenText Support before using these scripts.

Groovy script file name For a list of required parameters, see

forceSkipAction.groovy forceSkipAction

cancelJob.groovy cancelJob

Register pre-created owner mappings

If you want to pre-create a history schema or archive database, or set an archive access owner
name, you must register the owner mapping prior to installing a cartridge.

Use the following scripts to manipulate the owner mappings:

Groovy script file name For a list of required parameters, see

getOwnerMappings.groovy getOwnerMappings

addHistoryOwnerMapping.groovy addHistoryOwnerMapping

removeHistoryOwnerMapping.groovy removeHistoryOwnerMapping

API Reference Guide

Structured Data Manager (24.3.0) Page 8 of 50

NOTE: For information on how to pre-create the History schema, see Custom archive schema or
database in the Structured Data Manager Installation Guide.

Modify cartridges and components

Use the following to manipulate configuration settings.

Groovy script file name For a list of required parameters, see

createProductPopertyType.groovy createProductPropertyType

getProductConfigs.groovy getProductConfigs

getProductConfigValue.groovy getProductConfigValue

setProductConfigValue.groovy setProductConfigValue

getCartridgeConfigs.groovy getCartridgeConfigs

getCartridgeConfigvalue.groovy getCartridgeConfigValue

listBusinessFlowCartridges listBusinessFlowCartridges

setCartridgeConfigValue.groovy setCartridgeConfigValue

Run Structured Data Manager Groovy scripts

Use the following syntax to run the Groovy scripts. Each Groovy script and its parameters are
described in the following chapters.

NOTE: All parameters are case-sensitive.

1. Open a command line window.

2. Run the script using the following job launch syntax:

Operating
System

Command syntax

UNIX launch_groovyscript.sh -e <environment_name> -f <path>
<filename>.groovy [<parameters>]

Windows launch_groovyscript.bat -e <environment_name> -f <path>
<filename>.groovy [<parameters>]

Parameter Description

environment_ The name of the environment as defined in the Web Console.

API Reference Guide

Structured Data Manager (24.3.0) Page 9 of 50

Parameter Description

name

path The full path to directory containing the Groovy script.

l <install_directory>/obt/scripts/usecases/

l <install_directory>/obt/scripts

where <install_directory> is where you installed the software.

filename The name of the Groovy script file you want to run. For example,
forceSkipAction. For more information, see About Groovy scripts in
Structured Data Manager.

parameters Any parameters required for the running of the Groovy script. Parameters
are case-sensitive.

If the parameter value includes spaces, then put the value in double
quotes. If no spaces are in the parameter value, then no quotes are
required.

To determine the parameters needed, look up the specific API script, or
run the script with no parameters. A usage message indicating the
required parameters will appear.

3. Type the encryption key when prompted. The encryption key is case sensitive.

API Reference Guide

Structured Data Manager (24.3.0) Page 10 of 50

Chapter 2: JobConfiguration
Use the following JobConfiguration Groovy scripts to modify database to database archiving jobs.

l getActions, below

l getActionParams, below

l getActionParamTypes, on the next page

l getActionTypes, on the next page

l getAllJobs, on the next page

l getJobParams, on page 13

l getMappedTable, on page 13

The scripts are located in the following directory:

<install_directory>/obt/scripts

where <install_directory> is where you installed the software.

NOTE: All parameters are case-sensitive.

getActions

This script retrieves the actions for a given job.

Syntax

getActions.groovy <jobName>

Parameters

Parameter Type Description

jobName String Job name of the format: batch@job. Value exists and can be
determined by using getAllJobs, on the next page.

getActionParams

This script returns the following for every parameter in the list:

(name=<parameter_name>, type=<parameter_type>, val=<parameter_value>)

Parameter Description

parameter_name The name of the parameter.

parameter_type CONSTANT

Structured Data Manager (24.3.0) Page 11 of 50

Parameter Description

PASS_THROUGH

GROUP_RUN_ID

parameter_value The value defined for the parameter.

Syntax

getActionParams.groovy <jobName> <actionName>

Parameters

Parameter Type Description

jobName String Job name of the format: batch@job. Value exists and can be
determined by using getAllJobs, below.

actionName String Name of the action. Value exists and can be determined by using
getActions, on the previous page.

getActionParamTypes

This script retrieves all action parameter types defined in the repository.

Syntax

getActionParamTypes.groovy

getActionTypes

This script retrieves all action types defined in the repository.

Syntax

getActionTypes.groovy

getAllJobs

This script retrieves all jobs defined in the database. If the partialJobName is null, then it returns all
job names defined in the database. If the partialJobName is not null, then it returns a set of job names
matching the query criteria.

Syntax

getAllJobs.groovy <partialJobName>

API Reference Guide

Structured Data Manager (24.3.0) Page 12 of 50

Parameters

Parameter Type Description

partialJobName String The query criteria to return the job names selected. If you
want all job names, then leave the parameter empty.

getJobParams

This script retrieves all job parameters for the given job name.

Syntax

getJobParams.groovy <jobName>

Parameters

Parameter Type Description

jobName String Job name of the format: batch@job. Value exists and can be
determined by using getAllJobs, on the previous page.

getMappedTable

This script returns a fully-qualified selection table name for the given table.

Syntax

getMappedTable.groovy <BF_Name> <AppsPack_Name> <Catalog_Name> <Schema_Name>
<Table_Name> <Table_Type> [Table_Identifier]

Parameters

Parameter Type Description

Table_Name string The name of the OLTP table.

Table_Type string Optional. The type of table. Acceptable values are:

l oltp—Contains original table instances in the cartridge.

l selectionViewOLTP—Name of the view used during
reading of rows from the OLTP table and selectionOLTP
table.

l selectionOLTP—Contains information about rows that are
selected for archiving.

l selectionHistory—Contains information on rows from the
target database that will be selected by the undo job.

API Reference Guide

Structured Data Manager (24.3.0) Page 13 of 50

Parameter Type Description

l selectionViewHistory—Name of the view based on the
selectionHistory table and history table which will be used
during reading of history data on undo/redo.

l eligibilityOLTP—Contains information on eligible rules.

l row_counts—Contains the count of rows that are archived.

l custselOLTP—Contains custom selection information.

l exclusionOLTP—Contains information about the rows that
are excluded from archive selection.

Table_Identifier string The table identifier used in Designer if more than one instance of
the same table is used in a model. If this parameter is null, then
the first instance of an OLTP table in a cartridge is used in
matching the mapped table.

NOTE: For table types eligibilityOLTP, row_counts,
exclusionOLTP, and custselOLTP, all instances of an OLTP
table are mapped to the same table. Thus for these table
types, this parameter has no effect and could be null.

BF_Name string The name of the business flow.

AppsPack_Name string The name of the cartridge within the business flow.

Catalog_Name string The name of the SQL Server catalog.

Schema_Name string The name of the schema for the table.

API Reference Guide

Structured Data Manager (24.3.0) Page 14 of 50

Chapter 3: ArchiveAccessConfiguration
Use the following Groovy scripts to customize the createArchiveAccess job.

l Constants, below

l addAddedDependency, on the next page

l addExcludedIndex, on page 17

l addObjectExclusion, on page 17

l addObjectOwnerPair, on page 18

l addPrimaryObject, on page 19

l addTextReplacer, on page 20

l cloneDatabaseLinks, on page 21

l generateLaCleanupStmts, on page 22

l generateLaPurgeSnapshotStmts, on page 23

l genericSqlConnection, on page 23

l removeAddedDependency, on page 24

l removeObjectExclusion, on page 24

l removeObjectOwnerPair, on page 25

l removePrimaryObject, on page 26

l removeTextReplacer, on page 26

The scripts are located in the following directory:

<install_directory>/obt/scripts

where <install_directory> is where you installed the software.

