Novell
Developer Kit

www.novell.com

‘ SMS DEVELOPER COMPONENTS
February 28, 2008

Novell.

Legal Notices

Novell, Inc., makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc., reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc., makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.,
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc., has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide

1 Target Services Tasks

1.1

1.2

1.3

Backing Up and Restoring.
1.1.1 Connectingtoa TSA. .

1.1.2 Connectingto Target Services

1.1.3 Defining Data Sets ...

1.1.4 BackingUpand RestoringData

1.1.5 Terminating a Process
Building Log Files
1.2.1 Reading Log Files
1.2.2 Engine Log File
Scanning

1.3.1 Modifyingthe Scan Order

2 Target Services Concepts

2.1

2.2

23
24
2.5

2.6
2.7

2.8

29
2.10

2.1
212
2.13
2.14

Options
211 Types of TSA Options .
Backup and Restore Options. . .
2.21 Open Mode Options . .
222 Restore Options
223 Backup Options.
Name Type Option.
Open Files During a Back Up . .

Backup and Restore of Cluster Resources
2.5.1 Recovering Backup Session on Cluster Failover or Failback

Option Precedence
Path Information

271 Constructing a Path. . .
Resources

2.8.1 Resource Names.

2.10.1 Transfer Buffers.
TSAAddress

LogFiles
ScanOrder
Other Documents.

3 Target Services Functions

3.1

Backup Functions
NWSMTSScanDataSetBegin . .

NWSMTSGetTargetServiceAPIVersion. i
NWSMTSOpenDataSetForBackup i e e

NWSMTSReadDataSet.
NWSMTSScanNextDataSet . . .
NWSMTSScanDataSetContinue

11

13

13
13
13
14
15
20
20

20
21
21

21

23

23
23
24
24
25
26
28
29
29

29
30

30

31
31
32
32
33
33
34
34
35
35

37

37
38
47
49
51
53
55

Contents

5

6

NWSMTSScanDataSetEnd e 58

3.2 Connection FUNCHONS. 59
NWSMCoNNEC TOT S A . . o e e e e 60
NV SIS TS AS . . .ottt e 62
NWSMTSConnectToTargetService e e e 65
NWSMTSConnectToTargetServiCeEXo 68
NWSMTSGetTargetServiceTypeo vt e e 71
NWSMTSLIstTargetServiceso e 73
NWSMTSReleaseTargetService e 75
NWSMREIEaSET SA . . .o e 76
NWSMTSScanTargetServiceName e 77
3.3 Miscellaneous FUNCLIONS 79
NWSMTSCatDataSetName e 80
NWSMTSCloseDataSet e e 82
NWSMTSDeleteDataSet e 84
NWSMTSFixDataSetName e 85
NWSMTSParseDataSetName e e e 88
NWSMTSRenameDataSet. e 90
NWSMTSReturnToParent e 92
NWSMTSSeparateDataSetName e 93
NWSMTSSetArchiveStatus 95
3.4 Option FUNCHONS 96
NWSMTSBuildResourceList. e 97
NWSMTSConfigureTargetService i 99
NWSMTSGetNameSpaceTypelnfo e 102
NWSMTSGetOpenModeOptionString e 104
NWSMTSGetSupportedNameTypesot e e e 108
NWSMTSGetTargetResourcelnfo e 111
NWSMTSGetTargetResourcelnfoEX e 114
NWSMTSGetTargetScanTypeStringt e 118
NWSMTSGetTargetSelectionTypeStr e 123
NWSMTSGetUnsupportedOptions.t e e 127
NWSMTSListSupportedNameSpaces i 132
NWSMTSLIStTTSRESOUICESt e e e e 134
NWSMTSScanSupportedNameSpaces e 138
NWSMTSScanTargetServiceResoUrce e 141
3.5 Restore Functions e 143
NWSMTSIsDataSetExcluded. e e 144
NWSMTSOpenDataSetForRestore i 146
NWSMTSSetRestoreOptions e e 152
NWSMTSWriteDataSet e e 154

Data Set Name List. e 158
NWSM_DATA SET _NAME _LIST. ... o e e e e e e 160
NWSM NAME LI ST . . e e e e 161
NWSM_SCAN_CONTROL e e e e e e 162
NWSM_SCAN_INFORMATION e e e e e e 168
NWSM_SELECTION _LIST . .. e e e e e e e 172
Selection List. 174
STRING BUFFER . .. e e e e e e 178
UINT16 BUFFER e e e e e e e e 179

NDK: SMS Developer Components

5 Utility Library Concepts

5.1
5.2
5.3
5.4
5.5
5.6
5.7

DOS Date and Tim
Unix Time Format

eFormat

Path String Formats. e

Records
Data Types
Other Documents.
Extensions......

6 Utility Library Functions

6.1

6.2

6.3

6.4

6.5

Date and Time Functions. e e
NWSMCheckDateAndTimeRange. e
NWSMDOSTIMETOECMA e e e e
NWSMECMATIMECOMPAreottt et e e e e
NWSMECMATODOSTIMEot e e e e e
NWSMECMATOUNIXTIME . . .ottt e e e e e e e et
NWSMGetCurrentDateAndTime e et

NWSMPackDate .

NWSMPackDateTime e e e e e

NWSMPackTime .

NWSMUNIXTIMETOECMA e e e
NWSMURNpackDate e
NWSMUNPackDateTimeo e e e e e e
NWSMUNPACKTIMEot e e e e e
Data Set Name FUNCHiONS e e

NWSMCloseName
NWSMGetDataSet

Name. . ..

NWSMGetFirstName e
NWSMGetNextName. e
NWSMGetOneName

NWSMPutFirstLNa

N . . e e e e e e e

NWSMPUtFirstName
NWSMPUtNextLName e
NWSMPuUtNextName e
NWSMPuUtOneLName e
NWSMPUtONeENamME
Extension FUNCtions e
NWSMCIOSEEXIENSION e
NWSMGELEXIENSION oo
NWSMGEetFIrstEXtENSION.o e
NWSMGEetNextEXteNsion i

List Functions. . . .

NWSMADPPEeNdTOLIsto

NWSMDestroyList

NWSMGetListHead e

NWSMInitList. . . .
Path Functions. . .

NWSMAIIOCGENENCSIING v vttt e e e e e e

NWSMAIlocString

NWSMCatGeneriCStringo e e
NWSMCatGeneriCSINNgsS oottt e

NWSMCatString .
NWSMCatStrings.

NWSMCopYGenericStriNg oottt e

NWSMCopyString

181

181
181
181
182
182
182
182

185

185
186
187
188
189
190
191
192
193
194
195
196
197
198
198
200
201
202
204
206
207
209
211
213
215
217
218
219
220
222
224
225
226
227
228
229
229
231
232
233
235
237
239
241
243

Contents

7

8

NWSMFreeGenericString. oot e 245

NWSMFrEeStriNg oot e e e 246
NWSMGenericlsWild 247
NWSMGENEICSHI e e 248
NWSMGenericWildMatch. e 250
NWSMISWIld e 252
NWSMMatchName. e e 253
N SISt . e 255
NWSMWIlAMatCho e 256
6.6 Miscellaneous FUNCLIONS e 257
NWSMFreeNameList 258
NWSMGeNerateCRC e 259
6.7 SIDF FUNCHIONS.o 260
NWSMGetDataSetInfo 261
NWSMGetMediaHeaderInfo. 263
NWSMGetRecordHeaderOnly e 265
NWSMGetSessionHeaderInfo e 268
NWSMPadBlankSpace. e 269
NWSMSetMediaHeaderInfo. e 270
NWSMSetNewRecordHeader e 272
NWSMSetSessionHeaderInfo 274
NWSMUpdateRecordHeader 276
6.8 SMDF FUNCHONS. 276
SMDFAdAUINT B4, . . .o e 278
SMDFDecrementUINTB4 e e e e e e e e 279
SMDFGetFields 280
SMDFGetNextField 282
SMDFGetUINTOAo e 285
SMDFIncrementUINT B4 286
SMDFPULFIElds 287
SMDFPUtNextField. 290
SMDFPULUINT Bo 293
SMDFSetUINT32Datao 294
SMDFSetUINTBA 295
SMDFSUDUINT B4, . ..o e e e 296
6.9 SMDR FUNCHONS 296
NWSMCONVEREITOr e e e 297
NWSMGetRequestorVersionInfo 298
NWSMGetSMSModuleVersionInfo.o e 299
NWSMGetResponderVersionInfo. 300
NWSMLISISMDRSt e e e e e e e 301
Utility Field Macros 303
SIDF_GetFixedSize. e 304
SMDFSIZEOTFID 305
SMDFSizeOfFieldData 306
SMDFEBItNISSEt 307
SMDFSetBItN 308
SMDFSIizeOfUINT32Data e 309
SMDFSizeOfUINT32Datal e 310
SMDFSIizeOfUINTBAData e 311
SMDFZEeroUINT B4 e e e e 312

NDK: SMS Developer Components

8

Utility Library Structures

ECMATIME . . . e et et e e e e e e e e e e e
NWSM_DATA SET NAMEottt e
NWSM_EXTENSION_INFORMATIONottt e
NWSM_FIELD_TABLE_DATAo oot e e e e e e
NWSM_GET_FIELDS TABLEottt et e e e e e
NWSM LIST. . et e
NWSM_LIST PTR . ..ot e
NWSM_MEDIA INFO ...ttt e e e
NWSM_MODULE_VERSION_INFO\ttt
NWSM_RECORD_HEADER INFOttt e e
NWSM_RESOURCE_INFO_EXTN_NETWARE_DATA 1 ...t
NWSM_RESOURCE_INFO_EXTN_UNIX_DATA 1 ...ttt
NWSM_RESOURCE_INFO_EXTN_UNSUPPORTED_DATA,
NWSM_SCAN_INFO_EXTN_NFS_DATA 1. ..ot
NWSM_SESSION_INFOottt e e e e e e
SMDF_FIELD_DATA . . . oo et e e e e e e e e e e
UINTBA . o e e e e

Return Values

9.1 TargetServices Values
9.2 Target Services Generic Open Mode Values i,
9.2.1 Generic Backup Open Mode Values.
9.2.2 Generic Restore OpenMode Values
9.2.3 TSA-SpecificOpenMode Values
9.3 TargetService Return Values
9.3.1 TSAPland SMDR Return Values i
9.3.2 TSANDS Return Values e
9.4 Utility Library Values e
9.4.1 nameSpaceType Values. e
9.4.2 selectionType Values i
9.4.3 Time Zone Values
94.4 Wildcard Values
9.5 ExtensionTag Values.
9.6 TagVersion Values

10 Performance and the File System TSA

A

10.1 Introduction
10.2 Performance Model with TSAFS
10.3 Performance Enablers and Inhibitors
10.4 Sample. . ..o e
10.5 CONCIUSION e

Obsolete Functions

NWSMTSReadDataSets (Obsolete).o e
NWSMTSEndReadDataSets (Obsolete) i e
NWSMFixDirectoryPath (Obsolete)
NWSMFixGenericDirectoryPath (Obsolete)
NWSMTSGetTargetServiceAddress (Obsolete).

313

314
316
317
318
319
320
321
323
324
325
328
330
331
332
333
335
336

337

337
337

337
337
338
339

339
347
347

347
348
349
349
350

350

351

351
351
3562
353
354

355

356
362
363
365
367

Contents

9

B Revision History 369

10 NDK: SMS Developer Components

About This Guide

Novell® Backup infrastructure (Storage Management Services or SMS) provides backup
applications with the framework to develop complete backup and restore solutions. SMS helps to
back up file systems (such as NSS) or applications (such as GroupWise®) on NetWare® and OES
Linux.

This guide contains information regarding SMS interfaces and their interrelationships that
applications writing to SMS can use to protect data on NetWare or OES Linux.

This guide consists of the following sections:

¢ Chapter 1, “Target Services Tasks,” on page 13

¢ Chapter 2, “Target Services Concepts,” on page 23

¢ Chapter 3, “Target Services Functions,” on page 37
¢ Chapter 4, “Target Services Structures,” on page 157
¢ Chapter 5, “Utility Library Concepts,” on page 181

¢ Chapter 6, “Utility Library Functions,” on page 185
¢ Chapter 7, “Utility Field Macros,” on page 303

¢ Chapter 8, “Utility Library Structures,” on page 313
¢ Chapter 9, “Return Values,” on page 337

¢ Chapter 10, “Performance and the File System TSA,” on page 351
+ Appendix A, “Obsolete Functions,” on page 355

¢ Appendix B, “Revision History,” on page 369

Audience

The target audience for this guide are backup application developers and corporations that already
have experience with SMS in building applications for NetWare and OES Linux. This guide helps to
understand existing and newer features and functionality that SMS provides.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Additional Documentation

For documentation on SMS recommendations, see the SMS and Backup Application Development -
Recommendation Guide (http://developer.novell.com/ndk/doc/smscomp/pdfdoc/sms_reco.pdf).

About This Guide

1"

http://developer.novell.com/ndk/doc/smscomp/pdfdoc/sms_reco.pdf
http://developer.novell.com/ndk/doc/smscomp/pdfdoc/sms_reco.pdf

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™_etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX, should use forward slashes as required by your software.

12 NDK: SMS Developer Components

Target Services Tasks

This documentation describes common tasks associated with Target Services.

¢ Section 1.1, “Backing Up and Restoring,” on page 13
¢ Section 1.2, “Building Log Files,” on page 20

¢ Section 1.3, “Scanning,” on page 21

1.1 Backing Up and Restoring

Backing up and restoring follow the same general steps as outlined below. The Defining Data Sets
and Backing Up and Restoring Data sections contain slightly different steps, depending upon
whether you want to backup or restore data.

¢ Section 1.1.1, “Connecting to a TSA,” on page 13

¢ Section 1.1.2, “Connecting to Target Services,” on page 13

¢ Section 1.1.3, “Defining Data Sets,” on page 14

¢ Section 1.1.4, “Backing Up and Restoring Data,” on page 15

¢ Section 1.1.5, “Terminating a Process,” on page 20

1.1.1 Connecting to a TSA

1 Call NWSMLIistSMDRs to select an SMDR. Then call NWSMListTSAs using the returned
SMDR name to find the available TSAs.

The fastest method to find the TSAs is to list all active SMDRs and then list the TSAs that are
local to that SMDR.

You can also call NWSMLIistTSAs by itself to find all the active TSAs on the network. This
method can take over an hour to complete because each site with an SMDR must be connected
to and scanned to see if it has a TSA.

2 Call NWSMConnectToTSA to connect to a specific TSA.

The actual connection to the TSA is made while connecting to Target Services.

1.1.2 Connecting to Target Services

After connecting to a TSA, you are now ready to list, select, and connect to the Target Service.
1 Call NWSMTSListTargetServices to find the Target Service.

You can call NWSMTSScanTargetServiceName for this step. However, it will return only one
Target Service name at a time.

2 Call NWSMTSConnectToTargetService or NWSMTSConnectToTargetServiceEx to connect to
the Target Service and gain access to the Target Service data.

Target Services Tasks

13

1.1.3 Defining Data Sets

After connecting to the Target Service, either a backup or restore operation can be performed. The
following sections details how to define data sets for backup or restore,

+ “Defining Backup Data Sets” on page 14

¢ “Defining Restore Data Sets” on page 15

Defining Backup Data Sets

The user or engine uses backup option lists to indicate how to proceed with the backup session and
what data sets to back up.

1 Call NWSMTSGetTargetScanTypeString to build the Scan Type Options List.

2 Display the strings to the user to gather information about how to limit the scan.

When the user selects a scan type option, the engine checks the associated disallowed bit map
to see if the selected scan type can be used. If it can be used, the engine uses the associated scan
type bit mask and allowed bit mask to set the bit into a scan type variable.These values are then
set in the NWSM_SCAN_CONTROL structure by calling NWSMTSScanDataSetBegin to
define the scanning criteria.

3 Call NWSMTSOpenDataSetForBackup to define all backup open mode options and
NWSMTSReadDataSet to define all reading mode options.

4 Call NWSMTSGetOpenModeOptionString to retrieve the TSA-specific open mode strings.
5 Display the string to the user for selection.

The associated values for these selections are placed into a 32-bit variable. You must ensure
that only one numeric open mode is selected. For more information on open mode, refer
Section 2.2.1, “Open Mode Options,” on page 24.

6 Call NWSMTSGetTargetSelectionTypeStr to retrieve the selection option strings.

7 Either let the engine set the bits for the chosen selection type or call
NWSMTSGetTargetSelectionTypeStr to use an SMS-defined mask to set the selection types.

8 Display the selection type string list to the user for selection.

Including Directories

If the user wants to include a certain directory in a backup, the engine allows the user to walk
through the file system tree and builds the path as each resource (such as a primary resource,
directory, and file) is selected as follows:

1 Call NWSMTSListTSResources to return a list of primary resources to the user for selection.
NWSMTSScanTargetServiceResource can be called to return one primary resource name at a

time.

2 Call NWSMTSScanDataSetBegin, NWSMTSScanNextDataSet, and
NWSMTSScanDataSetEnd to display a list of all immediate secondary resources under the
selected primary resource to the user for selection.

3 If the secondary resource is a parent, scan for all immediate secondary resources under the
selected secondary resource.

4 Append each resource name and the appropriate separator to a path string.

14 NDK: SMS Developer Components

5 Repeat Steps 1-4 until the user find the desired data set.

Defining Restore Data Sets

After establishing connections to the TSA and Target Services, you need to build the restore option
lists.

1 Call NWSMTSGetOpenModeOptionString to retrieve the TSA-specific open mode option
strings.

When the engine is ready to restore the data set, it informs the TSA of the chosen open modes
to use by sending the 32-bit variable to the TSA by calling NWSMTSOpenDataSetForRestore.

2 If the restore data sets contain paths, call the NWSMTSFixDataSetName to ensure the paths
have the proper syntax and form.