NOTE: All parameters are case-sensitive.

Constants

The following constants are used to define, develop, or customize a job.

l TABLE

l VIEW

l PROCEDURE (Oracle only)

l STORED_PROCEDURE (SQL Server only)

l PROXY_TABLE

l SEQUENCE

Structured Data Manager (24.3.0) Page 15 of 50

l PACKAGE

l PACKAGE_BODY

l FUNCTION

l SYNONYM

addAddedDependency

This script adds an additional database object dependency to those returned from the database
metadata. On some databases, all dependencies might not be available in the metadata.

For example, on SQL Server, dependencies across catalogs are not available. Also, if database
objects are dropped and recreated, the dependencies may be lost.

This script allows you to add the missing metadata.

Syntax

addAddedDependency.groovy <dependentCatalog> <dependentSchema> <dependentName>
<dependentType> <referencedCatalog> <referencedSchema> <referencedName>
<referencedType>

Parameters

Parameter Type Description

dependentCatalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

dependentSchema String Owner of the dependent object.

dependentName String Name of the dependent object.

dependentType String Object type. Valid values are defined in Constants, on the
previous page.

referencedCatalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

referencedSchema String Owner of the referenced object.

referencedName String Name of the referenced object.

referencedType String Object type. Valid values are defined in Constants, on the
previous page.

To remove, see removeAddedDependency, on page 24.

API Reference Guide

Structured Data Manager (24.3.0) Page 16 of 50

addExcludedIndex

This script disables the creation of an index that exists on an OLTP managed table, on the history
table.

For example, in a distributed archive, you should not use more than 20 indexes on the history table,
as there is an Oracle Optimizer bug that causes performance issues in archive access, if the history
table has over 20 indexes.

Indexes that are used for purge performance need not be created on the history tables. You can
exclude any additional indexes using this script.

Syntax

addExcludedIndex.groovy <catalog> <tableSchema> <tableName> <IndexCatalog>
<IndexSchema> <IndexName>

Parameters

Parameter Type Description

catalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

tableSchema String Owner of the dependent object.

tableName String Name of the dependent object.

IndexCatalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

IndexSchema String Owner of the referenced object.

IndexName String Name of the referenced object.

addObjectExclusion

This script excludes an object from the schema cloning. Excluded objects are ignored and not
created, dropped, or aliased.

If the exclusion is cascaded, then all objects directly or indirectly dependent on the object are
excluded.

Syntax

addObjectExclusion.groovy <catalog> <schema> <name> <objectType>
<cascadeExclusion> [<transparencyLayer>] [<skipOwnerCheck>]

API Reference Guide

Structured Data Manager (24.3.0) Page 17 of 50

Parameters

Parameter Type Description

catalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

schema String Owner of the object.

name String Name of the object to exclude.

objectType String Object type. Valid values are defined in Constants, on
page 15.

cascadeExclusion Boolean True—to cascade the exclusion for all objects directly or
indirectly dependent on the object.

False—to exclude only the named object.

transparencyLayer String (Optional when skipOwnerCheck parameter is not
specified)

Name of the transparency layer.
Enter " " to leave blank.

skipOwnerCheck Boolean (Optional parameter)

True—doesn't verify if object owner (schema) is present in
the config file. (<OBT_
HOME>/config/exclusionObjectOwners.properties)

False—verifies if the object owner is present in the config
file.

The default value is False.

To remove, see removeObjectExclusion, on page 24.

addObjectOwnerPair

This script maps the source schema to the archive access schema. By default, the name of the
archive access schema is the name of the OTLP schema appended with "_AA".

OLTP schema Archive Access schema

MyOLTP MyOLTP_AA

If you want to designate a different name for the Archive Access schema, run this script before
installing a cartridge.

The script applies the mapping for the new schema name, and the Deployment Assistant uses the
schema name you choose.

API Reference Guide

Structured Data Manager (24.3.0) Page 18 of 50

Syntax

addObjectOwnerPair.groovy <oltpCatalog> <oltpSchema> <aaCatalog> <aaSchema>
[<transparencyLayer>]

Parameters

Parameter Type Description

oltpCatalog String OLTP catalog for SQL Server.

For Oracle, this is always " " (empty string).

oltpSchema String OLTP schema for Oracle.

OLTP user for SQL Server.

aaCatalog String Archive access catalog for SQL Server.

For Oracle, this is always " " (empty string).

aaSchema String Archive access schema for Oracle.

Archive access user for SQL Server.

transparencyLayer String Name of the transparency layer (optional).

To remove, see removeObjectOwnerPair, on page 25.

addPrimaryObject

This script adds an additional object to the list of primary objects. This script is normally used when
you want the object cloned, rather than having a synonym or proxy created for it.

Syntax

addPrimaryObject.groovy <catalog> <schema> <name> <objectType>

Parameters

Parameter Type Description

catalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

schema String Owner of the object.

name String Name of the object.

objectType String Object type. Valid values are defined in Constants, on
page 15.

To remove, see removePrimaryObject, on page 26.

API Reference Guide

Structured Data Manager (24.3.0) Page 19 of 50

addTextReplacer

This script adds a text replacement action on the object creation string. The search pattern is a Java
regular expression matching a portion of the object creation string. That portion of the string is
replaced with the replacement text.

Syntax

addTextReplacer.groovy <catalog> <schema> <name> <objectType> <sequence>
<searchPattern> <replacementText> <required> <globalReplace>

Parameters

Parameter Type Description

catalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

schema String Owner of the object.

name String Name of the object to which you are applying the text
modifier.

objectType String Object type. Valid values are defined in Constants, on
page 15.

sequence int Numerical value used to indicate when to run the text
replacer. There might be multiple text replacers on an
object. This indicates the order they should be applied.

searchPattern String A Java regular expression that matches a portion of the
object creation string.

replacementText String Exact text to replace the text matched.

required boolean Values are:

l True to throw an exception if the text is not found.

l False to ignore any situation where text is not found.

OpenText recommends setting this to True.

globalReplace boolean Values are:

l True to replace all instances of the search string.

l False to replace the first instance of the search string.

Example

You can use a text replacer with the USE_ROWIDTOCHAR configuration parameter. There might be
some views or stored procedures referencing the ROWID pseudo column on an Oracle table. When

API Reference Guide

Structured Data Manager (24.3.0) Page 20 of 50

you replace the underlying table with a union view, you are no longer able to access this.

The USE_ROWIDTOCHAR configuration parameter causes createArchiveAccess to add a new
column named ROW_ID. ROW_ID selects the ROWID values from each table of the union view. If
existing views and packages are referencing ROWID, then they are not referencing ROW_ID.

In this case, it is necessary to add a text replacer to replace ROWID with ROW_ID.

Example

<install_directory>/obt/bin/launch_groovyscript.sh -e <env_ID> -f <install_
directory>/obt/scripts/addTextReplacer.groovy
"" SCOTT ORD VIEW 0 "ROWID" "ROW_ID" false false

where <install_directory> is where you installed the software.

After successful completion of this script, check the updated OBTSC_TEXT_REPLACER table in the
OBT-REP schema, and then run the createArchiveAccess job.