1.1.4 Backing Up and Restoring Data

+ “Backing Up Data” on page 15
¢ “Restoring Data” on page 18

Backing Up Data

Before backing up data, make sure the backup options and the data sets names to be backed up are
selected.The following flowchart summarizes the steps outlined in this section:

Target Services Tasks 15

Figure 1-1 Backing up da

ta

Start
HNWELTE SeanDataSetBegin
> Retum Ho
Zaro?
Yes

MWELTSOpe nDataSetForBackup

Retum Ha

Yes

¥

NW5MTEReadDataSet

Mo

HWSMTS ClogeDatase t

v

16 NDK: SMS Developer Components

WIS TS ScantlextDataSet

Ho more
data sets?

Dione

Figure 1-2 Backing up data

Is Chaster
Enzbled and Is
Chister Ermoe?

Is S canin WWEMTSS canDiatal otEnd

PrOgmsse

Recomect

Ves MWIEMTEE canD atad et
Continue

Feconnect
Successl?

®

Is Retries
Zera?

1 Call NWSMTSBuildResourceList to initialize the TSA.
The TSA will only scan the components of the internal primary resource list so the list must be
updated in this step.

2 Call NWSMTSScanDataSetBegin to begin the scan.

If a failover or failback occurs, call NWSMTSScanDataSetEnd, reconnect to the TSA and call
NWSMTSScanDataSetBegin.

3 Call NWSMTSOpenDataSetForBackup to open a data set.

If a failover or failback occurs, call NWSMTSScanDataSetEnd, reconnect to the TSA and call
NWSMTSScanDataSetContinue only if the last successfully backed-up data set exists. If
NWSMTSOpenDataSetForBackup fails in the first data set, call NWSMTSScanDataSetBegin.

4 Call NWSMTSReadDataSet to retrieve the first data set to backup.

If you need to retrieve a name from the data set name list, call the following functions:

NWSMGetDataSetName

NWSMGetFirstName

NWSMGetNextName

NWSMGetOneName

If a failover or failback occurs, reconnect to the TSA and call NWSMTSScanDataSetContinue

only if the last successfully backed-up data set exists. [f NWSMTSReadDataSet fails in the first
data set, call NWSMTSScanDataSetBegin.

Target Services Tasks

17

5 Call NWSMSDSessionWriteData to allocate memory for the transfer buffer.

6 Call NWSMSetNewRecordHeader and NWSMUpdateRecordHeader (see the example code
for NWSMTSScanDataSetBegin) to prepare the data set (according to SIDF) for storage on the
media.

These functions fill the transfer buffer with the scan information and data set information and
automatically take care of data sets that span transfer buffers.

7 Call NWSMSDSessionWriteData to write the data set to the media.
8 Call NWSMTSSetArchiveStatus to reset the archive status of the data set.
9 Call NWSMTSCloseDataSet to close the data set.
NWSMTSCloseDataSet will restore the original access attributes of the data set.
10 Call NWSMTSScanNextDataSet to get the next data set to backup and continue with Step 3.

If a failover or failback occurs, reconnect to the TSA and call NWSMTSScanDataSetContinue
only if the last successfully backed-up data set exists. If NWSMTSScanNextDataSet fails in the
first data set, call NWSMTSScanDataSetBegin.

To prematurely terminate the scan, call NWSMTSScanDataSetEnd. If an error was returned
from NWSMTSScanDataSetBegin or NWSMTSScanNextDataSet,
NWSMTSScanDataSetEnd should not be called.

Restoring Data

The following flowchart summarizes the steps outlined in this section:

18 NDK: SMS Developer Components

Figure 1-3 Restoring Data

[St Rt opie |
I

T—* Ot Fext Data Set Hame |

—+| FWSMTE0penD sadetForRestare |

| et Mewt Buffrto Write |

I
¥

| vwsMTSWEDatase |
|

Ho A11 Trata
Wttent

BL

HESMTECloseDataSet
]

Call NWSMTSSetRestoreOptions to set the restore options.
2 Retrieve a data set name from the backup session that needs to be restored.

If a name was successfully retrieved, continue with Step 3. Otherwise, follow the steps outlined
in Section 1.1.5, “Terminating a Process,” on page 20.

3 Call NWSMTSIsDataSetExcluded to check if the data set has been excluded from the restore
session.

If the data set is excluded, go to Step 2. Otherwise, continue with Step 4.
4 Call NWSMTSOpenDataSetForRestore to open the data set.

5 Call NWSMGetRecordHeaderOnly and NWSMGetDataSetInfo to retrieve the data set
information from the SIDF medium transfer buffers.

You can also call the following functions to retrieve the data set's name from the
NWSM DATA SET NAME LIST structure:

NWSMGetDataSetName (page 201)
NWSMGetFirstName (page 202)
NWSMGetNextName (page 204)
NWSMGetOneName (page 206)

6 Call NWSMTSWriteDataSet to write the data set to Target Services.

Target Services Tasks

19

7 Call NWSMTSCloseDataSet to close the data set.
If no error occurred, loop to Step 2. Otherwise, handle the error.
This restore method consists of three loops. The first loop gets the next data set name and checks if
it is excluded from the restore session. The second loop gets the buffers (containing the data set)

from the medium and writes it to the Target Service. The outer loop goes back to the top and gets the
next data set name.

1.1.5 Terminating a Process

When a backup or restore task completes, release the connections and free the allocated memory by
following these steps:

1 Call NWSMTSReleaseTargetService to disconnect Target Service from the TSA.

2 Call NWSMReleaseTSA to disconnect the engine from the TSA.

3 Call the following functions (as needed) to free allocated memory.

NWSMDestroyList frees the memory allocated to the NWSM_LIST PTR (page 321)
structure.

NWSMFreeString frees the memory allocated by NWSMTSCatDataSetName,
SMSTSFixDataSetName, NWSMTSGetNameSpaceTypelnfo, and
NWSMTSSeparateDataSetName for the STRING BUFFER (page 178) structure.

NWSMFreeList frees the memory allocated for the NWSM_NAME_LIST structure by calling
the following functions:

NWSMListSMDRs

NWSMLIistTSAs
NWSMTSListTargetServices
NWSMTSListTSResources
NWSMTSListSupportedNameSpaces

free is a C-language function that frees the memory allocated by NWSMTSParseDataSet for
the UINT16_BUFFER structure.

1.2 Building Log Files

Follow these steps to build a log file:

1 Call NWSMGetFirstName, NWSMGetNextName, NWSMGetDataSetName, and
NWSMGetOneName to get a name from the skipped data sets list.

2 Set createSkippedDataSetsFile of NWSM_SCAN_CONTROL to TRUE to direct the TSA to
build the skipped data sets log file.
1.2.1 Reading Log Files

To read built log files, follow these steps:

1 Call NWSMTSScanDataSetBegin and pass ERROR LOG or SKIPPED DATA SETS to
resourceName to receive the name of the log file contained in dataSetNames.

2 Call NWSMTSOpenDataSetForBackup to open the log file and receive a data set handle.

20 NDK: SMS Developer Components

3 Call NWSMTSReadDataSet to read the contents of the log file.
4 Call NWSMTSCloseDataSet to close the file.
5 Call NWSMTSScanDataSetEnd to end the read file session.

WARNING: Do not send the data from the error or the skipped data sets log to
NWSMTSWriteDataSet because scaninformation and dataSetNames will not contain valid
SIDF information and the system might abend.

1.2.2 Engine Log File

1 Call NWSMTSScanDataSetBegin and NWSMTSScanNextDataSet.

2 Build a log file or database of the data sets that were backed up from the returned information.

1.3 Scanning

Follow these steps to find data sets on Target Services that match the scan criteria:

1 Call NWSMTSScanDataSetBegin to start scanning.
2 Call NWSMTSScanNextDataSet to continue the scan

3 Call NWSMTSScanNextDataSet to continue the backup job after cluster failover/failback, if
the last successfully backed-up data set exists.

Call NWSMTSScanDataSetEnd to prematurely stop scanning.
4 Call NWSMTSScanDataSetEnd when all data sets have been scanned.

1.3.1 Modifying the Scan Order

1 Call NWSMTSReturnToParent to move the scanning point.
2 Call NWSMTSScanNextDataSet to continue the scan.
3 Call NWSMTSCloseDataSet to close the data set's handle once scanning is complete.
The data set's handle should not be closed until all the parent's subordinates are scanned.
The following diagram illustrates a scan order. A scan that has begun at parent A moves to parent F.
After scanning child h, the engine decides it is done with parent F, and moves the scan to the next
parent by calling NWSMTSReturnToParent. When the function is called, the scan is moved from

parent F to parent E. When NWSMTSScanNextDataSet is called, there are no more data sets to scan
in parent E so scanning continues in parent G.

Figure 1-4 Scan Order

Target Services Tasks

21

22 NDK: SMS Developer Components

Target Services Concepts

This documentation describes Target Services, its functions, and features.

¢ Section 2.1, “Options,” on page 23

¢ Section 2.2, “Backup and Restore Options,” on page 24
¢ Section 2.3, “Name Type Option,” on page 28

¢ Section 2.4, “Open Files During a Back Up,” on page 29
¢ Section 2.5, “Backup and Restore of Cluster Resources,” on page 29
¢ Section 2.6, “Option Precedence,” on page 30

¢ Section 2.7, “Path Information,” on page 30

¢ Section 2.8, “Resources,” on page 31

¢ Section 2.9, “Function Access Scope,” on page 32

¢ Section 2.10, “SIDF,” on page 33

¢ Section 2.11, “TSA Address,” on page 34

¢ Section 2.12, “Log Files,” on page 34

¢ Section 2.13, “Scan Order,” on page 35

¢ Section 2.14, “Other Documents,” on page 35

2.1 Options

The Target Service Agent (TSA) is a target-specific process that interacts with the Target Service's
file system to read, write, and scan data. Each TSA reflects the features and limitations offered by
the Target Service. If the Target Service has a hierarchical file system, the Target Service offers
options that pertain to a hierarchical file system (for example, traversing the file system tree).

Targets services differ in the type of data sets they contain and the methods used to scan (search for)
them. For example, one target has a flat file system while another has a hierarchical file system.
When scanning for data sets on these targets, the option to exclude files under a directory does not
exist under a flat file system.

Each TSA provides different options such as traversing the file system, excluding all databases, or
backing up a file server. Since the engine should not know these differences, SMS provides a way

for each TSA to express the options and resources available to the user. Each TSA defines a list of
strings that describe its options and resources. The engine retrieves these strings, presents them to

the user for selection, and notifies the TSA of the user’s selections through bit maps or values.

2.1.1 Types of TSA Options

There are two categories for TSA options:

* “TSA-specific” on page 24
¢ “Generic TSA” on page 24

Target Services Concepts

23

TSA-specific

TSA-specific options are unique to a specific TSA. For example, a NDS TSA might offer the option
to restore only the objects of distinguished name, while a filesystem TSA might offer the option to
restore all * . exe files.

TSA-specific options contain a subset called the predefined TSA options. Because the engine is
aware of predefined options (as is every TSA), it can automatically assign these options to the data
sets selected by the user for backup or restore.

For example, if the exclude directories and exclude files options are selected, the engine can display
all children and parent data sets. The user can then select the desired data sets to backup or restore.
The engine can then appropriately assign exlude directories or exclude files to the chosen data set
since it knows the type of each data set.

The TSAs are not required to support the TSA-specific options, but each TSA must acknowledge to
the engine if a predefined option is supported. The engine does not know about the TSA-specific
options.

Generic TSA

Generic TSA options are the options common to most TSAs. All TSAs are not required to support
these options, but each TSA must acknowledge to the engine whether each option is supported or
not. The engine is aware of these options and is responsible for:

+ Finding out if the options are supported by the TSA.

¢ Providing the strings that name the options.

¢ Communicating the options selected by the user to the TSA.

The TSA builds the strings for the TSA-specific options while the engine builds the strings for the
generic TSA options.

2.2 Backup and Restore Options

The backup and restore options are used to specify the data sets to either backup or restore. Both
processes use the Open Mode Options which are discussed in the next section. Other unique options
are discussed within each relevant section entitled Restore Options and Backup Options.

2.2.1 Open Mode Options

Open mode options are defined by NWSMTSWriteDataSet and contain a mixture of restore modes
and writing modes such as: update the data set, overwrite the data set, and do not restore the trustee
information. These modes allow a finer control (than scan control options) in defining data sets
since the open mode options are applied to individual data sets as each data set is opened, read, or
written to. For example, the engine can back up all data sets or lock data sets before they are opened.

There are two basic groups of open modes:

¢ Numeric open modes are represented by values numbered 0-15. Because these modes are
sequential, the engine can specify only one numeric open mode.

+ Bitmap open modes are represented by bit positions. More than one of these modes can be
ORed together.

24 NDK: SMS Developer Components

Both modes are contained in a 32-bit integer where bits 0-3 contain the numeric open modes, and
bits 4-31 contain the bitmap open modes.

Figure 2-1 Two basic groups of Open Modes

31 45 bit0
|| | 1

mm Mode Field

Eit-mapped Maode Field

All numeric open modes and bits 4-7 of the bitmap open modes are classified as predefined TSA
open modes. Each TSA must either support the options or indicate which options are not supported.

Bits 8-31 contain open modes specific to a particular TSA and are classified as TSA-specific open
modes. These open modes are required by NWSMTSWriteDataSet.

If a numeric open mode is chosen and set to Yes, its corresponding value is set into the numeric
mode field of the open mode bit map. The engine must ensure that only one numeric option is
chosen. If a bitmap mode is chosen, its corresponding bit is set into the bit map.

Open Mode Option Lists

The open mode option lists display the TSA-specific and generic open options to the user for
selection and are optional. The engine can internally set the values for the open modes without any
user intervention (see Section 9.2, “Target Services Generic Open Mode Values,” on page 337).

The open mode options list has four parts:

+ The open mode generic strings

*

The open mode TSA-specific strings

¢ The open mode string index number

*

The open mode number

2.2.2 Restore Options

The restore options specify the data sets to restore. Options include excluding data streams, file
trustees, directory space restrictions, etc.

Figure 2-2 Restore Options

How to Restore the Data Sets?

Exclude data streams:
Exclude extended attributes:
Exclude directory trustees:

Exclude file trustees:

Exclude volume reztrictions:

Exclude directory space restedctions:

Force overurdite of unchanged migrated data:

Delete ewisting trustess hefore restoring

Exclude file data that hasz been moved to secondary storage:

FEEEEEEEY

There are basically two restore option types:

¢ Section 2.2.1, “Open Mode Options,” on page 24

Target Services Concepts

25

¢ “Names Option Lists” on page 26

Names Option Lists

The names option list is a list of data sets that were defined by the user to be restored (such as restore
all *.exe and *.txt files) and their optional associated path. The data set names can contain wild
cards (in the terminal path node-parent or child only), fully qualified paths, or terminal names.

After the data sets are specified, the engine puts the list into an NWSM_SELECTION_LIST
structure. The engine must set the selection type for all entries in this structure to No Selection Type
or Zero.

Unsupported Options

Since TSAs might not support all TSA options, the engine can call
NWSMTSGetUnsupportedOptions to find out which generic TSA option string it should not build
and display to the user.

2.2.3 Backup Options

The backup options specify the data sets to backup.
There are three backup option lists:

¢ “Scan Control Options” on page 26
¢ “Open Mode Options” on page 24

+ “Selection Options” on page 27
The order of the strings returned by these functions corresponds to the bit position of a bit map.

The engine builds the strings for generic TSA options, and the TSA builds all strings for predefined
and SMS-defined options. The engine uses the information from the NWSM_SCAN_CONTROL
structure and the generic open mode options to build the strings for its part of the options list.

All of the options do not have to be used by the engine. The engine can pick and choose which
options it wants to display to user.

Scan Control Options

Scan Control Options specify the attributes and characteristics of all data sets to scan for and are
applied to every data set in the session. For example, you can specify to scan for all DOS data sets
accessed within the last 10 days.

The scan control options are based upon the information required by the
NWSM_SCAN_ CONTROL structure and are returned by NWSMTSGetTargetScanTypeString.

Scan Control Options Lists

The scan control option lists contains at least two different lists. The number of lists is dependent
upon how the engine presents the options to itself or the user. The engine can set the values in both
of the following lists without any user intervention:

¢ Date and Time Option Lists
¢ Scan Type Option Lists

26 NDK: SMS Developer Components

The date and time options list is optional. The engine builds the strings for the date and time fields
and all other fields of the NWSM_SCAN_CONTROL structure except the scan type field. The
fields that have no date values should be considered as having a zero value. The engine uses these
strings as prompts to get the user's input.

The scan type options list displays the TSA-specific and predefined scan options to the user for
selection and is also optional. However, unlike other lists, the engine must check for valid
combinations of scan types. The TSA will also check for valid combinations, but this checking is not
done until all options are specified and the backup has begun.

The scan type options list has three parts:

¢ The scan type strings are built by the TSA.
¢ The scan type string index number specifies which scan type string to retrieve.

¢ The scan type value which indicates the type of the scan to perform.

Selection Options

Selection options allow the selection of an option and name the data sets to backup. For example, a
user can select the exclude directories option and specify the sub-directory to be excluded. These
options are returned by NWSMTSGetTargetSelectionTypeStr.

Selection options are used with path information to specify the name of the data sets to apply the
selection type to. Call NWSMPutFirstName and NWSMPutNextName to build the selection list.

There are basically two selection option types:
+ “Selection Types” on page 27
+ “Selection Options List” on page 28
Selection Types

There are two kinds of selection types: the SMS-defined selection types and the selection types
particular to a TSA.

SMS-defined TSA selection types are common to most TSAs, but each TSA does not have to
support them. However, every TSA must acknowledge whether it supports a SMS-defined selection

type.

Both selection types are represented in the 32-bit selection type bit map. Each selection type is
represented by two bits within the bit map. Bit 0 represents a TSA-specific defined action, while bits
1-31 represent the data sets to apply the action against. For example, the TSA defines bit 0 as an
include/exclude action. When this bit is not set, a data set is excluded from the session.

Figure 2-3 Selection Type

Selection Type
Eit Map (bit 2 is set to 1)

O .