To remove, see removeTextReplacer, on page 26.

cloneDatabaseLinks

The cloneDatabaseLinks script allows you to copy database links from your Oracle OLTP database
when you create database transparency. Copying the database links ensures that applications,
stored procedures, and functions that use those links continue to function correctly.

The cloneDatabaseLinks script:

l Clones all private database links from all of the source schemas used by a deployed business
flow to the corresponding archive access schema. Passwords for all private links passwords
are prompted for when the links are created.

l Clones all public database links when the archive access schema is not located on the source
schema. If the archive access schema is located on the same server, the public database links
already exist and do not need to be cloned.

l Creates only one database link with the same name. Any duplicate links are skipped and a
warning message is displayed.

l Clones only links used by a source schema, if a source schema is provided.

Syntax

cloneDatabaseLinks.groovy [schema]

Parameters

Parameter Type Description

schema String Optional schema name. If the schema name is included, then
only links used by that particular schema are cloned.

API Reference Guide

Structured Data Manager (24.3.0) Page 21 of 50

generateLaCleanupStmts

The generateLaCleanupStmts script generates clean-up SQL statements. Run this statement on
History to clean up incomplete transactions. That is, transactions that were copied to the History table
but not deleted from the OLTP database.

Use this script only if the archive job needs to be cancelled after data was copied to the History table
through a TABLE_PARALLEL option. The statements can be either TRUNCATE or DELETE
statements where archived data in the History table is retained through a temporary table. The
generated file name starts with obtpa_cln_hist_run.

Syntax

generateLaCleanupStmts.groovy <groupRunningJobId> <directoryName> <cleanupMethod>
<batchSize>

Parameters

Parameter Type Description

groupRunningJobID long Child ID - Archive job ID as defined on the Console Job
Summary page.

directoryName String Directory name, including the directory path that will
contain the generated statements.

cleanupMethod String Clean-up method to use. Specify either TRUNCATE or
DELETE.

batchSize int The number of row sequences processed by the
statement. The number of rows processed will be less
than or equal to the batchSize. The default is 0.

This parameter is only applicable when the clean-up
method is DELETE.

Example

<install_directory>/obt/bin/launch_groovyscript.sh -e DefEnv -f
../scripts/generateLaCleanupStmts.groovy 5 C:\MYDirectory\cleanup TRUNCATE

where <install_directory> is where you installed the software.

The script generates cleanup statements in a file that starts with the name obtpa_cln_hist_
run<Group_Run_Id>_trunc<>_<tableOwner>_<tableName>.sql. The file will be in the directory
C:\MYDirectory\cleanup.

A file will be generated for each table that needs to be cleaned. These SQL files should be run on the
relocation schema for History.

API Reference Guide

Structured Data Manager (24.3.0) Page 22 of 50

Example

<install_directory>/obt/bin/launch_groovyscript.sh -e DefEnv -f
../scripts/generateLaCleanupStmts.groovy 5 C:\MYDirectory\cleanup DELETE 10000

where <install_directory> is where you installed the software.

The script generates cleanup statements in a file that starts with the name obtpa_cln_hist_
run<Group_Run)Id>_del< >_<tableOwner>_<tableName>.sql in the directory
C:\MYDirectory\cleanup.

When the script is done, there is a file for each table that needs to be cleaned. These SQL files
should be run on the relocation schema for History. Each delete statement will delete 10,000 or less
rows per commit.

generateLaPurgeSnapshotStmts

The generateLaPurgeSnapshotStmts script generates purge statements that should be run on the
History table to clean up history transactions on the History snapshot table. That is, transactions that
where copied to the History snapshot tables when SNAPSHOT_TYPE was set to WITH_HISTORY.

You should run this script if the snapshot type has switched fromWITH_HISTORY to WITHOUT_
HISTORY.

Syntax

generateLaPurgeSnapshotStmts.groovy <cartridgeName> <fileName>

Parameters

Parameter Type Description

cartridgeName String The name of the cartridge that has its snapshot type set.

fileName String The file name and directory path of the file that will contain
the generated purge statements.

Example

<install_directory>/obt/bin/launch_groovyscript.sh -e DefEnv -f
../scripts/generateLaPurgeSnapshotStmts.groovy ORDER_PURGE $I_TOP/log/x.sql
C:\MYDirectory\purgeSnapShot.sql

where <install_directory> is where you installed the software.

The script generates deletes statements in the file purgeSnapShot.sql to purge history rows from the
snapshot table that belongs to the cartridge ORDER_PURGE. The purgeSnapShot.sql must be run
on the relocation schema of History.

genericSqlConnection

The genericSqlConnection script gets SQL connections to the repository.

API Reference Guide

Structured Data Manager (24.3.0) Page 23 of 50

Syntax

genericSqlConnections.groovy

removeAddedDependency

This script removes a dependency added with addAddedDependency.

Syntax

removeAddedDependency.groovy <dependentCatalog> <dependentSchema> <dependentName>
<dependentType><referencedCatalog> <referencedSchema> <referencedName>
<referencedType>

Parameters

Parameter Type Description

dependentCatalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

dependentSchema String Owner of the dependent object.

dependentName String Name of the dependent object.

dependentType String Object type. Valid values are defined in Constants, on
page 15.

referencedCatalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

referencedSchema String Owner of the referenced object.

referencedName String Name of the referenced object.

referencedType String Object type. Valid values are defined in Constants, on
page 15.

NOTE: All parameters are case-sensitive.

removeObjectExclusion

This script removes exclusions made with addObjectExclusion.

Syntax

removeObjectExclusion.groovy <catalog> <schema> <name> <objectType>

API Reference Guide

Structured Data Manager (24.3.0) Page 24 of 50

Parameters

Parameter Type Description

catalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

schema String Owner of the object.

name String Name of the object to exclude.

objectType String Object type. Valid values are defined in Constants, on
page 15.

NOTE: All parameters are case-sensitive.

removeObjectOwnerPair

This script removes owner pair objects added with addObjectOwnerPair.

Syntax

removeObjectOwnerPair.groovy <oltpCatalog> <oltpSchema> <aaCatalog> <aaSchema>
[<transparencyLayer>]

Parameters

Parameter Type Description

oltpCatalog String OLTP catalog for SQL Server.

For Oracle, this is always " " (empty string).

oltpSchema String OLTP schema for Oracle.

OLTP user for SQL Server.

aaCatalog String Archive access catalog for SQL Server.

For Oracle, this is always " " (empty string).

aaSchema String Archive access schema for Oracle.

Archive access user for SQL Server.

transparencyLayer String Name of the transparency layer (optional).

NOTE: All parameters are case-sensitive.

API Reference Guide

Structured Data Manager (24.3.0) Page 25 of 50

removePrimaryObject

This script removes a primary object added with addPrimaryObject.

Syntax

removePrimaryObject.groovy <catalog> <schema> <name> <objectType>

Parameters

Parameter Type Description

catalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

schema String Owner of the object.

name String Name of the object.

objectType String Object type. Valid values are defined in Constants, on
page 15.

NOTE: All parameters are case-sensitive.

removeTextReplacer

This script removes a text replacement action created with addTextReplacer.

Syntax

removeTextReplacer.groovy <catalog> <schema> <name> <objectType> <sequence>

Parameters

Parameter Type Description

catalog String For SQL Server, this is the database name.

For Oracle, this is always " " (empty string).

schema String Owner of the object.

name String Name of the object to which you are applying the text
modifier.

objectType String Object type. Valid values are defined in Constants, on
page 15.

sequence int Numerical value used to indicate when to execute the text
replacer. There might be multiple text replacers on an object.

API Reference Guide

Structured Data Manager (24.3.0) Page 26 of 50

NOTE: All parameters are case-sensitive.

API Reference Guide

Structured Data Manager (24.3.0) Page 27 of 50

Chapter 4: RuntimeJobConfiguration
The RuntimeJobConfiguration Groovy script API contains runtime functions.

CAUTION: Use these scripts only on the advice of OpenText Customer Support. These scripts do
not clean up the job, can put the system in an unknown state, and cause failures in later job runs.

These functions are used to work around problems in an already installed environment.

l forceSkipAction, below

l cancelJob, on the next page

l interruptJob, on the next page

The scripts are located in the following directory:

<install_directory>/obt/scripts

where <install_directory> is where you installed the software.

NOTE: All parameters are case-sensitive.

forceSkipAction

This script skips a failed action in a failed job.

NOTE: OpenText recommends using this script only after several attempts have been made at
normal error fixing and rerunning of the failed job, and with the help of OpenText Customer
Support. This script can put the system in an unknown state and cause it to behave unpredictably.

Before using this script, make sure the job has no running operating system process or database
session.

If a job failed due to a hard failure, such as a system or database crash, the Job Monitor might report
the job as Running. You must verify the job is no longer running using other methods.

When the job is recovered, the failed action is skipped, and the job continues on to the following
action. After this method has been used, the Job Monitor shows the status of the task as Skipped.

Syntax

forceSkipAction.groovy <jobName> <actionName> <groupRunningJobId>

Parameters

Parameter Type Description

jobName String Job name of the format: batch@job. Value exists and
can be determined by using getAllJobs, on page 12.

Structured Data Manager (24.3.0) Page 28 of 50

Parameter Type Description

actionName String Name of the action. Value exists and can be
determined by using getActions, on page 11.

groupRunningJobID long GroupID as defined on the Console Job Summary
page.

cancelJob

This script allows you to update the status of a job in the Job Monitor to read “Cancelled.” OpenText
recommends running this job only with permission from OpenText Customer Support.

Syntax

cancelJob.groovy <groupRunningJobID>

Parameters

Parameter Type Description

groupRunningJobID long GroupID as defined on the Console Job Summary page.

interruptJob

This script allows you to interrupt or pause a currently running job. Use this script to stop a business
flow when the Kill Job button does not display in the Web Console. Any children under the GroupID
specified by the groupRunningJobID parameter are also stopped. The Business Flow is put into the
suspended state, allowing you to restart it later.

Syntax

interruptJob.groovy <groupRunningJobID>

Parameters

Parameter Type Description

groupRunningJobID long GroupID of the business flow that displays when the user
clicks on the running business flow in the Monitor tab of
Web Console.

API Reference Guide

Structured Data Manager (24.3.0) Page 29 of 50

Chapter 5: OwnerMapping
The OwnerMapping Groovy scripts allow you to change the name for the following:

l Oracle history schema (also called the target schema)

l Oracle archive access schema

l SQL Server history database (also called the target database)

l SQL Server archive access database

You should change the names when:

l Your environment requires that a particular name be used.

l You want to pre-create the name.

The OwnerMapping Groovy scripts allow you to register owner mappings before you deploy a
business flow. The following scripts allow you to manipulate owner mappings:

l getOwnerMappings, below

l addHistoryOwnerMapping, below

l removeHistoryOwnerMapping , on the next page

The scripts are located in the following directory:

<install_directory>/obt/scripts

where <install_directory> is where you installed the software.

For information on how to pre-create a History schema or database, see the
Structured Data Manager Installation Guide.

NOTE: All parameters are case-sensitive.

getOwnerMappings

This call retrieves configured owner mappings from the Repository.

Syntax

getOwnerMappings.groovy

addHistoryOwnerMapping

This call maps the OLTP owner to the History owner, if you want to pre-create the following:

l History schema for Oracle

l History database for SQL Server

Structured Data Manager (24.3.0) Page 30 of 50

You must add owner mapping for the OLTP database to the pre-created History before cartridge
installation. You must ensure that the owner mapping is not already defined for the OLTP database,
and that the pre-created History owner name is not in use.

NOTE: The addHistoryOwnerMapping and removeHistoryOwnerMapping help you to define (or
remove) required mapping between the OLTP owner and History owner. While doing so, ensure
the following points:

l Don't create mapping directly on the history schema as an owner.

l Once the mapping is created between OLTP owner and the History owner, it cannot be
created again.

l Once the cartridge or business flow is deployed, the mapping cannot be modified or
removed.

l To modify the mapping, remove existing mapping (using removeHistoryOwnerMapping) and
use addHistoryOwnerMapping as desired.

l Uninstalling a cartridge does not remove existing owner mappings.

Syntax

addHistoryOwnerMapping.groovy <oltpSchema> <historySchema> [<oltpCatalog>]
[<historyCatalog>]

Parameters

Parameter Type Description

oltpSchema String OLTP schema for Oracle.

OLTP user for SQL Server.

historySchema String History schema for Oracle.

History user for SQL Server.

oltpCatalog String OLTP catalog for SQL Server only.

historyCatalog String History catalog for SQL Server only.

To remove, see removeHistoryOwnerMapping , below

removeHistoryOwnerMapping

This call removes a History owner mapping.

An existing owner mapping can be removed only before a cartridge is deployed. After a cartridge is
deployed, owner mappings cannot be modified.

Uninstalling a cartridge does not remove existing owner mappings.

API Reference Guide

Structured Data Manager (24.3.0) Page 31 of 50

Syntax

removeHistoryOwnerMapping.groovy <oltpSchema> [<oltpCatalog>]

Parameters

Parameter Type Description

oltpSchema String OLTP schema for Oracle.

OLTP owner for SQL Server.

oltpCatalog String OLTP catalog name for SQL Server only.

NOTE: All parameters are case-sensitive.

API Reference Guide

Structured Data Manager (24.3.0) Page 32 of 50

Chapter 6: Configuration
The following Groovy scripts allow you to manipulate configuration settings for all database to file and
database to database cartridges, as well as for individual cartridges.

l createProductPropertyType, below

l getProductConfigs, on page 35

l getProductConfigValue, on page 35

l setProductConfigValue, on page 35

l getCartridgeConfigs, on page 36

l getCartridgeConfigValue, on page 36

l listBusinessFlowCartridges, on page 37

l setCartridgeConfigValue, on page 37

The scripts are located in the following directory:

<install_directory>/obt/scripts

where <install_directory> is where you installed the software.

NOTE: All parameters are case-sensitive.

createProductPropertyType

This call creates a new property type for database to database cartridges or database to file
cartridges.

Syntax

createProductPropertyType.groovy <propTypeName> <description> <scalarType>
<displayType> <mandatory> <isSensitive> <updateable> <copyable> <sequence>
<displayName> <supportsAppspackOverride> <installedProductId> [defaultValue]
[lowValue] [highValue][propertyGroupId] [propertyLovId] [jobParameterXml]

NOTE: All parameters must be listed in order. To skip an optional parameter, use double quotes
in place of the parameter value. For example, "".

Parameters

Parameter Type Description

propTypeName String The name of the product property type. The
propTypeName and the displayName can be different.

Structured Data Manager (24.3.0) Page 33 of 50

Parameter Type Description

description String The description of the property type.

scalarType String Determines the scalar type for the property. Acceptable
values are BOOLEAN, INTEGER, DATE, NUMBER, or
STRING.

displayType String Determines the display type. Acceptable values are
SLIDER or FIELD.

mandatory String Y—Makes the property mandatory.