51%» Exclude Directories
. =L Inchde Directories
3] Eit 0 = Exchide/Tnclade action
Bt 2 = Durectory datasets

Selection
Ty 2

Target Services Concepts

27

The following table lists the SMS-defined bits 1 through 4.

Table 2-1 SMS-defined Bits

Bit Description

1 TSA defined resource: These resources are always TSA-specific resources.
2 Parents (e.g., Directories or folders)

3 Children (Files)

4 Children by full name (a fully qualified path)

A separate bit map must be used to represent each selection type.

Selection Options List

The selection options list displays the TSA-specific and SMS-defined selection options to the user
for selection and is optional.

The selection options list has four parts:

¢ The selection option strings
¢ The selection option string index number
¢ The selection option bit mask
¢ The path
The TSA builds the selection option strings. The selection option index number is a used to specify

which selection string to get from the TSA. The selection option bit mask is used to set the selection
type bit map. The path is entered by the user or the engine.

There are two methods for setting the selection type:
+ The engine sets the bits for the chosen selection type.

For example, if a user selects Include Directories, the engine knows that it is the second string
of the first selection type and sets bit 0 to equal 1 and bit 2 is also set.
¢ The engine uses the masks defined by SMS.

NWSMTSGetTargetSelectionTypeStr is passed a sequence number (selection type number)
which indexes a string table. The sequence number is converted to a bit map or mask before
being used.

Selection options are defined by NWSMTSScanDataSetBegin, NWSMTSScanNextDataSet, and
NWSMTSSetRestoreOptions which act as data set filters.

Wild cards are used only in the terminal path node. The terminal path node can be a child or a parent.

2.3 Name Type Option

Name Type refers to the format in which a name space is represented. Thus, information in each
name space maybe represented in multiple formats as determined by the Name Type Options
supported by the TSA.

28 NDK: SMS Developer Components

These options can be obtained using NWSMTSGetsupportedNameTypes.

This option is supported, as a target service may require to support multiple name formats for every
name space that it supports. For example, the TSA for the file system (TSAFS) represents resource
names in MBCS as well as UTF-8 formats from Open Enterprise Server 1.0 release. Hence, the TSA
uses the UTF-8 and MBCS name types.

2.4 Open Files During a Back Up

TSAs make every precaution to ensure that the engine receives no corrupt data. If the engine must
backup files that are opened by other applications, a special TSA is needed to perform this task. File
system TSAs generally do not back up files that are already opened.

The engine controls the mode of opening a data set by passing a mode parameter to
NWSMTSOpenDataSetForBackup. The TSA provides the required open modes to ensure data
integrity. Whenever a file is backed up, it should either be successfully locked and protected or be
opened in a way that denies write access to other applications as the file is backed up.

SMS provides two modes that circumvent lock and write protection. These modes are
NWSM _NO _LOCK NO PROTECTION and NWSM_OPEN READ_ ONLY. The engine should
only use these modes when data integrity is not required.

2.5 Backup and Restore of Cluster Resources

Novell Cluster Services™ allows you to configure up to 32 NetWare servers into high-availability
cluster, where resources can be dynamically switched or moved to any server in the cluster.
Consolidation of applications and operations on a cluster has benefits such as lower costs,
scalability, and increased availability.

For a cluster to work as a high-availability system, the file system, the applications, and services that
run on the cluster should be cluster-enabled. SMS supports backup and restore of cluster resources.
In addition, the backup session can be automatically recovered in case of a failover or failback
condition.

The backup engines have to be modified to be able to support backup and restore of cluster
resources. For more details, refer Section 1.1.4, “Backing Up and Restoring Data,” on page 15.

2.5.1 Recovering Backup Session on Cluster Failover or
Failback

SMS supports automatic recovery of backup sessions in failover and failback situations.

If the connection to the TSA is terminated after a failback or failover, the engine attempts to
reconnect to the TSA through SMDR. Ensure SMDR and TSA modules are loaded in the failed-
over/failed-back cluster nodes.

If a scan is in progress when the connection terminates, the engine should end the scan by calling
NWSMTSScanDataSetEnd. After this, the engine should try to reconnect after waiting for a
configurable time and then retry at regular intervals until the connection is re-established or the
number of retries are expired. The engine should call NWSMConnectToTSA in a loop until the
connection is established. After the engine establishes the connection, to continue from the last
completely backed up dataset, call NWSMTSScanDataSetContinue keeping all the parameters the

Target Services Concepts

29

same as NWSMTSScanDataSetBegin and pass an additional parameter called cursor. Cursor
represents the full path of the last successfully backed up data set. The prerequisite for calling
NWSMTSScanDataSetContinue is the successful back up of atleast one data set. The name of the
next data set is returned and backup job continues. If there is no last backed-up successful data set,
use NWSMTSScanDataSetBegin

NOTE: Recovering backup session on cluster failover or failback is not supported in NetWare
versions earlier than NetWare 6. In NetWare 5.x, shared cluster resources are represented as normal
resources.

Recovery of a restore session in case of failover or failback is currently not supported.

How the tape should be managed in a failover or failback situation is not specified. Define a scheme
that best suits your need.

Also consider the following while modifying the backup engine:

¢ Separate backup jobs are required per cluster resource (Shared Cluster enabled NSS pool for
File System resource). Only SLP based discovery mechanism is supported for clusters.

2.6 Option Precedence

TSAs have the following precedence (in descending order):

+ Exlusions
+ Inclusions
¢ Other options

The algorithms used by the scan and restore functions has the following precedence (in descending
order):

¢ Open, read, or write option (such as NWSM_DO NOT OVERWRITE DATA SET)

+ Exclude a data set

¢ Include a data set
Exclusion always takes precedence over inclusion in any case and so the scan and restore functions
deduce which files are implicitly excluded. The exceptions are the Include/Exclude option, Include
Path/Files. These options includes the specified files in a directory and excludes all other files in that

same directory. However, all other directories and the files in the entire file system tree are included
in the scan (unless other options are used).

2.7 Path Information

Two kinds of paths exist: the fully qualified path and the terminal name. The fully qualified path
contains a full path including the primary resource and continuing to the data set itself. The terminal
name is the name of the data set and contains no other path information.

SMS requires that all paths for parents are fully qualified paths. The paths for child data sets can be
either fully qualified paths or terminal names.

A path's component can include the primary resource name, one or more secondary resource names,
and the separator information. For example,

30 NDK: SMS Developer Components

VOL1:BIN/DISPLAY.EXE

VOLI, BIN, and DISPLAY.EXE are the path nodes and the colon and slash are the separators. The
first separator is used to separate the primary resource from the rest of the path, if first separators are
supported for the name space type being used to construct the path. For example, VOL1 is the
primary resource in the previous example. The second separator is used to separate secondary
resources. The engine calls NWSMTSGetNameSpaceTypelnformation to retrieve the separators for
a particular name space.

An example of path name that does not support a first separator,/home/userl/binEach path node,
home, userl and bin are the path nodes and the forward slash (/) are the separators. There is no first
separator and hence the primary resource is not distinguished from the rest of the path. The engine
calls NWSMTSGetNameSpaceTypelnfo to retrieve the separators for a particular name space.

2.7.1 Constructing a Path

The only entity under SMS that should know how to construct a path should be the TSA, since the
path for each Target Service type can differ. However, the engine can build a path without knowing
the target's path specifications for constructing a path. The following list shows what the engine
needs to know about the construction of a path:

+ First separators, if supported for the particular name space, always follow the primary resource.
To get the pair of valid separators use NWSMTSGetNameSpaceTypelnfo.

¢ Second separators always precede each secondary resource.

¢ Second separators follow a parent path node if it is the terminal node in the path.

¢ [f the terminal path node is a child, no second separator follows it.
For NDS paths, the following construction rules are used:

+ The engine must reverse the path nodes so that the subordinates are to the left of their superiors.
For example, Employee.Department.Company.Country is a reversed path.
NWSMTSGetNameSpaceTypelnfo indicates if the name space requires a reversed path and the
separators expected by a specific name space.

¢ [f the terminal path node (the left-most path node) is a parent, a dot precedes the name.

To ensure that a path is properly formatted, the engine can call NWSMFixDirectoryPath which does
not check a path with a child's data set name.

Resource names can be used with selection types to specify the data sets the user wants to apply an
action to. The constructed path contains the resource names to use with the selection type.

2.8 Resources

Resources are data sets that exist on the Target Service and vary for different targets. Resources are
parts such as volume, drives, mount points and directories. For example, NetWare resources include
file servers and volumes, while DOS resources include drives and Linux file system resources
include mount points. There are two types of resources: the primary and the secondary resources.

The following table lists the primary and secondary resources for various target services.

Target Services Concepts

31

Table 2-2 Primary and Secondary Resources Table

Target Primary Resource Secondary Resources

Suse Linux Enterprise Mount points Directories and files

Server 9.0

NetWare 6.x File Server, volume, and bindery. Directories and files
Cluster pools and volumes Cluster-enabled volumes

NetWare 5.x File Server and Volumes Directories and files

NetWare 4.x File Server and volume Directories and files

Novell Directory The full Directory The Directory schema

Services

GroupWise GroupWise server GroupWise Post Office

The primary resources can be viewed as the top level of the Target Service. The secondary resources
can be viewed as the children of the primary resources. Not all primary resources have children. For
example, databases and NetWare's bindery do not have children. Although BTrieve’s database may
consist of many files, they are backed up as one data set and have no secondary resources.

When a TSA returns its list of primary resources, the following resources may be listed: File Server,
Sys: (on NetWare) or mount points (on Linux).

To get the name spaces supported by a resource, an engine passes the primary resource name to the
NWSMTSScanSupportedNameSpaces or NWSMTSListSupportedNameSpaces API.

To specify a path to the data set to backup, the engine uses the resource names to build a path to it.
Resource names are used with selection type options to specify the name of the data sets to apply the
selection type to.

2.8.1 Resource Names

The first primary resource name returned by a TSA is significant. This name always represents the
entire Target Service. For example, the TSAs for file servers return NetWare Server as the first
primary resource name on NetWare and Linux Server on Linux. The order of the names following
the first name has no significance.

2.9 Function Access Scope

An engine's connection (or lack of one) limits the kinds of functions it can call within the TS APL
When the engine is not connected to a TSA, the only function that the engine can call are the
following:

NWSMConnectToTSA
NWSMListSMDRs
NWSMLIistTSAs

After connecting to the TSA, the engine can access the following functions:

NWSMTSConnectToTargetService

32 NDK: SMS Developer Components

NWSMTSConnectToTargetServiceEx
NWSMTSGetTargetServiceType
NWSMTSListTargetServices
NWSMReleaseTSA
NWSMTSScanTargetServiceName

After connecting to the Target Service, the engine can access all TS API functions.

Normally, when an engine connects to a TSA and the Target Service, and then disconnects from the
Target Service, the engine can still call these functions.

2.10 SIDF

SIDF isolates SMS from the media type and the target’s data format. Since SMS treats all file
systems generically, a generic data format is required that is provided by SIDF.

SIDF formats data in two parts: fields and sections. A section represents a unit of data and each
section consists of a set of related fields. For example, each of the following data units are
represented by a corresponding section containing the full path and any trustees:

Full path field (first field identifies the section)

Offset to end of section value

Name space type of path

Beginning of each path node in path array

Beginning of each separator in path array

Path

Full path field (last field identifies the end of the section)

Through SIDF, similar data from diverse Target Services are presented in the same way. For
example, many Target Services have data sets that have a hidden attribute. This attribute may be
represented as bit 1 in one Target Service and bit 5 in another Target Service. SIDF allows the
representation of the hidden bit to be independent of the bit's position by representing the bit as a
field. The field contains the value of the bit (ON or OFF) and a Field IDentifier (FID) that labels the
field as a hidden attribute field. When any TSA supports hidden attributes and finds a hidden field,
the TSA can set the information.

The data set is represented by a set of related sections such as file header, path information,
characteristics, attributes, trustees, data streams, and file trailer for a file data set.

You can call NWSMTSReadDataSet and NWSMTSWriteDataSet to read and write SIDF data.
NWSMTSReadDataSet formats all Target Service data into SIDF data while
NWSMTSWriteDataSet deformats the formatted data sets and writes it to the Target Service.

2.10.1 Transfer Buffers

A transfer buffer is a multiple of a medium's sector size and specifies how the data is put into the
transfer buffer.

There are five components to the transfer buffer.

¢ The Transfer Buffer Header signifies the beginning of a transfer buffer.

¢ A Data Set Header is inserted before data is placed into a transfer buffer.

Target Services Concepts

33

The data follows this header immediately. If there is room for more data, another Data Set
Header is inserted immediately after the just inserted data. The data then follows the second
Data Set Header. This process continues until there is not enough space for the next Data Set
Header or data.

+ A Data Set Subheader is placed into a new transfer buffer if data overflows the current transfer
buffer.

The overflow data (data fragment) follows the Data Set Subheader.
¢ The Data or Data Fragment is composed of three pieces of data:
¢ Scan Information
¢ Data Set Names
¢ Data Set

The scan information and data set names were returned by NWSMTSScanDataSetBegin
or NWSMTSScanNextDataSet when the data set was scanned. The data set was returned
by NWSMTSReadDataSet.

2.11 TSA Address

Before the engine connects to TSA, the engine must know the TSA's address. The address format for
TSAs is

SMDR_Name.TSA_Name

SMDR_Name is the name of the SMDR that is local to the TSA, and TSA Name is the name of the
TSA. SMDR_Name is required if a DOS TSA is being addressed or if the TSA is remote with
respect to the engine.

NOTE: The SMDR assumes the name of its host, and the TSA's name always reflects the Target
Service that it services.

Sample Address

serverl.NetWare Cluster File System

and
server2.NetWare File System

212 Log Files

During the backup session, the TSA builds a log file that lists the errors that occurred during the
backup session and an optional list of skipped data sets. Both files are automatically deleted when
NWSMTSReleaseTargetService is called.

The log file contains:

+ Names of the backed up data sets

¢ Scan information and the name list of each data set that were returned by
NWSMTSScanDataSetBegin and NWSMTSScanNextDataSet

* Addresses of the transfer buffer on the media

34 NDK: SMS Developer Components

The error log is an ASCII file that lists the errors and warnings that occurred during the backup
session.

The skipped data sets log is a binary file that lists the data sets that met the scanning criteria but were
skipped because they could not be backed up. Each entry in the skipped data sets file is an
NWSM_DATA SET NAME_LIST structure where the bufferSize field does not contain a valid
value. The reserved field of each entry contains an error code that describes the reason for skipping
the data set. The engine should translate the error code to a string by calling NWSMConvertError
(see Storage Management Services Utility Library).

2.13 Scan Order

All TSAs must follow a specified scanning order if parent handles are used. The scan travels down
the left side of the tree before traversing the right side as shown by the following steps:

1. Upon entering a parent, all the children of the current parent are scanned.

2. The next parent to scan is found. If the current parent has parents or subdirectories, each one is
scanned by repeating Steps 1 and 2.

3. If the current parent does not have any more parents to scan, the scan of the current parent is
considered finished and the scan traverses up the file system tree until the next parent to scan is
found. Steps 1-3 are repeated.

4. If there are no more parents to find, the scan ends.

To illustrate this, let's consider the root of the scan as parent A. When the scan begins, the name of
parent A is returned. Next, the children's names of parent A are returned which are: a, b, and c. Since
there are no more children in parent A to scan, the name of the first parent in A-which is B-is
returned. The steps are then repeated so that the children's names of parent B are returned next.
Since there are no more children in B to scan, the next parent in B-which is C is scanned. Once the
scan is done with parent C, the scan continues with parent D. The process continues until the scan
stops with parent [

Figure 2-4 Scan Order

2.14 Other Documents

Standard ECMA-208 is available free of charge from:

+ ECMA,114 Rue du Rhone, CH-1204 Geneva, Switzerland
+ Fax:+41 22 849.60.01

¢ Internet: Standard ECMA-208 (http://www.ecma-international.org/publications/standards/
Ecma-208.htm)

+ As the E208-DOC.EXE or E208-PSC.EXE file from ECMANEWS

Target Services Concepts

35

http://www.ecma-international.org/publications/standards/Ecma-208.htm

36 NDK: SMS Developer Components

Target Services Functions

This documentation alphabetically lists the Target Services functions and describes their purpose,
syntax, parameters, and return values.

Target Services functions perform the following types of tasks:

¢ Maintaining connections with the TSA and Target Services

¢ Providing a mechanism for specifying TSA-specific options

*

Allowing the engine to read, write, modify, and scan the data on the Target Service

¢ Retrieving information about the Target Service

*

Formatting data according to the SIDF specification at the data set level

*

Manipulating path information

3.1 Backup Functions

The following functions backup and scan the data sets specified by the TSA options:

+ “NWSMTSScanDataSetBegin” on page 38

* “NWSMTSGetTargetServiceAPIVersion” on page 47
* “NWSMTSOpenDataSetForBackup” on page 49

+ “NWSMTSReadDataSet” on page 51

+ “NWSMTSScanNextDataSet” on page 53

¢ “NWSMTSScanDataSetContinue” on page 55

* “NWSMTSScanDataSetEnd” on page 58

Target Services Functions 37

NWSMTSScanDataSetBegin

Begins a data set scan for the specified data set and returns information about the first data set found.