N—Makes the property optional.

isSensitive String Y—Makes the property case-sensitive.

N—Makes the property non-case-sensitive.

updateable String Y—Allows the property to be updated.

N—Prohibits the property from being updated.

copyable String Y—Allows the property to be copied.

N—Prohibits the property from being copied.

sequence String Sequence number used to order properties of the same
group.

displayName String The name that will be displayed in the Web Console.

supportsAppspackOverride String Y—Allows the property to be overridden for each
individual cartridge.

N—Prohibits the property from being overridden.

installedProductId String The ID of the installed database to database or
database to file product. The ID is found by querying
the obtrep_installed_products table.

defaultValue String Optional. The default value for the created property.

lowValue String Optional. The low value for the created property. Use to
define the range of an INTEGER scalar type.

highValue String Optional. The high value for the created property. Use
to define the range of an INTEGER scalar type.

propertyGroupId String Optional. The group ID of the property. The ID is found
by querying the obtcfg_property_groups table.

propertyLovId String Optional. The list of value ID of the property. The ID is
found by querying the obtcfg_property_lovs table.

jobParameterXml String For internal use only.

API Reference Guide

Structured Data Manager (24.3.0) Page 34 of 50

Windows example

launch_groovyscript.bat -e MyEnv -f
"C:\SDM\SDM760\obt\scripts\createProductPropertyType.groovy" "NewFormQueryOnly"
"For new QUERY_ONLY attribute." "STRING" "FIELD" "Y" "N" "Y" "N" "1" "Set forms
to Query Only." "N" "2" "Y" "" "" "1" "" ""

getProductConfigs

This call retrieves the names of database to file or database to database configuration properties.

Syntax

getProductConfigs.groovy <product ID>

Parameters

Parameter Type Description

product ID String LA—Database to database archiving.

EA—Database to file archiving.

getProductConfigValue

This call retrieves a database to file or database to database configuration property value parameter.

Syntax

getProductConfigs.groovy <product ID> <property name>

Parameters

Parameter Type Description

product ID String LA—Database to database archiving.

EA—Database to file archiving.

property name String The short name of the configuration property.

Prints the current product configuration property value.

Refer to Property names, on page 38.

setProductConfigValue

This call sets a database to file or database to database configuration property value.

Syntax

setProductConfigValue.groovy <product ID> <property name> <value>

API Reference Guide

Structured Data Manager (24.3.0) Page 35 of 50

Parameters

Parameter Type Description

product ID String LA—Database to database archiving.

EA—Database to file archiving.

property name String The short name of the configuration property.

Prints the current product configuration property value.

See Property names, on page 38.

value String The value to set.

getCartridgeConfigs

This call lists the names of cartridge configuration properties.

Syntax

getCartridgeConfigs.groovy <product ID> <cartridge name>

Parameters

Parameter Type Description

product ID String LA—Database to database archiving.

EA—Database to file archiving.

cartridge name String The short name of the cartridge.

getCartridgeConfigValue

This call returns the current cartridge configuration property value.

If the value does not exist for the individual cartridge, but a value for the same property name does
exist for the default database to file or database to database value, then the corresponding database
to file or database to database configuration property value is printed instead.

Syntax

getCartridgeConfigValue.groovy <product ID> <cartridge name> <property name>

Parameters

Parameter Type Description

product ID String LA—database to database archiving.

API Reference Guide

Structured Data Manager (24.3.0) Page 36 of 50

Parameter Type Description

EA—database to file archiving.

cartridge name String The short name of the cartridge.

property name String The short name of the configuration property.

See Property names, on the next page.

listBusinessFlowCartridges

This call lists the cartridges in a business flow and can be paired with setCartridgeConfigValue to
update properties for all of the cartridges in a business flow programmatically.

Syntax

listBusinessFlowCartidges.groovy BUSINESS_FLOW_NAME

Example

//Get all cartridges within the current business flow
def bflist = getBusinessFlowService().listBusinessFlowCartridges (BUSINESS_FLOW_
NAME);

setCartridgeConfigValue

This call sets a cartridge configuration property value.

Syntax

setCartridgeConfigValue.groovy <product ID> <cartridge name> <property name>
<value>

Example

//Get all cartridges within the current business flow
def bflist = getBusinessFlowService().listBusinessFlowCartridges (BUSINESS_FLOW_
NAME);
//For each cartridge, set the 'Schema Mapping File for Upload' property
bflist.each() { map -> getConfigurationService().setCartridgeConfigValue
(map.cartridgeName,'SchemaMappingsFileNameForUpload', 'd:/qfiniti/Ref.txt')

Parameters

Parameter Type Description

product ID String LA—database to database archiving.

EA—database to file archiving.

API Reference Guide

Structured Data Manager (24.3.0) Page 37 of 50

Parameter Type Description

cartridge name String The short name of the cartridge.

property name String Name of a cartridge parameter, for example,
SchemaMappingsFileNameForUpload.

Refer to Property names, below.

value String The value you want to set for the parameter, for
example, d:/qfiniti/Ref.txt).

Property names

The following table lists the available cartridge properties:

Property Type Description

VERIFY_ROW_COUNTS Boolean Indicates whether to perform verification of row
counts between the current job and its
corresponding selection job. Set to true or false.
True is the default value.

ALLOW_MASKED_
DATA_ON_UNDO_
RELOAD

Boolean Indicates whether to allow copying of masked
data into the source database during undo and
reload jobs. Set to true or false. False is the
default value. If set to true, column data that is
masked by a non-reversible masking function will
be copied into the source database, possibly
resulting in a data corruption for masked columns.

SEL_BATCH_SIZE Number Controls the number of driving table rows per
transaction. This is used for selection operations
that select related parent and child row ids from
the source database into selection tables, which
are read by data movement operation to move the
source rows to the destination. A value of zero
causes all rows to be inserted in the same
transaction.

BATCH_SIZE Number Controls the number of driving table rows per
transaction. This is used for data movement
operations that operate on related parent and
child rows in the same transaction. Used by
partitioned and database to file movements only.
The total number of rows operated on can be
much larger than the value entered, depending on
the characteristics of the data. A value of zero
disables intermediate commits.

ELIGIBILITY_ Boolean Globally enables or disables the recording of the

API Reference Guide

Structured Data Manager (24.3.0) Page 38 of 50

Property Type Description

ANALYTICS cause for excluding records from the archive.
Disabling the analytics improves performance.
Enabling it allows querying of the analytics tables
for information on record eligibility.

NUM_WORKERS Number Defines the default maximum number of job
workers for tasks that can take advantage of
parallelism.

COMPRESSION_ALG String Specifies the compression algorithm to apply to
the created files. Valid values are NONE and
GZIP.

SOURCE_LOCATION String Specifies the source database name.

EXTRACT_FORMAT String Specifies the extract file format.

PRESERVE_TEMP_
FILES

Boolean Specifies whether temporary files should be
preserved.

UNMASK_ON_UPLOAD Boolean Unmask data on upload if mask is reversible.

WRITE_XSD_
SUMMARY

Boolean Indicates whether to write XSD and Summary files
even when there are no data files.

STORAGE_RETENTION Number Normally this is the number of days the storage
system is to retain the extracted data. Leave
empty to specify the storage system's default
retention behavior.

NUM_WORK_UNIT Number Defines the number of units amongst which the
total amount of work will be divided. Each worker
picks up a whole unit at a time to ensure clear
progress indication and manage the total work in
units for the job engine.

MAX_STMT_COUNT Number Defines the maximum number of database
statements which can be combined in a single
query.

MAX_DELETE_COUNT Number Defines the maximum number of rows to be
deleted in a single request to the database.

POPULATE_INDEX_
TABLES

Number Specifies whether Index Tables should be
populated during Copy from DB to BE. If false,
then Delete will not work.

POPULATE_USER_
INDEX_TABLES

Number Specifies whether User-Index Tables should be
populated during Copy from DB to BE. Note: If
false, then User-Defined Queries will not work.

API Reference Guide

Structured Data Manager (24.3.0) Page 39 of 50

Property Type Description

UNIFY_MTU_
SELECTIONS

Boolean Unify selections in multiple table uses (MTU) into
one selection table, and remove duplicate rows.

CARDINALITY_VALID Boolean Indicates whether to validate that the extracted
data does not violate cardinality constraints in the
Model instance definition.

CHECKSUM_ALG Boolean Indicates whether to run the checksum algorithm
on created files. The supported algorithms are
MD5 and SHA-256.

CHECKSUM_VALID Boolean Indicates whether to validate that the XML file
checksums have not changed.

ARCHIVE_
CONSISTENCY_VALID

Boolean Indicates whether to validate that the archive as a
whole is consistent.

XML_SCHEMA_VALID Boolean Indicates whether to validate that the XML files do
not violate their XML schema.

ROWCOUNT_VALID Boolean Indicates whether to verify that rowcounts in the
XML files match those in the database.

APPSPACK_DELETE_
VALID

Boolean Indicates whether to verify that the Cartridge
version used during database deletion is the same
as the one used during database extraction.

VALIDATE_DATA_
UNCHANGED

Boolean Indicates whether to validate that data selected for
deletion has not changed on OLTP Schema.

VALIDATE_DELETE_
COUNT

Boolean Indicates whether to verify the number of rows
that will be deleted against the expected number.

RUN_OUTPUT_OPTION String This parameter controls how much PDM produces
diagnostic output in the "PDM server side log."

START_TABLE_ALIAS String This parameter specifies to which table the "Start
Partition List" belongs. If the table appears
multiple times in the model, you must specifically
use the alias the designer assigns to the table.

START_PARTITION_
LIST

String This parameter is for a comma separated list of
partitions, all belonging to the same table as
specified by "Start Table Alias". This list of
partitions will be moved when the cartridge runs.

UploadAddColumn
Enabled

Boolean Enables upload job to add a column to target table
if it exists in source but not in target.

UploadModifyColumn
Enabled

Boolean Enables upload to modify a column if the source
column differs from the existing target column.

API Reference Guide

Structured Data Manager (24.3.0) Page 40 of 50

Property Type Description

UploadDropColumn
Enabled

Boolean Enables upload to drop a column if it exists in the
target table, but not in the source. Enabling this
feature in a production environment is not
recommended.

NUMBER_OF_
ATTEMPTS

Number Number of attempts to read a file from S3 if "no
such bucket" or "no such key" exception occurs
while reading.

GroupFilePrefix String Is the prefix for the group data files.

GroupFileSuffix String Is the suffix for the group data files.

GroupXSDFilePrefix String Is the prefix for the group XML Schema file.

GroupXSDFileSuffix String Is the suffix for the group XML Schema file.

SummaryFilePrefix String Is the prefix for the summary files.

SummaryFileSuffix String Is the suffix for the summary files.

SummaryXSDFilePrefix String Is the prefix for the summary XML Schema file.

SummaryXSDFileSuffix String Is the suffix for the summary XML Schema file.

SchemaMappingsFile
NameForUpload

String Schema mappings defined in this file will be used
to upload to destination database.

API Reference Guide

Structured Data Manager (24.3.0) Page 41 of 50

Page 42 of 50Structured Data Manager (24.3.0)

Glossary
active database
The database from which you plan to move or
copy data. Typically, this database is your
online transaction processing (OLTP) or
production database. In a two- or three-tiered
configuration, the active database resides on
tier one and is the source for data movement
operations.

active environment
TheWeb Console views and acts upon only
one environment at a time, the active
environment. To switch the active
environment, you use the Change Active
option in the Web Console.

activity
In Designer, a component of a business flow,
which is added by using the toolbar. For
example, you can add archive and reload
activities to your business flow. Note, activities
in a business flow are different from what you
see at runtime and therefore do not
necessarily map directly to what you see in the
Web Console.

advanced selection
Amethod of data selection that discovers all of
the interrelated rows from multiple tables and
conceptually places them in the same
application partition for archiving.

annotation
In Designer, a comment associated with the
project, or one of its objects or components.
These comments are collected and published
in a PDF file when you right click a project or
business flow and select Generate
Documentation.

application partitioning
The concept of partitioning related rows
together during data selection, regardless of
whether they are in one or more tables.
Application partitioning is unique to Structured
Data Manager and contrasts with the more
common table partitioning offered by the

database management software, which only
groups related rows from one table.

archive data store
The location where the data is to be archived.
Can be a separate database, separate space
on the same database, or an XML file. In a
two-tiered configuration, the archive data store
resides on tier two and can be a database or
XML. In a three-tiered configuration, the
archive data store is a database on tier two
and XML on tier three, and is the target for
data movement operations.

archive query server
The component that provides SQL access to
XML database archives.

Consolidated Archive
Amanaged, scalable repository that
consolidates electronic communications,
attachments, and files, and provides complete
control over corporate information assets,
facilitating compliance with internal corporate
governance policies and procedures as well
as externally mandated laws and regulations.

business flow
A series of activities, such as archive
operations and scripts, that run in sequence.
You build business flows in Designer.

business flow status
TheWeb Console shows the last run of each
business flow. The states are
Complete/Error/Running.

cartridge
An instance of model- or schema-based
eligibility criteria used to move or copy data
from one location to another. Cartridges
capture the application and business rules to
ensure referential integrity of the data. For any
one model in your project, you may have many
cartridges that use it.

chaining table
The lower level table in a many-to-one or a
many-to-many relationship between higher
level and lower level tables in the model
hierarchy.

API Reference Guide
Glossary: classification -

Page 43 of 50Structured Data Manager (24.3.0)

classification
The Content Manager (formerly Records
Manager) classification to be applied to the data
moved by Structured Data Manager. This
classification specifies where to place the data
when it is ingested by Content Manager. For
more information, see the Content Manager
documentation.

collection
The configuration of a directory location and
file pattern to match a set of archived XML
files, thus allowing SQL access to the archived
data.

comma separated values (CSV)
A database-to-file output format that stores the
data as values separated by commas and a
metadata file. Each line in the CSV file
corresponds to a row in a table. Within a line,
fields are separated by commas, each field
belonging to one table column. CSV files
provide a simple format that many applications
can import.

command
Command files or JavaScript files launched by
the Web Console on your behalf with status
displays.

condition
In Designer, the way you branch your
business flow to run or skip an activity based
on some criteria.

configuration parameter
A type of parameter that has its values set by
an administrator (someone who has repository
privileges from the Web Console) through the
administrator interface. Typically, this type of
parameter represents values that should be
changed very infrequently, perhaps only at
deployment time.

console user
TheWeb Console identifies individual users,
who are distinct from database users. The
properties for a user are User Name, Full
Name, Password, Enabled, Description,
Email, Phone, and Privileges.

console user name
The login name associated with a Web
Console user.

constraint
A column or a list of columns that enables you
to identify rows in the database and relate
them to one another.