Syntax

#include <smstsapi.h>
#include <sms.h>

CCODE NWSMTSScanDataSetBegin (

UINT32 connection,
NWSM DATA SET NAME LIST *resourceName,
NWSM SCAN CONTROL *scanControl,
NWSM_ SELECTION LIST *selectionlist,
UINT32 *sequence,

NWSM SCAN INFORMATION **scanInformation,
NWSM DATA SET NAME LIST **dataSetNames);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

resourceName

(IN) Points to the starting point or path of the resource to scan.

scanControl

(IN) Points to the options of the data sets to scan or ignore (see Scan Control Options).

selectionList

(IN) Points to the data sets to scan or ignore and contains the name as it appears under every
name space supported by resourceName.

sequence

(OUT) Points to the scanning sequence value (doesn't need to be initialized since it is set by the
TSA).

scanInformation

(OUT) Points to the general attributes and information of the first data set that meets the
scanning criteria (optional).

dataSetNames

(OUT) Points to the name of the first data set that met the scanning criteria (optional).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

38 NDK: SMS Developer Components

0x00000000 Successful

OXFFFDFFAF NWSMTS_CLUSTER_TARGET DOES_NOT _EXIST
OXFFFBFFFB NWSMUT_OUT_OF MEMORY
OXFFFBFFFC NWSMUT_NO_MORE_NAMES
OXFFFBFFFD NWSMUT_INVALID_PARAMETER
OXFFFBFFFF NWSMUT_INVALID_HANDLE

OXFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OXFFFDFFC9 NWSMTS_OUT_OF _MEMORY
OXFFFDFFDA NWSMTS_INVALID_SEL_LIST_ENTRY
OXFFFDFFDC NWSMTS_INVALID_PATH

OXFFFDFFDD NWSMTS_INVALID_PARAMETER
OXFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OXFFFDFFF2 NWSMTS_DATA SET NOT_FOUND
OXFFFEFFFE NWSMDR_INVALID_PARAMETER
OXFFFEFFFF NWSMDR_INVALID_CONNECTION

Engine Developers

To build dataSetNames, the Data Set Name Functions described in Storage Management Services
Library can be used. The scan information and data set names are known as the data set information
by SIDF.

Remarks

Before NWSMTSScanDataSetBegin is called, the engine must be connected to a TSA and Target
Service.

NWSMTSScanDataSetBegin can be called multiple times to initiate concurrent scans. Each time it
is called, a different resource name is passed. If concurrent scans are used, the engine should ensure
that the data area covered by a resource does not overlap the area covered by another resource.

NWSMTSScanDataSetBegin begins scanning where resourceName is pointing. The engine should
copy the information returned by scanInformation and dataSetNames since the buffer is reused
when NWSMTSScanDataSetBegin is called again. To free scanIlnformation and dataSetNames, call
NWSMTSScanDataSetEnd.

resourceName can contain a primary resource, a path to a parent, or a fully qualified path to a child.
It can be obtained from previous dataSetNames values, or by calling
NWSMTSScanTargetServiceResource or NWSMTSListTSResources.

resourceName should be set to the first primary resource name instead of its parent.

Target Services Functions

39

There are two special values for resourceName as follows:

¢+ ERROR LOG is an ASCII file, which list the errors that occurred during the back-up/restore
session.

+ SKIPPED DATA SETS is a log that indicates the data sets that met the scanning criteria, but
were skipped (see Log Files).

Both files are automatically deleted when NWSMTSReleaseTargetService is called. If
resourceName is ERROR LOG or SKIPPED DATA SETS, scanlnformation and dataSetNames will
not contain any valid information.

scanControl determines not only the kinds attribute information returned, but also how much path
information is returned, and under which name spaces to search for data sets.

To scan for all data sets, set selectionList to NULL. Otherwise, set it to a list containing the scanning
patterns, paths, or explicit data set names to filter (see Data Set Selection Options).

To build resourceName and selectionList, the Data Set Name Functions listed in Storage
Management Services Utility Library can be used.

For any path built for resourceName or selectionList, the engine must ensure that the path is
properly formatted for the intended name space.

For engines that use SMS DI or SIDF, scanInformation and dataSetNames can be formatted and
placed into SIDF transfer buffers by calling NWSMSetNewRecordHeader and
NWSMUpdateRecordHeader.

The following table lists the data sets that the file system TSA excludes from the scan operation
even when the data sets are explicitly included

Target Resource Files Excluded During the Scan File Description

NetWare 4.x Volume:NET$SAUDIT The volume audit files
NetWare versions excluding

NetWare 3.x

SYS:SYSTEM/SERVDATA.NDS NDS-specific data

SYS:SYSTEM/DSMISC.LOG NDS-specific log

SYS:SYSTEM/TSA/
\TSA$TEMP.*

All NetWare versions TSA temporary files

All Linux versions

SYS:BACKOUT.TTS
/proc

/dev

I/sys

devpts type mounts

proc type mounts

tmpfs type mounts
binfmt_misc type mounts

sysfs type mounts

Transaction Tracking files
pseudo file system

All peripheral devices
Virtual file system

All preipheral devices
pseudo file system
temporary file system
binary format registration

virtual file system

40 NDK: SMS Developer Components

If scanControl is set to NULL, the TSA scans the Target Service as if the structure’s values are 0.

The dataSetNames list can be used in many ways such as displaying or naming the data set in a
database.

NWSMTSScanDataSetBegin can also perform the following tasks in addition to scanning for data
sets to back up:

+ Build a list of directories and files to display to the user
¢ Check if a data set exists before overwriting it during a restore session

¢ Scan for data sets to be deleted or renamed by passing sequence to NWSMTSDeleteDataSet
and NWSMTSRenameDataSet respectively

See Also

NWSMTSBuildResourceList (page 97), NWSMTSDeleteDataSet (page 84),
NWSMTSListTSResources (page 134), NWSMTSRenameDataSet (page 90),
NWSMTSScanDataSetEnd (page 58), NWSMTSScanNextDataSet (page 53),
NWSMTSScanTargetServiceResource (page 141)

Example

#include <smsutapi.h> #include <smstsapi.h>

#include <sms.h> /* include file for scan attributes. */
NWSM DATA SET NAME LIST *resourceName, *dataSetName = NULL;
NWSM DATA SET NAME name;

NWSM SCAN CONTROL scanControl;

NWSM_SCAN INFORMATION *scanInformation = NULL;

NWSM SELECTION LIST *selectionList;

UINT32 sequence, dataSetHandle, openModes, bytesRead,
transferBufferSpaceleft, bytesWritten, transferBufferOffset,
maxTransferBufferSize;

NWSM RECORD_ HEADER INFO recordHeaderInfo = {0},

BUFFERPTR transferBuffer;

/* Setup resourceName-see NWSMTSListTSResources and
NWSMTSScanTargetServiceResource. */

/* Gather the TSA's options and get the user's input*/

/* Setup scanControl-see the example code for
NWSMTSGetUnsupportedOptions and
NWSMTSGetTargetScanTypeString. */

/* Setup selectionList-see NWSMTSGetTargetSelectionTypeStr.*/

/* begin the back-up session. */

ccode = NWSMTSScanDataSetBegin (connection, resourceName, &scanControl,
selectionlList,

&sequence, &scanInformation, &dataSetName) ;

if (ccode)

{

if (ClusterEnabled && IsClusterError (ccode)) // For ccode refer
“Recovery Error Codes” on page 56 if (!Reconnect)

Target Services Functions

4

// returns 0 if success after n retries

{// Cannot call NWSMTSScanDataSetContinue, as there is nothing to
continue from.

// as this being the beginning call

ccode = NWSMTSScanDataSetBegin (connection, resourceName, &scanControl,
selectionList,

&sequence, &scanInformation, &dataSetName) ;

}

else

// Handle reconnection error.

}

else

// Handle error

}

/

LR I S b I b e S b e S b S b S b b S b 2b b S db I S b b db b b Sb b S b S Sb b I Sb I Sb R I S S S S 2 S 2b S 2b S i

* k kX

* Constructing the name space type info for the resource being
* backed up. Will need this for constructing the cursor that is to
* be passed to TSA after a fail over / fail back. This is done only

* once for a resource.
R I I I I I I I I I I I I b I b b b b b b b I I b b b b b b b b I b b b b b b I b b I 2 b b b b b A I I 2 b b b b b I I I 2 2 b b e

****/

if(!'ccode && (sessionInfo->clusterparams)) // if ScanBegin is Success
{

NWSMGetDataSetName (dataSetNameList, 0L, &dataSetName) ;
cNameSpaceType=dataSetName.nameSpaceType;
NWSMTSGetNameSpaceTypeInfo (

sessionInfo->connection,

cNameSpaceType,

&cReverseOrder,

&cFirstSeparater,

&cSecondSeperater) ;

}

/* Set the open modes from the user's selection. The modes were
received when

the TSA options where gathered */

openModes = user selected modes;

/* Create transfer buffer. For more information about
maxTransferBufferSize, see

Storage Management Services Device Interface. */

transferBuffer = (BUFFERPTR)calloc(l, maxTransferBufferSize):;
while (!ccode) // Successful ScanBegin

{

ccode = NWSMTSOpenDataSetForBackup (connection, sequence, openModes,
&dataSetHandle) ;

if (ccode)

{

if (ClusterEnabled && IsClusterError(ccode)) // ccode can be one of
NWSMDR OPEN FAILURE

{// or NWSMDR READ FAILURE or NWSMDR WRITE FAILURE or

NWSMDR RECONNECT FAILURE or NWSMDR TRANSPORT FAILURE

if (!Reconnect) // returns 0 if success after n retries

{

42 NDK: SMS Developer Components

if (cParent || cChild) // if there is last successful data set

{

// construct parent or child full path for the last successfully backed
up dataset

// 1f only child, cat parent along with it.

NWSMPutOneName (

(void **)&lastDataSetNamelList,// cursor to be used by ScanContinue
cNameSpaceType, // Name Space Type obtained after successful ScanBegin
call above

O0L,//First param contains DataSetnamelList so this is set to zero
cReverseOrder,

(char *)&cFirstSeparater,

(char *)s&cSecondSeperater,

(char *)&(cFullPath->string)); // The full path of last successfully
backed up child or parent

ccode=NWSMTSScanDataSetContinue (sessionInfo->connection,
resourceName,

&sessionInfo->scanControl,

sessionInfo->selectionlist,

lastDataSetNamelList, // cursor

&sequence,

&sessionInfo->scanInfo,

s&dataSetNamelist) ;

}

else // if this is the first data set, then there is nothing to
continue from

{ // so call ScanBegin to start from first

ccode = NWSMTSScanDataSetBegin (connection, resourceName, &scanControl,
selectionList,

&sequence, &scanInformation, &dataSetName) ;

}

}

else

// Handle reconnection error.

}

else

// Handle error

}

/* Display the data set name to the user. See Storage Management
Services

Utility Library for the function below. */
NWSMGetOneName (dataSetName, &name) ;

if (scanInformation->parentFlag)

{

/* Display name.name as a parent (e.g., directory). */
}

else

{

/* Display name.name as a child (e.g., a file). */

}
/* Usually the transfer buffer size is negotiated between SMS DI and

the

Target Services Functions

43

engine-see NWSMSDSessionOpenForWriting in the SMS DI documentation.
However, it

is set to an assumed size to keep this example relatively simple. For
information

on transferBufferDataOffset see the Storage Device API document's
NWSMSDSessionOpenForWriting. */

transferBufferSpaceleft = maxTransferBufferSize -
transferBufferDataOffset;

/* Put the data set information and data set data into an SIDF data
set, and

then into the transfer buffer. Here, we assume that the transfer buffer
is

defined somewhere else (see the Storage Device API document's
NWSMSDSessionOpenForWriting) . For information on NWSMDOSTimeToECMA see
Storage Management Services Utility Library. */
recordHeaderInfo.isSubRecord = FALSE;

recordHeaderInfo.dataSetName = dataSetName;
recordHeaderInfo.scanInformation = scanInformation;

NWSMDOSTimeToECMA (NWSMGetCurrentTime (),
&recordHeaderInfo.archiveDateAndTime) ;

NWSMSetNewRecordHeader (&transferBuffer, &transferBufferSpaceleft,
&bytesWritten, CRC_YES, &recordHeaderInfo);

/* Here we assume that the transfer buffer always has enough room to
receive

the data set data, that NWSMTSReadDataSet retrieves all of the data set
data on

the first call, and that the transfer buffer is completely filled. */
ccode = NWSMTSReadDataSet (connection, dataSetHandle,
transferBufferSpaceleft,

&bytesRead, &transferBuffer[transferBufferDataOffset]);

if (ClusterEnabled)

{

if (!ccode)

{

if (scanInformation->parentFlag)

// Store parent as it is successfully backedup

else

// Store child as it is successfully backedup

}

if (IsClusterError(ccode)) // ccode can be one of NWSMDR OPEN FAILURE
{// or NWSMDR READ FAILURE or NWSMDR WRITE FAILURE or

NWSMDR RECONNECT FAILURE or NWSMDR TRANSPORT FAILURE

if (!Reconnect) // returns 0 if success after n retries

{

if (cParent || cChild) // if there is last successful data set

{

// construct parent or child full path for the last successfully backed
up dataset

NWSMPutOneName (

(void **)&lastDataSetNamelList,// cursor to be used by ScanContinue
cNameSpaceType, // Name Space Type obtained after successful ScanBegin
call above

0L, //First param contains DataSetnamelList so this is set to zero
cReverseOrder,

44 NDK: SMS Developer Components

char *)&cFirstSeparater,

(char *)&cSecondSeperater,

(char *)&(cFullPath->string)); // The full path of last successfully
backed up child or parent

ccode=NWSMTSScanDataSetContinue (sessionInfo->connection,
resourceName,

&sessionInfo->scanControl,

sessionInfo->selectionlist,

lastDataSetNamelList, // cursor

&sequence,

&sessionInfo->scanInfo,

&dataSetNamelist) ;

}

else // if this is the first data set, then there is nothing to
continue from

{ // so call ScanBegin to start from first

ccode = NWSMTSScanDataSetBegin (connection, resourceName, &scanControl,
selectionList,

&sequence, &scanInformation, &dataSetName) ;

}

}

else

// Handle reconnection error.

}

else

// Handle error

}

/* Keep track of how many bytes are written to the transfer buffer.
This

information is needed for recordHeaderInfo */

bytesWritten =+ bytesRead;

recordHeaderInfo.recordSize += bytesRead;

/* Since the transfer buffer is full, update the data set header size
and

CRC information, then send the transfer buffer to SMS DI. SMS DI will
write the transfer buffer to the media.

See NWSMSDSessionWriteData in Storage Device API

for more information. */

NWSMUpdateRecordHeader (&recordHeaderInfo) ;

/* close the data set and get the next one */

NWSMTSCloseDataSet (connection, &dataSetHandle);

ccode = NWSMTSScanNextDataSet (connection, &sequence, &scanInformation,
&dataSetName) ;

if (ccode)

{

if (ClusterEnabled && IsClusterError (ccode)) // ccode can be one of
NWSMDR OPEN FAILURE

{// or NWSMDR READ FAILURE or NWSMDR WRITE FAILURE or

NWSMDR RECONNECT FAILURE or NWSMDR TRANSPORT FAILURE

if (!Reconnect) // returns 0 if success after n retries

{

if (cParent || cChild) // if there is last successful data set

{

Target Services Functions

45

// construct parent or child full path for the last successfully backed
up dataset

// 1f only child, cat parent along with it.

NWSMPutOneName (

(void **)&lastDataSetNamelList,// cursor to be used by ScanContinue
cNameSpaceType, // Name Space Type obtained after successful ScanBegin
call above

0L,//First param contains DataSetnamelist so this is set to zero
cReverseOrder,

(char *)&cFirstSeparater,

(char *)&cSecondSeperater,

(char *)&(cFullPath->string)); // The full path of last successfully
backed up child or parent

ccode=NWSMTSScanDataSetContinue (sessionInfo->connection,
resourceName,

&sessionInfo->scanControl,

sessionInfo->selectionlist,

lastDataSetNamelList, // cursor

&sequence,

&sessionInfo->scanInfo,

&dataSetNamelist) ;

}

else // if this is the first data set, then there is nothing to
continue from

{ // so call ScanBegin to start from first

ccode = NWSMTSScanDataSetBegin (connection, resourceName, &scanControl,
selectionList,

&sequence, &scanInformation, &dataSetName) ;

}

}

else

// Handle reconnection error.

}

else

// Handle error

}

} /* end while loop */

/* If the scanning functions did not return an error, end the scan */
NWSMTSScanDataSetEnd (connection, &sequence, &scanInformation,
&dataSetName) ;

46 NDK: SMS Developer Components

NWSMTSGetTargetServiceAPIVersion

Returns the API version of the target service.

Syntax

#include <smstsapi.h>

CCODE NWSMTSGetTargetServiceAPIVersion (

UINT32 connection,
UINT32 *majorVersion,
UINT32 *minorVersion) ;
Parameters
connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

majorversion
(OUT) Specifies the major version of the TSA.

minorversion
(OUT) Specifies the minor version of the TSA.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFDFFB1 NWSMTS_INTERNAL_ERROR
OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

This API provides an internally negotiated minimum supported version for the connection. The
version returned is specific to the connection and is based on the API version supported by SMDR at
the backup server and the SMDR and TSA at the target server.

Before this API is called, the engine must be connected to the TSA.
The API is supported by the following versions:

+ NetWare 6.5 Support Pack 1 and later

Target Services Functions

47

¢ NetWare 6.0 Support Pack 4
* NetWare 5.1 Support Pack 7 and later

NOTE: This symbol is not present in the SMS import file, as all versions of SMS do not export this
symbol. To use this function, programmatically import the symbol and invoke it.

See Also

NWSMTSConnectToTargetService (page 65), NWSMTSConnectToTargetServiceEx (page 68)

48 NDK: SMS Developer Components

NWSMTSOpenDataSetForBackup

Opens the data set referenced by the sequence value that returned the scanning functions.