Content Manager
Enterprise document and records
management software designed to simplify the
capture, management, security, and access to
information. Content Manager enables
organizations to more easily comply with
regulations and corporate policies, and it helps
secure information from inappropriate access
and misuse.

custom properties
User-created name/value pairs in cartridges
and business flows. These values are
exposed at runtime as parameters.

customization
A change that an administrator or DBA makes
to a project provided by a third party, typically
for a packaged application like Oracle
PeopleSoft or Oracle E-Business Suite. As
long as the customization is allowable by the
project, the user can merge the customization
into newer revisions of the third party project.

customization mode
A Designer mode that provides visual cues to
indicate customizations in the model. In a
project with locked files, customization mode
is on by default, but you can toggle it on and off
from the toolbar in the model editor.

data access cartridge
A cartridge that provides lightweight query
access to retired or archived data. Data
access cartridges are designed by the archive
developer but can be run by business users
with no technical expertise.

data masking
The process of replacing private or
confidential data during movement with a
specified mask. You can choose from pre-
defined masks that are part of OpenText or
create your own mask. A mask may or may not

API Reference Guide
Glossary: data movement -

Page 44 of 50Structured Data Manager (24.3.0)

be reversible upon reload from the archive
data store.

data movement
The method used by Structured Data Manager
to actually move data (transactional, bulk or
partitioned for database to database, and copy
or archive for database to file).

data transparency
The ability to access archived data through
your standard application interfaces for data
access. Data transparency enables users to
access archived data as though it were still in
the active database.

database constraint
A constraint that exists in the database and
can be discovered and referenced from
Designer.

database to database
Amovement in which data goes from an active
database to an archive database, or separate
tablespaces inside the active database.
Typically, the archive database is located on
cheaper storage devices.

database to file
Amovement in which data goes from an active
database to a file (XML, JSON or CSV format),
which is offline but still accessible through
SQL using the archive query server and a
client tool of your choice.

deployment assistant
The user interface component within Designer
used to deploy or generate business flows.

description
A technical description created by the
developer for her own reference. These
descriptions do not appear in the generated
PDF file for the cartridge or business flow.

Designer
The user interface component used to
develop, test, and deploy your archiving
solution. Designer is a powerful graphical
development environment for archive
solutions.

distributed instance
A configuration option for database-to-
database archiving where the data you archive
is stored on a separate database from the
source or active database.

DRE
See Dynamic Reasoning Engine (DRE).

driving table
A driving object is a root of a model hierarchy.
Its relationship to the child tables drives the
selection of transactions.

dynamic list of values
A list of values for a parameter that obtains its
members from a SELECT statement that
returns identifiers and labels.

dynamic parameter
A type of parameter that has its value set by a
Groovy script that runs at deployment time to
obtain a value. For example, this type of
parameter can supply the type or version of a
database or application, which can be
obtained programmatically at deployment
time.

Dynamic Reasoning Engine (DRE)
A platform technology that uses high
performance pattern-matching algorithms to
search for content stored in OpenText
repositories. Performs core information
operations for contextual analysis and concept
extraction, enabling solutions for the
categorization, summarization,
personalization, hyperlinking, and retrieval of
all forms of information.

environment
The source and (optional) target credentials
against which you plan to run commands. You
can define multiple environments within your
installation to identify various source and
target databases.

error
One of the ways in which you can interrupt a
business flow. Error indicates that the
business flow failed for some reason.

API Reference Guide
Glossary: exclusive rules -

Page 45 of 50Structured Data Manager (24.3.0)

exclusive rules
One of the ways in which Structured Data
Manager determines whether to include or
exclude rows from the archive operation.
Exclusive rules require all rows in the
constraint table to match for inclusion.
Exclusive rules exclude the instance if the
condition on any child is false, like
STATUS=’CLOSED’.

exit
One of the ways in which you can interrupt a
business flow. You can exit successfully or
with a warning.

export
The way that you save an Structured Data
Manager project to an exchange format (.hdp)
from the File menu. See also import.

export data
The way that a user can send data to CSV
format from Preview using the toolbar item.

generate documentation
The process of collecting and grouping all
annotations into a PDF file that also describes
the business flow or cartridge structure.

history schema
For database-to-database archiving, the
schema in the target database where the
archived data is stored.

IDOL
See Intelligent Data Operating Layer (IDOL).

import
The way that you transfer projects from
exchange format (.hdp) into the Project
Navigator. You can also use import to migrate
cartridges created in 5.1 to 6.x. See also
export.

inclusive rules
One of the ways in which Structured Data
Manager determines whether to include or
exclude rows from the archive operation.
Inclusive rules require only one row in the
constraint table to match the rule and be
included. Inclusive rules include the instance if
the condition on any child is true, like
PRODUCT_RECALLED=’Y’.

indexing cartridge
A cartridge that indexes your data for better
searching. For example, you might associate
an indexing cartridge with a database-to-file
archiving cartridge to improve performance
when querying the archive data files.

Intelligent Data Operating Layer (IDOL)
An information processing layer that collects
indexed data from connectors and stores it in a
structure optimized for fast processing and
retrieval, integrating unstructured, semi-
structured, and structured information from
multiple repositories.

interrupt
The way to stop or pause a business flow
(pause, error, exit with warning, exit
successfully).

local deployment
The generation and deployment of your
cartridge or business flow to an environment
on your local, Designer client. Deployment
files are generated locally and then deployed
to the designated, local environment.

lookup table
A table that contains helpful non-transactional
information. For example, non-transactional
information could be status definitions, or the
name of the sales representative.

managed table
A table in the model that is copied and then
purged from the active database by a
cartridge. Transactional, chaining, and driving
tables in a model are all typically managed
tables.

model
Amodel identifies the tables and table
relationships representing a business entity or
related business entities. A project can have
multiple models. Each model contains a
driving table and all of its child and descendent
tables.

model compatibility
Each model in your project can have one or
more dynamic parameters associated with it to
verify the compatibility with the target
environment. If the compatibility parameter

API Reference Guide
Glossary: model-based cartridge -

Page 46 of 50Structured Data Manager (24.3.0)

returns false, then the cartridge referencing
the model will not deploy or run and throw an
error. For example, the script could return
false for Oracle 10.2 and true for Oracle 11.1
to indicate that a cartridge referencing the
model can only deploy and run against Oracle
11.1.

model-based cartridge
A cartridge that moves data based upon a
defined data model with relationships. This
type of cartridge is typically used for ongoing
archive operations.

non-intrusive environment
In a non-intrusive environment, data is
archived without an interface schema and a
generic JDBC driver is used. A non-intrusive
environment enables you to copy or archive
data from read-only sources, which is
especially helpful in cases where the data is
associated with older technologies that might
not support basic SQL statements or when the
database administrator or company policy
prohibits write access to the production
environment.

OLTP database
The online transaction processing database
that typically is your active or source database.

pause
One of the ways in which you can interrupt a
business flow. Pausing suspends the business
flow while awaiting operator intervention.

reload
The act of taking data from an archive data
store and loading it into the active database.

remote deployment
The generation and deployment of your
cartridge or business flow to an environment
on a system that is remote from your Designer
client. Deployment files are generated locally
and then deployed to the designated, remote
environment.

repository
The location that holds business flow
metadata, product configuration data, and
data collected during runtime. The repository

can be located on your active database or
another logical database.

rule
Qualifications added to the model in order to
include or exclude data based on certain
criteria. For example, you might add a rule to
exclude from archiving any orders that are not
yet closed.

runtime parameter
A type of parameter that has its values set by
the operator executing the job in Console or on
the command line. Typically, this type of
parameter represents operational values that
tend to change frequently and therefore need
to be set each time the job is run.

schema-based cartridge
A cartridge that moves data based upon the
database schema rather than a defined data
model with relationships. This type of cartridge
is typically used for database retirement or the
cleanup of orphan tables.

selection
The form of data selection to use (standard or
advanced) for choosing data. When deploying
a cartridge or adding it to a business flow, you
must specify the selection method.

single instance
A configuration option for database-to-
database archiving where the data you archive
is stored on the same database (Oracle) or the
same server (SQL Server) as the source or
active database.

source
The location (database) from which you are
copying or moving data.

SQL access server
See archive query server.

standard selection
Amethod of data selection that restricts itself
to the rows identified by the model. Unlike
advanced selection, it does not attempt to
traverse related rows across multiple tables.

API Reference Guide
Glossary: structured records management -

Page 47 of 50Structured Data Manager (24.3.0)

structured records management
A type of solution that extracts structured data
from a source application and moves it into
XML format. The XML is then ingested into the
corporate records management system for
long term management and eventual disposal
according to corporate policy.

table use
A database table, view, or synonym that is
referenced in Designer, for example, in the
model. The same table can be used multiple
times in a model. For example, a table could
be appear as a transactional table and a
lookup table in the same model.

target
The location (database or XML) to which you
are copying or moving data.

tier
A level in your database archiving
configuration. You can have two- or three-
tiered configurations. In a two-tiered
configuration, tier one contains your active
database and tier two your archive data store,
which can be a database or XML. In a three-
tiered configuration, tier one contains your
active database, tier two an archive database,
and tier three XML.

transactional data movement
Transactional movement uses set-based data
movement and is the default method of
movement.

transactional table
A table that contains information about the
business transaction. For example, a
transactional table might contain detailed tax
or payment information related to each
business transaction.

unique identifiers (UIDs)
A 16 hexadecimal identifier calculated based
on the content of a Designer file. This value is
used to determine if the user has customized
key pieces of a project.

unmanaged table
A table in a model that is copied but not purged
from the active database by a cartridge.

Lookup tables in a model are typically
unmanaged tables.

Vertica
Column-oriented SQL database management
software for storing and analyzing structured
data. Used to manage large, fast-growing
volumes of data and provide fast query
performance for data warehouses and other
query-intensive applications.

virtual constraint
A constraint that you define in Designer that
only exists within Structured Data Manager.

Web Console
A browser-based interface where you can
create and manage your deployment
environments, and deploy, run, administer,
and monitor your business flows.

Index

A

addHistoryOwnerMapping 30
addObjectExclusion 17
addObjectOwnerPair 18
addPrimaryObject 19
addTextReplacer 20
archive access

mapping 18
modifying 8
owner 8

C

cancelJob 29
cartridges

list in business flow 37
clean up statements 22
cloned object 19
cloneDatabaseLinks 21
configuration settings 33

modifying 9
create archive access

constants 15
create archive access job

modifying 15

D

database links 21

F

failed action
bypass 28
skip 28

failed job 28
forceSkipAction 28

G

generateLaCleanupStmts 22
generateLaPurgeSnapshotStmts 23
genericSqlConnection 23
getActionParams 11
getActionParamTypes 12
getActions 11
getActionTypes 12
getAllJobs 12
getCartridgeConfigs 36

getCartridgeConfigValue 36
getJobParams 13
getOwnerMappings 30
getProductConfigs 35
Groovy scripts

about 7
addHistoryOwnerMapping 30
addObjectExclusion 17
addObjectOwnerPair 18
addPrimaryObject 19
addTextReplacer 20
cancelJob 29
forceSkipAction 28
generateLaCleanupStmts 22
generateLaPurgeSnapshotStmts 23
genericSqlConnection 23
getActionParamTypes 12
getActions 11
getActionsParams 11
getActionTypes 12
getAllJobs 12
getCartridgeConfigs 36
getCartridgeConfigValue 36
getJobParams 13
getOwnerMappings 30
getProductConfigs 35
interruptJob 29
listBusinessFlowCartridges 37
modifying archive access 8
modifying configuration settings 9
modifying jobs 8
parameters 10
querying for valid values 7
registering owner mappings 8, 30
removeAddedDependency 24
removeHistoryOwnerMapping 31
removeObjectExclusion 24
removeObjectOwnerPair 25
removePrimaryObject 26
running 9
setCartridgeConfigValue 37
setProductConfigValue 35
TextReplace 26

groupRunningJobID 29

H

history schema 8, 30

I

interruptJob 29

Structured Data Manager (24.3.0) Page 48 of 50

API Reference Guide
Index: listBusinessFlowCartridges – text replacement

L

listBusinessFlowCartridges 37

M

metadata 16
modifying 33

create archive access 8

O

object dependency 16
owner mapping 8, 30
owner mappings

registering 8, 30

P

pre-created history schema
registering owner mapping 8, 30

primary objects
adding 19

purge statements 23

Q

querying
valid values 7

R

removeAddedDependency 24
removeHistoryOwnerMapping 31
removeObjectExclusion 24
removeObjectOwnerPair 25
removePrimaryObject 26
removeTextReplacer 26
running

Groovy scripts 9
running jobs

modifying 8

S

set archive access owner 8
setCartridgeConfigValue 37
setProductConfigValue 35
skip failed action 28
SQL connections 23

T

text replacement 20

Structured Data Manager (24.3.0) Page 49 of 50

Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on OpenText Structured Data Manager 24.3.0 API Reference Guide

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to swpdl.sdm.docfeedback@microfocus.com.

We appreciate your feedback!

Structured Data Manager (24.3.0) Page 50 of 50

mailto:swpdl.sdm.docfeedback@microfocus.com?subject=Feedback on API Reference Guide (OpenText Structured Data Manager 24.3.0)

	About this document
	Intended audience
	Prerequisites
	Related documentation

	Chapter 1: Use the Groovy script API
	About Groovy scripts in Structured Data Manager
	Retrieve valid values
	Modify the createArchiveAccess job
	Modify running jobs
	Register pre-created owner mappings
	Modify cartridges and components

	Run Structured Data Manager Groovy scripts

	Chapter 2: JobConfiguration
	getActions
	getActionParams
	getActionParamTypes
	getActionTypes
	getAllJobs
	getJobParams
	getMappedTable

	Chapter 3: ArchiveAccessConfiguration
	Constants
	addAddedDependency
	addExcludedIndex
	addObjectExclusion
	addObjectOwnerPair
	addPrimaryObject
	addTextReplacer
	cloneDatabaseLinks
	generateLaCleanupStmts
	generateLaPurgeSnapshotStmts
	genericSqlConnection
	removeAddedDependency
	removeObjectExclusion
	removeObjectOwnerPair
	removePrimaryObject
	removeTextReplacer

	Chapter 4: RuntimeJobConfiguration
	forceSkipAction
	cancelJob
	interruptJob

	Chapter 5: OwnerMapping
	getOwnerMappings
	addHistoryOwnerMapping
	removeHistoryOwnerMapping

	Chapter 6: Configuration
	createProductPropertyType
	getProductConfigs
	getProductConfigValue
	setProductConfigValue
	getCartridgeConfigs
	getCartridgeConfigValue
	listBusinessFlowCartridges
	setCartridgeConfigValue

	Glossary
	Index
	Send documentation feedback