Syntax

#include <smstsapi.h>

CCODE NWSMTSOpenDataSetForBackup (
UINT32 connection,
UINT32 sequence,
UINT32 mode,
UINT32 *dataSetHandle);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

sequence

(IN) Specifies the sequence number returned by NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet.

mode

(IN) Specifies the generic and TSA-specific open mode to apply to the data set (see Open
Modes for possible values).

dataSetHandle

(OUT) Points to a handle used to subsequently call NWSMTSReadDataSet or
NWSMTSCloseDataSet.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
OxFFFDFFB5 NWSMTS_WRITE_ERROR

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY

OxFFFDFFCC NWSMTS_OPEN_ERROR

OxFFFDFFCD NWSMTS_OPEN_DATA_STREAM_ERR
OxFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER

Target Services Functions

49

OxFFFDFFE7
OxFFFDFFF3
OXFFFDFFF5
OxFFFDFFF6
OXxFFFDFFFB
OXFFFEFFFE
OXFFFEFFFF

NWSMTS_INVALID_CONNECTION_HANDL
NWSMTS_DATA SET_IS_OPEN
NWSMTS_DATA_SET_IN_USE
NWSMTS_DATA SET_EXECUTE_ONLY
NWSMTS_CLOSE_BINDERY_ERROR
NWSMDR_INVALID_PARAMETER
NWSMDR_INVALID_CONNECTION

Remarks

Before NWSMTSOpenDataSetForBackup is called, NWSMTSScanDataSetBegin must be called to

initiate the scan.

The TSA must ensure that no attributes are altered on the Target Service during the backup session.

NWSMTSOpenDataSetForBackup prepares the Target Service data set to be backed up. To close
the data set, call NWSMTSCloseDataSet.

To determine the existing TSA-specific open modes for a given TSA, call
NWSMTSGetOpenModeOptionString.

See Also

NWSMTSCloseDataSet (page 82), NWSMTSScanDataSetBegin (page 38),
NWSMTSScanNextDataSet (page 53)

50 NDK: SMS Developer Components

NWSMTSReadDataSet

Reads a data set on the Target Service, formats the data according to SIDF, and returns it in a buffer.

Syntax

#include <smstsapi.h>

CCODE NWSMTSReadDataSet (

UINT32 connection,
UINT32 dataSetHandle,
UINT32 bytesToRead,
UINT32 *bytesRead,

BUFFERPTR buffer);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

dataSetHandle
(IN) Specifies the data set handle returned by NWSMTSOpenDataSetForBackup.

bytesToRead
(IN) Specifies the amount of free space in buffer.

bytesRead
(OUT) Points to the number of bytes read into buffer.

buffer
(OUT) Points to the buffer to contain the data (must be at least bytesToRead bytes large).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
OxFFFDFFB5 NWSMTS_WRITE_ERROR

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC6 NWSMTS_READ_ERROR

OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY

OxFFFDFFES5 NWSMTS_INVALID_DATA_SET_HANDLE

Target Services Functions

51

OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

OxFFFDFFF9 NWSMTS_CREATE_ERROR
OxFFFDFFFF NWSMTS_ACCESS_DENIED
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR _INVALID_CONNECTION
Remarks

Before NWSMTSReadDataSet is called, NWSMTSScanDataSetBegin must be called to initiate the
scan and NWSMTSOpenDataSetForBackup must be called to open the data set.

The data returned in buffer is the data mentioned in Standard ECMA-208. The engine formats the
scan information and data set names (both are jointly known as data set information under SIDF)
and places the result and data into a transfer buffer. Call NWSMSetNewRecordHeader and
NWSMUpdateRecordHeader to put the information into the transfer buffer.

If buffer cannot contain all of the data, NWSMTSReadDataSet must be called repeatedly to retrieve
all the data. bytesRead and bytesToRead indicates if all the data has been read. If bytesRead is equal
to bytesToRead, there is more data to read.

See Also

NWSMTSCloseDataSet (page 82), NWSMTSScanNextDataSet (page 53)

Example

See the example for NWSMTSScanDataSetBegin (page 38).

52 NDK: SMS Developer Components

NWSMTSScanNextDataSet

Continues the scan started by NWSMTSScanDataSetBegin and returns the next data set that meets
the scanning criteria.

Syntax

#include <smstsapi.h>

CCODE NWSMTSScanNextDataSet (
UINT32 connection,
UINT32 *sequence,
NWSM_ SCAN INFORMATION **scanInformation,
NWSM DATA SET NAME LIST **dataSetNames) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

sequence

(IN/OUT) Points to the sequence value from NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet.

scanInformation

(OUT) Points to the scan information for one data set (optional).

dataSetNames

(OUT) Points to the list that contains a data set's name as it appears under every supported
name space.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
OxFFFBFFFB NWSMUT_OUT_OF_MEMORY

OxFFFBFFFD NWSMUT_INVALID_PARAMETER

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY

OxFFFDFFC4 NWSMTS_SCAN_ERROR

OxFFFDFFD1 NWSMTS_NO_MORE_DATA_SETS

Target Services Functions

53

OxFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER

OxFFFDFFDC NWSMTS_INVALID_PATH

OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OXFFFDFFEB NWSMTS_GET_NAME_SPACE_ENTRY_ERR
OXFFFDFFF3 NWSMTS_DATA_SET IS _OPEN
OxFFFEFFFE NWSMDR_INVALID_ PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSScanNextDataSet is called, NWSMTSScanDataSetBegin must be called to initiate
a scan.

Call NWSMTSScanNextDataSet repeatedly until all data sets are found or an error occurs.

The engine should copy the information returned by scanInformation and dataSetNames since the
buffer is reused when NWSMTSScanNextDataSet is called again.

The engine must not call NWSMTSScanNextDataSet after it returns
NWSMTS_NO MORE DATA_SETS, unless sequence from a different
NWSMTSScanDataSetBegin or NWSMTSScanNextDataSet function is passed. Otherwise,
NWSMTS INVALID SEQUENCE NUMBER will be returned.

If there are no more data sets to scan, NWSMTSScanNextDataSet returns
NWSMTS NO MORE DATA SETS, sets sequence to zero, and frees dataSetNames and
scanInformation.

If NWSMTSScanNextDataSet does not return an error other than cluster error(valid only for cluster
enabled backups), the engine must call NWSMTSScanDataSetEnd to end the scan.

See Also

NWSMTSScanDataSetBegin (page 38), NWSMTSScanDataSetEnd (page 58)

Example

See the example for NWSMTSScanDataSetBegin (page 38).

54 NDK: SMS Developer Components

NWSMTSScanDataSetContinue

Continues the scan from the specified data set and returns information about the next data set.

Syntax

#include <smstsapi.h>

CCODE NWSMTSScanDataSetContinue (

UINT32 connection,

NWSM DATA SET NAME LIST “*resourceName,

NWSM SCAN CONTROL *scanControl,

NWSM_ SELECTION LIST *selectionlist,
NWSM DATA SET NAME LIST *cursorDataSetName,
UINT32 *sequence,

NWSM SCAN INFORMATION **scanInformation,

NWSM_DATA SET NAME LIST **dataSetNames);

Parameters

connection
(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

resourceName

(IN) Points to the starting point or path of the resource to scan.

scanControl
(IN) Points to the attributes and characteristics of all data sets to scan or ignore (see “Scan
Control Options” on page 26).

selectionList
(IN) Points to the data sets to scan or ignore and contains the name as it appears under every
name space supported by resourceName.

cursorDataSetName
(IN) Points to the point or the full path of last successfully backed up data set name, to continue
the scan.

sequence
(OUT) Points to the scanning sequence value (does not need to be initialized as it is set by the
TSA).

scanlnformation
(OUT) Optional. Points to the general attributes and information of the first data set that meets
the scanning criteria.

dataSetNames

(OUT) Optional. Points to the name of the first data set that met the scanning criteria.

Target Services Functions

55

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
OxFFFBFFFB NWSMUT_OUT_OF_MEMORY
OxFFFBFFFC NWSMUT_NO_MORE_NAMES
OxFFFBFFFD NWSMUT_INVALID_PARAMETER
OxFFFBFFFF NWSMUT_INVALID_HANDLE

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC9 NWSMTS_OUT_OF _MEMORY
OxFFFDFFDA NWSMTS_INVALID_SEL_LIST_ENTRY
OxFFFDFFDC NWSMTS_INVALID_PATH

OxFFFDFFDD NWSMTS_INVALID_PARAMETER
OxFFFDFFE4 NWSMTS_INVALID_DATA_SET_NAME
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFDFFF2 NWSMTS_DATA_SET_NOT_FOUND
OxFFFDFFB1 NWSMTS_INTERNAL_ERROR
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Recovery Error Codes

This section lists the return values returned by the following TSA and SMDR APIs, during cluster
failover/failback.

*

NWSMTSScanDataSetBegin
NWSMTSOpenDataSetForBackup
NWSMTSReadDataSet
NWSMTSScanNextDataSet

*

*

*

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_ Cluster target does not exist
EXIST

OxFFFEFFCE NWSMDR_OPEN_FAILURE Unable to open the configuration file

for reading
OxFFFEFFCD NWSMDR_READ_ FAILURE Unable to read from source

OxFFFEFFCC NWSMDR_WRITE_FAILURE Unable to write to the destination

56 NDK: SMS Developer Components

OxFFFEFFFC NWSMDR_TRANSPORT_FAILURE The transport mechanism has failed

OxFFFEFFB1 NWSMDR_DISCONNECTED Resource disconnected

Remarks

*

This API is cluster specific and is not to be used for normal backup failures
This API doesn’t support restore recovery during cluster failover/failback.
If scanning is in progress, call NWSMTSScanDataSetEnd before reconnection.

After cluster failover/failback, release the current connections of engine to TSA or SMDR by
calling NWSMTSReleaseTargetService or NWSMReleaseTSA respectively.

Re-establish the connection using NWSMConnectToTSA and
NWSMTSConnectToTargetService or NWSMTSConnectToTargetServiceEx.

The cursor should contain the last successfully backed-up data set information. If there are no
such data sets during failover/failback, use NWSMTSScanDataSetBegin.

NOTE: This symbol is not present in the SMS import file, as all versions of SMS do not export this
symbol. To use this function, programmatically import the symbol and invoke it.

See Also

NWSMConnectToTSA (page 60), NWSMReleaseTSA (page 76),
NWSMTSConnectToTargetService (page 65), NWSMTSConnectToTargetServiceEx (page 68),
NWSMTSScanDataSetBegin (page 38)

Example

See the example for NWSMTSScanDataSetBegin (page 38).

Target Services Functions

57

NWSMTSScanDataSetEnd

Stops the scan started by NWSMTSScanDataSetBegin.

Syntax

#include <smstsapi.h>

CCODE NWSMTSScanDataSetEnd
UINT32 connection,
UINT32 *sequence,
NWSM SCAN INFORMATION **scanInformation,
NWSM DATA SET NAME LIST **dataSetNames);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

sequence

(IN/OUT) Inputs a pointer to the sequence value returned by NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet. Outputs zero.

scanInformation

(IN/OUT) Inputs a pointer to the memory to be freed. Outputs NULL.

dataSetNames
(IN/OUT) Inputs a pointer to the memory to be freed. Outputs NULL.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFDFFF3 NWSMTS_DATA_SET_IS_OPEN
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

58 NDK: SMS Developer Components

Remarks

Before NWSMTSScanDataSetEnd is called, NWSMTSScanDataSetBegin must be called to
initiated a scan.

NWSMTSScanDataSetEnd stops a scan prematurely. Do not call NWSMTSScanDataSetEnd if
NWSMTSScanDataSetBegin or NWSMTSScanNextDataSet returns an error.

See Also

NWSMTSReleaseTargetService (page 75), NWSMReleaseTSA (page 76)

Example

See the example for NWSMTSScanDataSetBegin (page 38).

3.2 Connection Functions

The following functions connect the engine to the TSA and the Target Service:

*

*

*

*

“NWSMConnectToTSA” on page 60
“NWSMLIistTSAs” on page 62
“NWSMTSConnectToTargetService” on page 65
“NWSMTSConnectToTargetServiceEx” on page 68
“NWSMTSGetTargetServiceType” on page 71
“NWSMTSListTargetServices” on page 73
“NWSMTSReleaseTargetService” on page 75
“NWSMReleaseTSA” on page 76
“NWSMTSScanTargetServiceName” on page 77

Target Services Functions

59

NWSMConnectToTSA

Connects the backup engine to a TSA.

Syntax

#include <smstsapi.h>

CCODE NWSMConnectToTSA (
STRING tsaName,
UINT32 *connection);

Parameters

tsaName
(IN) Specifies the name of the TSA to connect to returned by NWSMListTSAs.

connection

(OUT) Points to the connection information used for connecting to and getting information
about the Target Service.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFEFFF5 NWSMDR_SMDR_CONNECT_FAILURE
OxFFFEFFF6 NWSMDR_NO_SUCH_SMDR
OxFFFEFFF7 NWSMDR_TSA_NOT_LOADED
OxFFFEFFDF NWSMDR_UNKNOWN_ADDRESS
OxFFFEFFFD NWSMDR_OUT_OF_MEMORY
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFF1 NWSMDR_NO_MORE_CONNECTIONS
OxFFFEFFE9 NWSMDR_INVALID_CONTEXT
Remarks

After connecting to the TSA, the engine can access only information about the Target Service. To
get information about the target, see NWSMTSGetTargetServiceType (page 71). To access the target
data, see NWSMTSConnectToTargetService (page 65).

An engine can have one or more concurrent connections to one or more TSAs. For each connection,
the engine must call NWSMConnectToTSA once.

60 NDK: SMS Developer Components

NOTE: The internal primary resource list is created when NWSMConnectToTSA is called.

See Also

NWSMTSConnectToTargetService (page 65), NWSMTSConnectToTargetServiceEx (page 68),
NWSMTSListTargetServices (page 73), NWSMReleaseTSA (page 76)

Example

UINT32 connection;
STRING TSAName;

/* Find a TSA to connect to-see NWSMListTSAs. */
NWSMConnectToTSA (TSAName, &connection);

/* Find a Target Service through the connected TSA-see
NWSMTScanTargetServiceName and NWSMTSListTargetServiceName. */
/* Connect to the target-see NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx . */

Target Services Functions 61

NWSMListTSAs

Builds a list of TSAs as specified by a scan pattern.

Syntax

#include <smstsapi.h>
#include <smsdrapi.h>

CCODE NWSMListTSAs (
STRING scanPattern,
NWSM NAME LIST (page 161) **serviceAgentNameList);

Parameters

scanPattern

(IN) Specifies the pattern to search for.

serviceAgentNameList
(OUT) Points to the names of all active TSAs.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFEFFF6 NWSMDR_NO_SUCH_SMDR
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFDF NWSMDR_UNKNOWN_ADDRESS
OxFFFEFFBS8 NWSMDR_PROTOCOL_NOT_FOUND
OxFFFEFFFD NWSMDR_OUT_OF_MEMORY
OxFFFEFFFF NWSMDR_INVALID_CONTEXT
Remarks

See TSA Scanning Pattern for a comprehensive list of legal scan patterns.

The TSA name in serviceAgentNameList-> name has a maximum buffer size of
NWSM_MAX TARGET SRVC NAME LEN bytes and has the following format:

smdrName . tsaName

smdrName and tsaName contain either a complete name or partial name indicated by wildcard
characters. smdrName is always the name of the Target Service where the TSA.

The following table lists the various wildcard options available for listing the TSAs.

62 NDK: SMS Developer Components

Value Description

smdrName.tsaName Returns an exact match.

smdrName Returns all TSAs on Target Services named smdrName.

*smdrName Returns all TSAs on Target Services that have names that end with
smdrName.

smdrName* Return all TSAs on Target Services that have names that begin with
smdrName.

smdrName.* Return all TSAs on Target Service smdrName.

*tsaName Return all TSAs named tsaName.

*smdrName.tsaName Return all TSAs named tsaName on Target Services that have names

that end with smdrName.
smdrName.tsaName* Return all TSAs that begin with tsaName on Target Service smdrName.

Return all available TSAs.

Return all available TSAs.

For example, “DJ.Linux File System” is a legal name. “DJ” is the smdrName and “Linux File
System” is the tsaName. Note that smdrName cannot contain any periods, while tsaName can. There
is no limit to the size of the name.

NWSMLIistTSAs may slow down if smdrName contains wild cards. To speed up the response time,
the engine can call NWSMListSMDRs (see Finding the TSA, Method 1).

If SMDR and TSA are loaded on a cluster, NWSMListTSAs can return two different strings for file
system TSA. If the name of the shared cluster resource (virtual NCP server name) is passed to this
call, then the string, NetWare Cluster File System is returned. If the node name is passed, NetWare
File System or Linux File System is returned as the case may be.

See Also

NWSMConnectToTSA (page 60)

Example

/* This example shows method that may speed up the listings of TSAs */
#include <smstsapi.h>

#include <smsdrapi.h> /* include smsdrapi.h after smstsapi.h */
#include <string.h>

NWSM NAME LIST *smdrList = NULL

*serviceAgentNameList = NULL;

char pat[2] = “*7;

STRING scanPattern = pat;

CHAR chosenSMDR[120], chosenTSA[120]; /* arbitrary length */

/* Get the list of all SMDRs See document Storage Management Services
Utility Library for a description of NWSMListSMDRs. */

Target Services Functions

63

/* Select a SMDR. The SMDR assumes the name of the Target Service where
the SMDR resides. */

if (smdrList->next)
{
/* There is more than one SMDR. Display the SMDR list and have the
user select one.
The selected name is copied into chosenSMDR. */

}

else /* There is only one SMDR name. Automatically select it. */
strcpy (chosenSMDR, smdrList->name);

/* Append “.*” to the smdr name to indicate that all TSAs on the
specified Target Service should be returned. */

strcat (chosenSMDR, “.*");

/* List all the TSAs that reside with the chosen SMDR. */
NWSMListTSAs (chosenSMDR, &serviceAgentNamelist) ;

/* Check if we have more than one TSA name. */
if (serviceAgentNamelList->next)
{
/* Have the user choose a TSA name, then copy it into chosenTSA. */
}
else
strcpy (chosenTSA, serviceAgentNamelList->name) ;
/* Connect to the selected TSA-see NWSMConnectToTSA. */

64 NDK: SMS Developer Components

NWSMTSConnectToTargetService

Connects an engine to a specified Target Service.

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSConnectToTargetService (
UINT32 “*connection,
STRING targetServiceName,
STRING targetUserName,

void *authentication) ;
Parameters
connection

(IN/OUT) Specifies a pointer to the connection information from NWSMConnectToTSA.

Outputs a pointer to the connection to the Target Service in addition to the input information.

targetServiceName

(IN) Specifies the Target Service name returned by NWSMTSScanTargetServiceName or
NWSMTSListTargetServices.

targetUserName

(IN) Specifies the user name on a file server (maximum size is
NWSM_MAX TARGET USER NAME LEN).

authentication

(IN) Points to the authentication necessary to establish a connection with the Target Service
(for example, a user password).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY
OxFFFDFFD7 NWSMTS_LOGIN_DENIED
OxFFFDFFF9 NWSMTS_CREATE_ERROR
OxFFFEFFF2 NWSMDR_INVALID_PROTOCOL
OxFFFEFFFD NWSMDR_OUT_OF_MEMORY

Target Services Functions

65

OxFFFEFFEO NWSMDR_CORRUPTED_STATE

OxFFFEFFE9 NWSMDR_INVALID_CONTEXT

OxFFFEFFFE NWSMDR_INVALID_PARAMETER

OxFFFEFFFF NWSMDR _INVALID_CONNECTION

OXFFFDFFAE NWSMTS_CLUSTER_TARGET HAS_NO VOLUMES
Remarks

Before NWSMTSConnectToTargetService is called, the engine must be connected to a TSA that has
access to the desired target.

targetServiceName should contain a Target Service name from the name list returned by
NWSMTSListTargetServices.

NWSMTSConnectToTargetService connects an engine to the specified Target Service and
establishes the user's rights on the Target Service. After successfully connecting, the engine can
access the Target Service’s data.

An engine can connect to only one Target Service per TSA connection. This means that a Target
Service can have multiple connections, but each connection must be referenced by a different TSA
connection.

targetUserName contains the user name that allows proper access to the Target Service’s data. For
NetWare 3.x and earlier names, these are the bindery names. For NetWare 4.0 and later, these are
directory names. For Linux file system TSA it is the user name of a user having an identity on the
Linux system.

authentication is an unencrypted, length preceded (UINT16) string. However, the SMDR encrypt/
decrypts it if it is passed between SMDRs. If no authentication is passed, set the length to zero. Do
not pass a NULL pointer.

See Also

NWSMConnectToTSA (page 60), NWSMTSScanTargetServiceName (page 77),
NWSMTSListTargetServices (page 73)

Example

#include <smstsapi.h>
#include <smsdrapi.h>

UINT32 connection;

STRING TSAName ;

NWSM NAME LIST *serviceNamelList = NULL;

char targetServiceName [NWSM MAX TARGET SRVC NAME LEN],

targetUserName [NWSM MAX TARGET USER NAME LEN],
authentication[30];

/* Connect to the TSA. */
NWSMConnectToTSA (TSAName, &connection);

66 NDK: SMS Developer Components

/* Find Target Service through the connected TSA. */
sprintf (targetServiceName, "%$s%s", TSAName, ".*");
NWSMTSListTargetServices (connection, targetServiceName ,
&serviceNamelist) ;

/* Set up the authentication. */
sprintf (&authentication[2], "%s", "Password");
* ((UINT1l6 *)&authentication[0]) = strlen(&authentication[2]);

/* Connect to the Target Service. */
NWSMTSConnectToTargetService (&connection, (STRING)serviceNamelList-
>name, (STRING)targetUserName, authentication);

Target Services Functions

67

NWSMTSConnectToTargetServiceEx

Connects an engine to a specified Target Service and also supports passwords with international and
extended characters.

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSConnectToTargetServiceEx (
UINT32 *connection,
STRING targetServiceName,
STRING targetUserName,
void *authentication
UINT32 optionFlag
);

Parameters

connection
(IN/OUT) Specifies a pointer to the connection information from NWSMConnectToTSA.
Outputs a pointer to the connection to the Target Service in addition to the input information.
targetServiceName
(IN) Specifies the Target Service name returned by NWSMTSScanTargetServiceName or
NWSMTSListTargetServices.
targetUserName

(IN) Specifies the user name on a file server (maximum size is
NWSM_MAX TARGET USER NAME LEN).

authentication

(IN) Points to the authentication data necessary to establish a connection with the Target
Service (for example, a user password).

optionflag
(IN) Specifies the type of the authentication data.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful
O0xFFFDFFD7 NWSMTS_LOGIN_DENIED
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

68 NDK: SMS Developer Components

OxFFFDFFC8 NWSMTS_OVERFLOW

OxFFFEFFF2 NWSMDR_INVALID_PROTOCOL
OxFFFEFFEO NWSMDR_CORRUPTED_STATE
OxFFFEFFE9 NWSMDR_INVALID_CONTEXT
OxFFFEFFFF NWSMDR _INVALID_CONNECTION
OxFFFDFFAD NWSMTS_UNSUPPORTED_OPTION
Remarks

Before NWSMTSConnectToTargetService is called, the engine must be connected to a TSA that has
access to the desired target.

targetServiceName should contain a Target Service name from the name list returned by
NWSMTSListTargetServices.

NWSMTSConnectToTargetService connects an engine to the specified Target Service and
establishes the user's rights on the Target Service. After successfully connecting, the engine can
access the Target Service’s data.

An engine can connect to only one Target Service per TSA connection. This means that a Target
Service can have multiple connections, but each connection must be referenced by a different TSA
connection.

targetUserName contains the user name that allows proper access to the Target Service’s data.

authentication is defined using the optionflag parameter. However, the SMDR encrypt/decrypts it if
it is passed between SMDRs. If no authentication is passed, set the length to zero. Do not pass a
NULL pointer.

The following option flags are supported.

Option Flags Description

NWSM_AUTH_UTF8_DATA The authentication data is a length preceded (UINT16) UTF-8 string

NWSM_AUTH_UNICODE_DATA The authentication data is a length preceded (UINT16) Unicode
string.

NWSM_AUTH_RAW_DATA The authentication data is a length preceded (UINT16) string.

NOTE: This flag provides the same functionality as
NWSM_AUTH_LOCAL_DATA and has been renamed to accurately
reflect the data type. Any existing usage of
NWSM_AUTH_LOCAL_DATA will continue to be supported.

NWSM_AUTH_CASA TOKEN The authentication data is a length preceded (UINT 16) CASA token
and targetUserName should be set to “CasaPrincipal’.

NOTE: This symbol is not present in the SMS import file, as all versions of SMS do not export this
symbol. To use this function, programmatically import the symbol and invoke it.

Target Services Functions

69

See Also

NWSMConnectToTSA (page 60), NWSMTSScanTargetServiceName (page 77),
NWSMTSListTargetServices (page 73)

70 NDK: SMS Developer Components

NWSMTSGetTargetServiceType

Returns the Target Service type and version information.

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSGetTargetServiceType (
UINT32 connection,

STRING serviceName,
STRING serviceType,
STRING serviceVersion) ;
Parameters
connection

(IN) Specifies the connection information returned by NWSMConnectToTSA.

serviceName

(IN) Specifies the Target Service name returned by NWSMTSScanTargetServiceName or
NWSMTSListTargetServices.

serviceType

(OUT) Returns the Target Service type name (must be
NWSM_MAX TARGET SRVC _TYPE LEN bytes).

serviceVersion

(OUT) Returns the version string of the Target Service (must be
NWSM_MAX TARGET SRVC_VER LEN bytes).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFDD NWSMTS_INVALID_PARAMETER
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSGetTargetServiceType is called, the engine must be connected to the TSA and
Target Service.

Target Services Functions

7

The buffer sizes include a NULL terminator.

Example

#include <smsutapi.h>

#include <smstsapi.h>

NWSM NAME LIST *serviceNamelList = NULL;

unsigned char serviceTypeBuf [NWSM MAX TARGET SRVC TYPE LEN],
serviceVersionBuf [NWSM MAX TARGET SRVC VER LEN], pat[2] = “*”;
STRING serviceType = (STRING)serviceTypeBuf, serviceVersion

= (STRING) serviceVersionBuf, serviceName, scanPattern = pat;

/* Connect to a TSA-see NWSMConnectToTSA. */

/* Get a list of Target Services accessible through the connected TSA
(some TSAs can service multiple Target Services).
NWSMTSListTargetServices or NWSMTSScanTargetServiceName can be used to
create this list. */

NWSMTSListTargetServices (connection, scanPattern, &serviceNamelist);

/* See 1f we have more than one Target Service */

if (serviceNamelList->next)

{

/* Have the user choose a Target Service, set serviceName to point to
that name. */

}

else

serviceName = serviceNamelist->name;

NWSMTSGetTargetServiceType (connection, serviceName, serviceType,
serviceVersion);

72 NDK: SMS Developer Components

NWSMTSListTargetServices

Returns a list of all Target Services accessible through the connected TSA.

Syntax

#include <smstsapi.h>
#include <smsutapi.h>

CCODE NWSMTSListTargetServices (
UINT32 connection,
STRING scanbPattern,
NWSM NAME LIST **serviceNameList);

Parameters

connection

(IN) Specifies the connection information returned by NWSMConnectToTSA.

scanPattern

(IN) Specifies the Target Service names pattern to search for.

serviceNameList

(IN/OUT) Points to the list of Target Service names to be returned.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFD NWSMDR_OUT_OF_MEMORY
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSListTargetServices is called, the engine must be connected to a TSA.

If there are no names to return, NWSMTSListTargetServices returns successfully and
serviceNamelList is set to NULL.

The values that can be set for scanPattern is listed in the following table.

Target Services Functions

73

Value Description

*smdrName.tsaName Return all TSAs named tsaName on Target Services that have
names that end with smdrName.

smdrName.tsaName* Return all TSAs that begin with tsaName on Target Service
smdrName.

Return all available TSAs.

Return all available TSAs.

NOTE: NWSMTSListTargetServices is implemented by calling
NWSMTSScanTargetServiceName.

When connection is a handle to a TSA that services only one Target Service,
NWSMTSListTargetServices returns a list of one entry.

TIP: The returned list does not describe the type of Target Service (such as NetWare or Linux). This
additional information is returned by NWSMTSGetTargetServiceType.

See Also

NWSMTSConnectToTargetService (page 65), NWSMTSConnectToTargetServiceEx (page 68),
NWSMTSGetTargetServiceType (page 71)

Example

#include <smstsapi.h>
#include <smsdrapi.h>

NWSM NAME LIST *serviceNameList = NULL;

/* Connect to a TSA-see NWSMConnectToTSA. */

/* Get a list of Target Services accessible through the connected TSA
(some TSAs can service multiple Target Services).
NWSMTSListTargetServices or NWSMTSScanTargetServiceName can be used to
create this list. */

ccode = NWSMTSListTargetServices (connection, "*", &serviceNamelList):;
/* See 1f we have more than one Target Service */

if (serviceNamelist->next)

{

/* Have the user choose a Target Service. */

}

/* Gather the optional information about the Target Service-see
NWSMTSGetTargetServiceType. */

/* Get the user’s name and password, and connect to the selected Target
Services NWSMTSConnectToTargetService */

74 NDK: SMS Developer Components

NWSMTSReleaseTargetService

Closes the connection between an engine and a Target Service.

Syntax

#include <smstsapi.h>

CCODE NWSMTSReleaseTargetService (
UINT32 *connection);

Parameters

connection

(IN) Points to the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFD6 NWSMTS_LOGOUT_ERROR

OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSReleaseTargetService is called, the engine must be connected to the TSA.

NWSMTSReleaseTargetService cleans up the internal environment, releases a connection between
the engine and the Target Service, and deletes the error log and skipped log files created by the TSA.

See Also

NWSMTSConnectToTargetService (page 65), NWSMTSConnectToTargetServiceEx (page 68)

Target Services Functions

75

NWSMReleaseTSA

Closes the connection between a TSA and an engine.

Syntax

#include <smstsapi.h>

CCODE NWSMReleaseTSA (

UINT32

Parameters

connection

*connection) ;

(IN) Points to the connection information returned by NWSMConnectToTSA.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000

OxFFFDFFB9
OxFFFEFFEO
OxFFFEFFE9
OxFFFEFFFF

Successful
NWSMTS_UNSUPPORTED_FUNCTION
NWSMDR_CORRUPTED_STATE
NWSMDR_INVALID_CONTEXT
NWSMDR_INVALID_CONNECTION

Remarks

Before NWSMReleaseTSA is called, the Target Service must be released.

There is only one engine/TSA pair for each session so it is not necessary to specify the TSA when
releasing the connection. connection is set to an invalid value after the connection is released.

See Also

NWSMConnectToTSA (page 60)

76 NDK: SMS Developer Components

NWSMTSScanTargetServiceName

Retrieve a Target Service name from a connected TSA.

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSScanTargetServiceName (
UINT32 connection,
UINT32 *tsnSequence,
STRING scanPattern,

STRING serviceName) ;
Parameters
connection

(IN) Specifies the connection information returned by NWSMConnectToTSA.

tsnSequence

(IN/OUT) Points to the Target Service name sequence number.

scanPattern

(IN) Specifies the pattern to search for.

serviceName

(OUT) Specifies the Target Service name.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFD2 NWSMTS_NO_MORE_DATA
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
Remarks

Before NWSMTSScanTargetServiceName is called, the engine must be connected to a TSA.

A TSA can service only one Target Service name or multiple Target Services.
NWSMTSScanTargetServiceName must be called repeatedly to retrieve all specified Target Service

Target Services Functions

77

names. When provided with supporting code, NWSMTSScanTargetServiceName is the same as
NWSMTSListTargetServices.

The engine sets tsnSequence to zero before starting each scanning session. If
NWSMTSScanTargetServiceName returns an error, tsnSequence is set to OXFFFFFFFF.

The values that can be set for scanPattern is listed in the following table.

Value Description

kN

Return all names

“EXXXX” Return all names that end with “xxxx” @
“XXXX*” Return all names that begin with “xxxx"@
“XXXX Find name “xxxx”@

a. Where "xxxx" is one or more characters.

The engine passes a buffer to serviceName that is NWSM_MAX TARGET SRVC NAME LEN
bytes long. A NULL string is returned if no Target Service is found.

See Also

NWSMTSConnectToTargetService (page 65), NWSMTSConnectToTargetServiceEx (page 68),
NWSMTSGetTargetServiceType (page 71), NWSMTSListTargetServices (page 73)

Example

#include <smsutapi.h>
#include <smstsapi.h>

UINT32 tsnSequence = 0;

unsigned char pat[2] = “*”, sName[NWSM MAX TARGET SRVC NAME LEN];
NWSM NAME LIST *serviceNameList = NULL, *name, *last;

STRING pattern = pat, serviceName = sName;

/* Connect to a TSA-see NWSMConnectToTSA. */

/* Build the Target Service name list (some TSAs can service multiple

Target Services).

NWSMTSListTargetServices can be used to create this list. */

while (NWSMTSScanTargetServiceName (connection, &tsnSequence, pattern,
serviceName) == 0)

name = (NWSM NAME LIST *)calloc(l, sizeof (NWSM NAME LIST)):;
name->name = (STRING)calloc(l, NWSM MAX TARGET SRVC NAME LEN);
strcpy (name->name, serviceName) ;
if (serviceNamelist)
{

last->next = name;

last = last->next;

78 NDK: SMS Developer Components

else
serviceNameList = last = name;
} /* End while */

/* See 1f we have more than one Target Service */
if (serviceNamelist->next)

{

/* Have the user choose a Target Service. */

}

/* Gather the optional information about the Target Service -
see NWSMTSGetTargetServiceType. */

/* Connect to the selected Target Service-see
NWSMTSConnectTargetService*/

3.3 Miscellaneous Functions

The following functions perform miscellaneous TSA tasks:

+ “NWSMTSCatDataSetName” on page 80

* “NWSMTSCloseDataSet” on page 82

+ “NWSMTSDeleteDataSet” on page 84

+ “NWSMTSFixDataSetName” on page 85

¢ “NWSMTSParseDataSetName” on page 88

+ “NWSMTSRenameDataSet” on page 90

+ “NWSMTSReturnToParent” on page 92

+ “NWSMTSSeparateDataSetName” on page 93
* “NWSMTSSetArchiveStatus” on page 95

Target Services Functions 79

NWSMTSCatDataSetName

Joins two paths together.

Syntax

#include <smstsapi.h>

CCODE NWSMTSCatDataSetName (

UINT32 connection,

UINT32 nameSpaceType,

STRING dataSetName,

STRING terminalName,
NWBOOLEAN terminalNameIsParent,

STRING BUFFER **newDataSetName) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

nameSpaceType

b}

(IN) Specifies the name space type of the names to concatenate (see “nameSpaceType Values’
on page 347).

dataSetName
(IN) Specifies the data set name to append to.

terminalName

(IN) Specifies the data set's name (parent or child name only) to append to dataSetName.

terminalNamelsParent

(IN) Specifies if terminalName is a parent or child:

TRUE Parameter specifies a parent
FALSE Parameter specifies a child

newDataSetName
(OUT) Points to the concatenated path.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

80 NDK: SMS Developer Components

OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks

NWSMTSCatDataSetName appends a terminal name onto an existing path. If terminalName is a
parent, the appropriate delimiter for that namespace is appended to the end of the string. If
terminalName is a parent, and if the Target Service requires it, a separator is placed at the end of
newDataSetName.

newDataSetName must point to a valid structure or NULL. NWSMTSCatDataSetName allocates
memory if NULL is passed, or allocates a larger memory block if the structure does not have enough
space.

The engine should call NWSMFreeString to deallocate newDataSetName .

Target Services Functions

81

NWSMTSCloseDataSet

Closes a data set opened by NWSMTSOpenDataSetForBackup or
NWSMTSOpenDataSetForRestore.

Syntax

#include <smstsapi.h>

CCODE NWSMTSCloseDataSet (
UINT32 connection,
UINT32 *dataSetHandle);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

dataSetHandle

(IN/OUT) Points to the address of the data set handle returned by
NWSMTSOpenDataSetForBackup or NWSMTSOpenDataSetForRestore.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFES5 NWSMTS_INVALID_DATA_SET_HANDLE
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFE NWSMDR_INVALID_PARAMETER

OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks

Upon return, NWSMTSCloseDataSet sets dataSetHandle to zero. If parent handles are used and the
parent's subordinates are being restored, the engine should not call NWSMTSCloseDataSet until all
subordinates are restored.

NWSMTSCloseDataSet restores all of the data set's original attributes to what they were before the
data set was opened for backup (except its archive information). To set the data set's archive status,
the engine should call NWSMTSSetArchiveStatus before closing the data set.

82 NDK: SMS Developer Components

Between the time NWSMTSOpenDataSetForBackup and NWSMTSCloseDataSet are called, the
TSA ensures that the data set's attributes are not altered.

See Also

NWSMTSOpenDataSetForBackup (page 49), NWSMTSOpenDataSetForRestore (page 146),
NWSMTSSetArchiveStatus (page 95)

Example

See NWSMTSOpenDataSetForRestore (page 146) for an example.

Target Services Functions 83

NWSMTSDeleteDataSet

Deletes a specified data set.

Syntax

#include <smstsapi.h>

CCODE NWSMTSDeleteDataSet (
UINT32 connection,
UINT32 sequence) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

sequence

(IN) Specifies the sequence number returned by NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFDFFF1 NWSMTS_DELETE_ERR

OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks

Before NWSMTSDeleteDataSet is called, the scanning function must return a valid sequence
number.

All children must be deleted before NWSMTSDeleteDataSet can delete their parent.

See Also

NWSMTSScanDataSetBegin (page 38), NWSMTSScanNextDataSet (page 53)

84 NDK: SMS Developer Components

NWSMTSFixDataSetName

Formats a fully qualified parent directory path according to the specified name space specifications.

Syntax

#include <smstsapi.h>

CCODE NWSMTSFixDataSetName (

UINT32 connection,

STRING dataSetName,

UINT32 nameSpaceType,
NWBOOLEAN isParent,

NWBOOLEAN wildAllowedOnTerminal,

STRING BUFFER **newDataSetName) ;

Parameters
connection
(IN) Specifies the connection information returned by NWSMConnectToTSA.

dataSetName
(IN/OUT) Specifies the path to be fixed.

nameSpaceType

(IN) Specifies the name space type of dataSetName. (see “nameSpaceType Values” on
page 347)

isParent

(IN) Specifies the type of path contained in dataSetName:

TRUE Specifies a fully qualified parent path
FALSE Specifies a fully qualified child path or a terminal name

wildAllowedOnTerminal

(IN) Specifies if the path contains wild cards only in the terminal path node:

TRUE Wildcards allowed only in the terminal path
FALSE Wildcards allowed elsewhere in the path

newDataSetName

(OUT) Points to the buffer to receive the fixed up path.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

Target Services Functions

85

OxFFFDFFE7

NWSMTS_INVALID_CONNECTION_HANDL

OxFFFDFFEO NWSMTS_INVALID_NAME_SPACE_TYPE
OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY
OxFFFDFFDC NWSMTS_INVALID_PATH

OxFFFEFFFF NWSMDR _INVALID_CONNECTION
OxFFFEFFFE NWSMDR_INVALID PARAMETER
Remarks

If dataSetName contains a fully qualified path, NWSMTSFixDataSetName ensures that the path has
a separator and proper case. NWSMTSFixDataSetName also adds a separator to the terminal path
node if isParent is set to TRUE. If the nameSpaceType defines a first separator and the path does not
contain a valid separator, NWSMTSFixDataSetName returns NWSMTS INVALID PATH.

The fixed up path is returned in newDataSetName. NWSMTSFixDataSetName copies dataSetName
to newDataSetName and performs the following fix ups and checks on the path:

¢ Converts the appropriate path nodes to upper case as follows:

+ DOS paths are converted to upper case

¢ All

primary resources before first separator (if supported by the nameSpaceType on the

target service) in NFS, FTAM, and OS/2 are converted to upper case.

¢ For all non-Macintosh paths the following fixes and checks are performed:

+ All backslashes (\) are converted to forward slashes (/), except for NFSNamespace.

+ Ensures only the terminal path node contains wild cards.

¢ [fisParent is set to TRUE and dataSetName does not end with first separator (if supported
by the nameSpaceType on the target service), backslash (\), or forwardslash (/), a
forwardslash (/) is added to the end of the path.

¢ [f the path contains “:/” or :\,” the slash is removed from the path, if the first separator for
the nameSpaceType is a ““ : .

¢ For all Macintosh paths the following checks and fixes are performed:

+ IfisParent is TRUE and dataSetName does not end with a colon, a colon is added to the

end

of the path.

+ IfisParent is TRUE, dataSetName is checked to ensure it contains a colon or double
colon.

The values that can be set for nameSpaceType is listed in the following table.

Value Description

0x000 DOSNameSpace
0x001 MACNameSpace
0x002 NFSNameSpace
0x003 FTAMNameSpace

86 NDK: SMS Developer Components

Value Description

0x004 OS2NameSpace

0x100 DOSNameSpaceUtf8Type
0x101 MACNameSpaceUtf8Type
0x102 NFSNameSpaceUtf8Type
0x104 LONGNameSpaceUtf8Type

The following table lists the wild cards options that can be used in the terminal path node.

Value Option Description

0x2A ASTERISK Regular asterisk

O0x3F QUESTION Regular question mark

OxAE SPERIOD Special Period-the most significant bit set.

OxAA SASTERISK Special Asterisk-the most significant bit set.
O0xBF SQUESTION Special Question-with the most significant bit set.

If NWSMTSFixDataSetName encounters an error as it tries to fix the path, a NULL string is
returned in newDataSetName.

NWSMTS_INVALID PATH is returned if dataSetname meets one or more of the following
conditions:

+ dataSetName is a parent and does not contain valid first separator, if the nameSpaceType
supports a first separator on the target service..

¢ Non-Macintosh path nodes, other than the terminal path node, contain wild cards.

+ wildAllowedOnTerminal is set to FALSE and non-Macintosh paths contain wild cards.

¢ The path is improperly formatted.

The engine is responsible for freeing the memory held by newDataSetName. To free this buffer, call
NWSMFreeString. (See Storage Management Services Utility Library).

NOTE: NWSMTSFixDataSetName will eventually replace the utility function
NWSMFixDirectoryPath (see Storage Management Services Utility Library).

Target Services Functions

87

NWSMTSParseDataSetName

Returns the number of path nodes and separators, and the beginning position of each path node and
separator for a specified path.

Syntax

#include <smstsapi.h>

CCODE NWSMTSParseDataSetName (

UINT32 connection,
UINT32 nameSpaceType,
STRING dataSetName,
UINT16 *count,

UINT16 BUFFER **namePositions,
UINT16 BUFFER **separatorPositions);

Parameters

connection
(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.
nameSpaceType
(IN) Specifies the name space type of dataSetName (see “nameSpaceType Values” on
page 347)
dataSetName
(IN) Specifies the data set name to be parsed.

count

(OUT) Points to the number of nodes and separators in dataSetName (the size of the
namePositions and separatorPositions buffers).

namePositions

(OUT) Points to an array of indexes containing the beginning of each node in dataSetName.

separatorPositions

(OUT) Points to an array of indexes containing the beginning of each separator in
dataSetName.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFBFFFB NWSMUT_OUT_OF_MEMORY

88 NDK: SMS Developer Components

OxFFFBFFFC NWSMUT_NO_MORE_NAMES
OxFFFBFFFD NWSMUT_INVALID_PARAMETER
OxFFFBFFFF NWSMUT _INVALID_HANDLE

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFEO NWSMTS_INVALID_ NAME_SPACE_TYPE
OxFFFDFFE7 NWSMTS_INVALID CONNECTION_HANDL
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

NWSMTSParseDataSetName parses a data set name and returns the number of nodes and separators
and a list of indexes to each node and separator (see Path Information).

NWSMTSParseDataSetName can be called when the engine needs to pass a path to the
NWSM_DATA SET NAME LIST or NWSM_SELECTION_LIST structure.

Target Services Functions

89

NWSMTSRenameDataSet

Renames an existing child data set on the Target Service.

Syntax

#include <smstsapi.h>

CCODE NWSMTSRenameDataSet (
UINT32 connection,
UINT32 sequence,

UINT32 nameSpaceType,
STRING newDataSetName) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

sequence

(IN) Specifies the sequence value returned by NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet.

nameSpaceType

(IN) Specifies the name space type of newDataSetName (see “nameSpaceType Values” on
page 347).

newDataSetName

(IN) Specifies the data set’s new name (cannot be NULL).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER
OxFFFDFFDD NWSMTS_INVALID_PARAMETER
OxFFFDFFEB NWSMTS_GET_NAME_SPACE_ENTRY_ERR
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

90 NDK: SMS Developer Components

Remarks

Before NWSMTSRenameDataSet is called, NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet must be called to return a valid sequence number.

NWSMTSRenameDataSet cannot relocate the data set to another directory or logical location. The
engine can only move data sets during the restore session (see NWSMTSOpenDataSetForRestore

(page 146)).

NWSMTSRenameDataSet may not apply to all Target Services because some services may not have
a file system or the ability to rename a data set.

To determine if a TSA supports the ability to rename data sets, call
NWSMTSGetUnsupportedOptions (page 127).

newDataSetName can contain any path information. Do not pass a NULL pointer.

nameSpaceType can be retrieved from the NWSM_DATA SET NAME LIST or
NWSM_SCAN_INFORMATION structure returned by NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet.

See Also

NWSMTSScanDataSetBegin (page 38), NWSMTSScanNextDataSet (page 53)

Target Services Functions

91

NWSMTSReturnToParent

Stops the current scan and continues the scan on the next qualified parent.

Syntax

#include <smstsapi.h>

CCODE NWSMTSReturnToParent (
UINT32 connection,
UINT32 *sequence);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

sequence

(IN) Points to the sequence number returned by NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFDFFF3 NWSMTS_DATA_SET_IS_OPEN
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
Remarks

Before NWSMTSReturnToParent is called, NWSMTSScanDataSetBegin must be called to initiate a
scan.

When NWSMTSScanNextDataSet is called, the next parent is scanned.

See Also

NWSMTSScanNextDataSet (page 53)

92 NDK: SMS Developer Components

NWSMTSSeparateDataSetName

Separates the terminal path node from the rest of the path.

Syntax

#include <smstsapi.h>

CCODE NWSMTSSeparateDataSetName (

UINT32 connection,
UINT32 nameSpaceType,
STRING dataSetName,

STRING BUFFER **parentDataSetName,
STRING BUFFER **terminalNode) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMConnectToTargetService.

nameSpaceType

(IN) Specifies the name space type of dataSetName (see “nameSpaceType Values” on

page 347).

dataSetName
(IN) Specifies the data set name to be separated.

parentDataSetName
(OUT) Points to dataSetName less the terminal node (optional).

terminalNode

(OUT) Points to the terminal node of dataSetName (optional).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY
OxFFFDFFDC NWSMTS_INVALID_PATH

OxFFFDFFEO NWSMTS_INVALID_NAME_SPACE_TYPE
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFE NWSMDR_INVALID_PARAMETER

Target Services Functions

93

OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks

NWSMTSSeparateDateSetName allocates memory if a NULL pointer is passed or if the structure
does not have enough space. To free parentDataSetName and terminalNode, call NWSMFreeString
(see Storage Management Services Utilities Library for more information).

For name spaces that have reversed path nodes such as NDS, the terminal node is the left-most path
node. For name spaces that have unreversed paths such as DOS, the terminal node is the right-most
path node.

94 NDK: SMS Developer Components

NWSMTSSetArchiveStatus

Sets or restores the data set's archived status and other attributes.

Syntax

#include <smstsapi.h>

CCODE NWSMTSSetArchiveStatus (
UINT32 connection,
UINT32 dataSetHandle,
UINT32 setFlag,
UINT32 archivedDateAndTime) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

dataSetHandle
(IN) Specifies the data set handle returned by NWSMTSOpenDataSetForBackup.

setFlag

(IN) Specifies the archive information to set.

archivedDateAndTime
(IN) Specifies the information to set as the data set's archived date and time.
Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
0xFFFDFFBD NWSMTS_SET_FILE_INFO_ERR

OxFFFDFFCE NWSMTS_NO_SUCH_PROPERTY

OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks

Before NWSMTSSetArchiveStatus is called, the data set must be open.

Target Services Functions

95

NWSMTSSetArchiveStatus should be called before closing the data set.

Check if the resource supports archive attributes using NWSMTSGetUnsupportedOptions and
NWSMTSGetTargetResourcelnfoEx before invoking the API.

NOTE: Calling NWSMTSOpenDataSetForBackup or NWSMTSReadDataSet does not alter the
access date and time.

setFlag can be set to zero or to one of the flags listed in the following table.

Value Description

0x0000 NWSM_SET_MODIFY_FLAG: Sets the modify flag.

0x0001 NWSM_CLEAR_MODIFY_FLAG: Clears the modify flag. For TSAs, the data
modified flag and characteristics modified flags are cleared.

0x0002 NWSM_SET_ARCHIVE_DATE_AND_TIME: Sets the data set's archive date and
time.

0x0004 NWSM_SET_ARCHIVER_ID: Sets the archiver's ID into the data set.

archivedDateAndTime is a DOS packed date and time value (see "DOS Date and Time Functions"
in Storage Management Services Utilities Library).

3.4 Option Functions

The following functions gather the TSA options:

¢+ “NWSMTSBuildResourceList” on page 97

* “NWSMTSConfigureTargetService” on page 99

* “NWSMTSGetNameSpaceTypelnfo” on page 102

* “NWSMTSGetOpenModeOptionString” on page 104
* “NWSMTSGetSupportedNameTypes” on page 108

* “NWSMTSGetTargetResourcelnfo” on page 111

¢+ “NWSMTSGetTargetResourceInfoEx” on page 114
* “NWSMTSGetTargetScanTypeString” on page 118

* “NWSMTSGetTargetSelectionTypeStr” on page 123
* “NWSMTSGetUnsupportedOptions” on page 127

* “NWSMTSListSupportedNameSpaces™ on page 132
+ “NWSMTSListTSResources” on page 134

* “NWSMTSScanSupportedNameSpaces” on page 138
+ “NWSMTSScanTargetServiceResource” on page 141

96 NDK: SMS Developer Components

NWSMTSBuildResourcelList

Updates the TSA's internal list of primary resources.

Syntax

#include <smstsapi.h>

CCODE NWSMTSBuildResourcelist (
UINT32 connection) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY

OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFDFFES8 NWSMTS_GET_VOL_NAME_SPACE_ERR
OxFFFDFFE9 NWSMTS_GET_SERVER_INFO_ERR
OxFFFDFFED NWSMTS_GET_DATA _STREAM_NAME_ERR
OXFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSBuildResourceList is called, the engine must be connected to a TSA and Target
Service.

The engine calls NWSMTSBuildResourceList to ensure the TSA's resource list is up-to-date. The
TSA will only scan what is in its internal primary resource list. If a virtual NCP server name is
selected, the list of primary resources in the pool associated with the virtual NCP server is built. If a
node name is selected, the list of non-cluster resources on the server will be built.

Do not call NWSMTSBuildResourceList if there are any active scans or if
NWSMTSOpenDataSetForRestore still has data sets open.

Target Services Functions

97

See Also

NWSMTSGetNameSpaceTypelnfo (page 102),
NWSMTSGetOpenModeOptionString (page 104),
NWSMTSGetTargetResourcelnfo (page 111),
NWSMTSGetTargetScanTypeString (page 118),
NWSMTSGetTargetSelectionTypeStr (page 123),
NWSMTSListSupportedNameSpaces (page 132),
NWSMTSScanDataSetBegin (page 38),
NWSMTSScanSupportedNameSpaces (page 138),
NWSMTSScanTargetServiceResource (page 141)

98 NDK: SMS Developer Components

NWSMTSConfigureTargetService

Configures the target service for a variety of tasks.

Syntax

#include <smstsapi.h>

CCODE NWSMTSConfigureTargetService (
UINT32 connection
UINT32 actionFlag,

void *actionData)
Parameters
connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or

NWSMTSConnectToTargetServiceEx.

actionFlag
(IN) Specifies the appropriate action to be taken.

actionData

(IN) Specifies the data relevant to the actionFlag.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
OxFFFDFFAD NWSMTS_UNSUPPORTED_OPTION
Remarks

The following table describes the action flags and the associated action data.

Action Flag Description Data Type S;PPOI’ted
NWSM_FLUSH_LOGFILES Deletes the contents of UINT32 * Set the value of TSAFS

the skipped data sets
and error log files

the unsigned

Target Services Functions

99

Action Flag

Description

Data Type

Supported

Action Data By

NWSM_CONFIGURE_SKIPPED
_LOG

NWSM_CONFIGURE_ERROR _
LOG

NWSM_DONOT_IGNORE_
BACKUP_BIT

NWSM_USE_CACHING_MODE

By default, skipped data
sets log file is created in
the directory,
sys:\system\tsa for
NetWare and /var/opt/
novell/sms for Linux .

You can override it by
supplying the name
along with the full path.
The file is automatically
deleted when
NWSMTSReleaseTarge
tService is called.

By default, error log file
is created in the
directory,
sys:\system\tsa for
NetWare and /var/opt/
novell/sms for Linux .

You can override this by
supplying the full path of
the file name. The file is
automatically deleted
when
NWSMTSReleaseTarge
tService is called.

Does not ignore the
zATTR_DONT_BACKU
P attribute of NSS file
system and considers a
primary resource for
backup only if this
attribute is not set. By
default, the
zATTR_DONT_BACKU
P attribute is ignored
and all resources are
considered as eligible
for backup.

Sets the TSAFS
caching mode. TSAFS
will operate on caching
mode if this is set to true
and operate on serial
mode if is false. By
default, caching mode
is enabled.

STRING

STRING

UINT32 *

UINT32 *

Set the value of TSAFS
the string to the

full path name

of the file.

Set the value of TSAFS
the string to the

full path name

of the file.

Set the value of TSAFS
the unsigned
integer to 1.

Set the value of TSAFS
the unsigned

integer to 1 or

0.

NOTE: This symbol is not present in the SMS import file, as all versions of SMS do not export this
symbol. To use this function, programmatically import the symbol and invoke it.

100 NDK: SMS Developer Components

See Also

NWSMTSConnectToTargetService (page 65), NWSMTSConnectToTargetServiceEx (page 68),

Log Files (page 34)

Example

#include <smstsapi.h>
#include <smsdrapi.h>

UINT32 connection;
STRING tsaName;
/* connection related code goes here*/

/* After the connection:
* if it is a file system TSA,

* 1. set the NWSM DONOT IGNORE BACKUP BIT for this connection

* 2. rename skipped log file to BIGVOL:SKIPDATA.LOG */

if (strstr(tsaName, "NetWare File System") || strstr (tsaName,

Cluster File System"))

{
UINT32 doNotBackupBit;
doNotBackupBit = 1;

cCode = NWSMTSConfigureTargetService (connection,
NWSM_ DONOT IGNORE BACKUP BIT, &doNotBackupBit);

if (cCode)
{
//do error handling
}

cCode = NWSMTSConfigureTargetService (connection,
NWSM CONFIGURE SKIPPED LOG,

"BIGVOL:SKIPDATA.LOG") ;
if (cCode)
{
//do error handling

"NetWare

Target Services Functions 101

NWSMTSGetNameSpaceTypelnfo

Returns the path node order and separators for the specified name space.

Syntax

#include <smstsapi.h>

CCODE NWSMTSGetNameSpaceTypeInfo (

UINT32 connection,
UINT32 nameSpaceType,
NWBOOLEAN *reverseOrder,

STRING BUFFER **firstSeparator,
STRING BUFFER **secondSeparator);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

nameSpaceType
(IN) Specifies the name space type of the name (see “nameSpaceType Values™ on page 347)

reverseOrder

(OUT) Points to a flag indicating if reverse order should be used:

TRUE Subordinates are on the left
FALSE Subordinates are on the right

firstSeparator

(OUT) Points to the first separator string.

secondSeparator

(OUT) Points to the second separator string.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY
OxFFFDFFEO NWSMTS_INVALID_NAME_SPACE_TYPE
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

102 NDK: SMS Developer Components

OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks

Before NWSMTSGetNameSpaceTypelnfo is called, the engine must be connected to a TSA and
Target Service.

The information returned by NWSMTSGetNameSpaceTypelnfo can be used to build lists for
NWSM _DATA SET NAME LIST and NWSM_SELECTION_LIST.

If the path order is reversed, the subordinates are to the left of their superiors. For example,
"Employee.Department.Company.Country" is a reversed path.

firstSeparator and secondSeparator must point to a valid non-autovariable structure or NULL.
NWSMTSGetNameSpaceTypelnfo allocates memory when a NULL is passed, or reallocates
memory if the structure does not have enough space. To free the memory for the separators, call
NWSMFreeString (see Storage Management Services Library).

Example

See NWSMTSListTSResources (page 134) for an example.

Target Services Functions 103

NWSMTSGetOpenModeOptionString

Returns TSA-specific open mode option strings.

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSGetOpenModeOptionString (
UINT32 connection,
UINTS8 optionNumber,
STRING optionString) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

optionNumber

(IN) Specifies the open mode option number (0- 23) to return.

optionString

(OUT) Specifies the string that describes the option specified by optionNumber (must be
NWSM_MAX STRING LEN bytes).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFCB NWSMTS_OPEN_MODE_TYPE_NOT_USED
OxFFFDFFDE NWSMTS_INVALID_OPEN_MODE_TYPE
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSGetOpenModeOptionString is called, the engine must be connected to a TSA and
Target Service.

The options returned by NWSMTSGetOpenModeOptionString allow the engine to open different
parts of the data set on a per data set basis (see Backup Open Mode Options List). For example, the

104 NDK: SMS Developer Components

data set's attributes or trustee information. The engine applies the open mode options on an
individual basis when NWSMTSWriteDataSet is called.

optionNumber represents the bit position within the TSA-specific open mode option bit map. This
value is used by NWSMTSOpenDataSetForBackup and NWSMTSOpenDataSetForRestore.

The following table lists the open mode options.

Option Value Description

0 0x00000100 NWSM_NO_DATA_STREAMS: Do not read/write the data set's
data streams (e.g., file data).

1 0x00000200 NWSM_NO_EXTENDED_ATTRIBUTES: Do not read/write the data
set's extended attributes.

2 0x00000400 NWSM_NO_PARENT_TRUSTEES: Do not read/write the parent's
trustees.

3 0x00000800 NWSM_NO_CHILD_TRUSTEES: Do not read/write the child's
trustees.

4 0x00001000 NWSM_NO_VOLUME_RESTRICTIONS: Do not read/write the
resource's restrictions.

5 0x00002000 NWSM_NO_DISK_SPACE_RESTRICTIONS: Do not read/write the
resource's space restrictions.

6 0x00004000 NWSM_INCLUDE_MIGRATED_DATA: Restore migrated data (the
migration key is ignored).

7 0x00008000 NWSM_DELETE_EXISTING_TRUSTEES: Delete all trustees of a
data set before restoring the data sets.

8 0x00010000 NWSM_EXPAND_COMPRESSED_DATA_SET: Expand data sets
that are currently compressed on the host (backup only).

9 0x00020000 NWSM_EXCLUDE_MIGRATED_DATA: Do not backup migrated
data, however do backup its migration key and directory entries.

10 0x00040000 NWSM_PRESERVE_ACCESS_TIME : Preserves the access time
of the data set after a backup session.

11 0x00080000 NWSM_NO_HARDLINK_DATA : Do not backup the data of

consecutive hard link nodes of a particular hardlink network, except
for the first encountered node.

If a TSA does not support a TSA-specific open mode option, optionString returns NULL and

NWSMTSGetOpenModeOptionString returns successfully (see Backup Open Mode Options List).

The order of the returned strings corresponds to the order of the following bit map starting from bit
8-string one represents bit zero while string two represents bit one, etc.:

Call NWSMTSGetOpenModeOptionString repeatedly until all TSA-specific open mode strings are
returned. optionNumber is converted to a bit mask and is used to index a string table.

See Also

NWSMTSOpenDataSetForBackup (page 49), NWSMTSOpenDataSetForRestore (page 146)

Target Services Functions

105

Example

#include <smsutapi.h>
#include <smstsapi.h>

typedef struct TSA SPECIFIC OPEN MODE
{
NWBOOLEAN selected;
UINT32 openMode;
char openModeString[NWSM MAX STRING LEN];
struct TSA SPECIFIC OPEN MODE *next;
} TSA SPECIFIC OPEN MODE;

UINT8 optionNumber = 0;

char optionString[NWSM MAX STRING LEN];

TSA SPECIFIC OPEN MODE *TSAOpenModes = NULL, *last, *tmp;
UINT32 openMode, chosenOpenModes;

for (optionNumber = 0, openMode = 0x100; optionNumber <= 23;
optionNumber++,
openMode <<= 1)

if (NWSMTSGetOpenModeOptionString (connection, optionNumber,
(STRING) optionString) != 0)
break;

if (!'*optionString)
continue;

TMp = (TSA SPECIFIC OPEN MODE *)calloc(l,
sizeof (TSA SPECIFIC OPEN MODE)) ;

TMp->openMode = openMode;

strcpy (tmp->openModeString, optionString);

if (TSAOpenModes)

{
last->next = TMp;
last = TMp;

else
TSAOpenModes = last = TMp;

/* Create the strings for the generic open modes-see "Backup Open Mode
Options List" and the “Remarks” for more
information */

/* Display the open mode options to the user, get the user's selections
and set it into chosenOpenModes, then pass

chosenOpenModes to NWSMTSOpenDataSetForBackup or
NWSMTSOpenDataSetForRestore. */

The following is a simplified example of returning the TSA-specific open mode strings.

106 NDK: SMS Developer Components

/* optionNumber is initialized to zero to indicate to start from the
first open mode option string.

It is then incremented from 0 through 23 to get all the strings.
openMode contains the open mode bit mask that represents the open mode
option.

It is initialized to 0x1000 because the first TSA-specific option
starts at bit 8 of the open mode bit map. */

for (optionNumber = 0, openMode = 0x100; optionNumber <= 23;
optionNumber++, openMode <<= 1)
{
if (NWSMTSGetOpenModeOptionString (connection, optionNumber,
(STRING)optionString) != 0)
break;

if (!*optionString)
continue;
/* Continue takes care of any TSA-specific open mode options that may
not be supported. */
/* Copy openMode and optionString to a link list used to build the
remaining portion of the open modes option list. */

Target Services Functions 107

NWSMTSGetSupportedNameTypes

Returns the name types supported by the target service

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSGetSupportedNameTypes (
UINT32 connection,
UINT32 *nameTypes) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

nameTypes

(OUT) Specifies the name types supported by the target service.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

The nameType parameter contains a bit map of all name types that are supported by the target
service.

The following table shows the nameTypes values.

Return Values Description g;pponed
0x01 NWSM_NAME_TYPE_MBCS:Charactersare =~ TSAFS
represented in Multi Byte Character Set
(MBCS)format.

108 NDK: SMS Developer Components

Supported

Return Values Description By

0x02 NWSM_NAME_TYPE_UTF8:Charactersare TSAFS
represented in UTF-8 format.

NOTE: This symbol is not present in the SMS import file, as all versions of SMS do not export this
symbol. To use this function, programmatically import the symbol and invoke it.

Example

#include <smsutapi.h>

#include <smstsapi.h>

#define ADDITIONAL BUFFER SIZE 512

NWSM SCAN CONTROL *scanControl;

UINT32connection, nameTypes;

/* NWSMTSConnectToTargetService/NWSMTSConnectToTargetServiceEx is used
to initialize the connection parameter used

in the example below */

/* Backing up using UTF-8 data set names */

/* Setup the scan control structure. Note that some fields in
scanControl are set to their default values

when the memory is calloc’d. */

scanControl = (NWSM_ SCAN CONTROL *)calloc(l, sizeof (NWSM_ SCAN CONTROL)
+ ADDITIONAL BUFFER _SIZE);

scanControl->bufferSize =
ADDITIONAL BUFFER _SIZE;
scanControl->scanControlSize = sizeof (NWSM_ SCAN CONTROL) ;
scanControl->otherInformationSize = 0;

/* Set other scanControl parameters to defaults or chosen values */
/* Get the supported name types from the connected target service */
cCode = NWSMTSGetSupportedNameTypes (connection, &nameTypes);

if (!cCode && (nameTypes & NWSM NAME TYPE UTFEFS8))

{

/* Set the name space type that the TSA should return to UTF8 format,
this would return the names in

NWSM DATA SET NAME LIST in UTF8 format */
scanControl->returnNameSpaceType = NWSM ALL NAME SPACES UTFS8;

/* NOTE: If engines want all names in both UTF-8 and MBCS set the above
to NWSM ALL NAME SPACES FORMATS instead of NWSM ALL NAME SPACES, as
the latter will return only the MBCS name space types to maintain
backward compatability */

/* NOTE: Some engines may scan in only a particular name space like
OS2NameSpace, in such cases pass in the returnNameSpaceType as
LONGNameSpaceUtf8Type */

}

else

{

/* If there are any errors, or the API is unsupported, use the older
mechanisim of backing up names */

scanControl->returnNameSpaceType = NWSM ALL NAME SPACES;

}

sizeof (NWSM SCAN CONTROL) +

Target Services Functions

109

/* Start the backup of data sets by calling NWSMTSScanDataSetBegin with

the above scanControl.
Refer to NWSMTSScanNextDataSet
(page 49), and NWSMTSReadDataSet (page 51)

to backup data sets */

(page 53),NWSMTSOpenDataSetForBackup
for further details on how

110 NDK: SMS Developer Components

NWSMTSGetTargetResourcelnfo

Returns information about a primary resource.

Syntax

#include <smstsapi.h>

CCODE NWSMTSGetTargetResourceInfo (

UINT32 connection,
STRING resourceName,
UINT16 *blockSize,
UINT32 *totalBlocks,
UINT32 *freeBlocks,
NWBOOLEAN *resourcelsRemovable,
UINT32 *purgeableBlocks,
UINT32 *notYetPurgeableBlocks,
UINT32 *migratedSectors,
UINT32 *precompressedSectors,
UINT32 *compressedSectors) ;
Parameters
connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

resourceName

(IN) Specifies the resource name returned by NWSMTSScanTargetServiceResource or
NWSMTSListTSResources.

blockSize
(OUT) Points to the resource’s disk block size.

totalBlocks

(OUT) Points to the total number of blocks on the resource.

freeBlocks

(OUT) Points to the number of free blocks on the resource.

resourcelsRemovable

(OUT) Points to a flag indicating whether the resource is removable.

TRUE Resource is removable
FALSE Resource is not removable

purgeableBlocks
(OUT) Points to the total number of blocks set aside as purgeable blocks.

notYetPurgeableBlocks
(OUT) Points to the number of blocks not marked to be purged.

Target Services Functions

111

migratedSectors

(OUT) Points to the number of migrated sectors.

precompressedSectors

(OUT) Points to the number of sectors used by all data sets before they were compressed.

compressedSectors

(OUT) Points to the number of sectors used by all compressed data sets.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFDO NWSMTS_NO_MORE_NAMES
OxFFFDFFDD NWSMTS_INVALID_PARAMETER
OxFFFDFFE9Q NWSMTS_GET_SERVER_INFO_ERR
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSGetTargetResource is called, the engine must be connected to a TSA and Target
Service.

NWSMTSGetTargetResource does not return information for all resources listed by
NWSMTSScanTargetServiceResource or NWSMTSListTSResources. Only resources that return
information by calling NWSMTSGetTargetResourcelnfo can return information.

NWSMTS INVALID PARAMETER is returned for resources that do not have any information.

The maximum block size value returned by blockSize is 32 KB. If the resource has a block size of
64 KB, blockSize returns zero.

See Also

NWSMTSListTSResources (page 134), NWSMTSScanTargetServiceResource (page 141),
NWSMTSConnectToTargetServiceEx (page 68)

Example

#include <smsutapi.h>
#include <smstsapi.h>

char resourceName [NWSM MAX RESOURCE LEN];

112 NDK: SMS Developer Components

UINT16 blockSize;

UINT32 totalBlocks, freeBlocks, purgeableBlocks,
notYetPurgeableBlocks, migratedSectors, precompressedSectors,
compressedSectors; NWBOOLEAN resourcelsRemovable;

/* select a resource name from the resource list and make the call */

NWSMTSGetTargetResourceInfo (connection, (STRING)resourceName,
&blockSize,

&totalBlocks, &freeBlocks, &resourcelsRemovable,
&purgeableBlocks,

¬YetPurgeableBlocks, &migratedSectors, &precompressedSectors,
&compressedSectors) ;

Target Services Functions 113

NWSMTSGetTargetResourcelnfoEx

Returns information about a primary resource.

Syntax

#include <smstsapi.h>

CCODE NWSMTSGetTargetResourceInfoEx (

UINT32 connectionID,
STRING resourceName,
UINT32 *bufferSize,
void *buffer);
Parameters
connectionlD

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

resourceName

(IN) Specifies the resource name returned by NWSMTSScanTargetServiceResource or
NWSMTSListTSResources.

bufferSize
(IN/OUT) Specifies the size of buffer in bytes.

buffer
(OUT) Points to the buffer containing resource information.
Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC5 NWSMTS_RESOURCE_NAME_NOT_FOUND
OxFFFDFFDD NWSMTS_INVALID_PARAMETER
OxFFFDFFE9Q NWSMTS_GET_SERVER_INFO_ERR
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

114 NDK: SMS Developer Components

Remarks

Before NWSMTSGetTargetResourceEx is called, the engine must be connected to a TSA and Target
Service.

NWSMTSGetTargetResourceEx does not return information for all resources listed by
NWSMTSScanTargetServiceResource or NWSMTSListTSResources. Only resources that return
information by calling NWSMTSGetTargetResourceInfoEx can return information.

NWSMTS INVALID PARAMETER is returned for resources that do not have any information.

buffer contains TSA encoded extensions that hold resource information. This can be processed using
the extension functions. See Section 6.3, “Extension Functions,” on page 218. The extensions and
their fields are detailed in Section 5.7, “Extensions,” on page 182.

buffer should be allocated by the application and the corresponding size should be passed in
bufferSize parameter. Applications can invoke the API with a bufferSize of 0 and a buffer of NULL
to get the required bufferSize to encode all extensions.

If passed in buffer size is not adequate to store all extensions NWSMTS BUFFER UNDERFLOW
error is returned. The engine can then try with a larger buffer size.

NOTE: This symbol is not present in the SMS import file, as all versions of SMS do not export this
symbol. To use this function, programmatically import the symbol and invoke it.

See Also

NWSMTSGetTargetResourcelnfo (page 111), NWSMTSGetUnsupportedOptions (page 127),
NWSMGetFirstExtension (page 222)

Example

#include <smsutapi.h>
#include <smsdrapi.h>

CCODE cCode;

UINT32 connection;

UINT32 tsaSequence = 0;

STRING resourceName;

UINT32 bufferSize = 0;

void *buffer = NULL;

UINT32handle = 0;

BOOL doNotInvokeSetArchiveStatus = FALSE;

NWSM EXTENSION INFORMATION *extension = NULL;

NWSM RESOURCE INFO EXTN UNSUPPORTED DATA 1 *unsupExtension;

/* connection related code goes here */
/* After the connection:

We will call NWSMTSScanTargetServiceResource and for each resource,

retrieve resource information using

NWSMTSGetTargetResourceInfoEx and check the unsupported options for

each.

Based on modify bit support we will set a global to call set archive
status or not */

Target Services Functions

115

116

/* Loop till no more resources oOr no errors */
while (!cCode)
{
/* Scan a resource */
cCode = NWSMTSScanTargetServiceResource (connection,
&tsaSequence, resourceName) ;
if (cCode)
continue;
/* Get the required size to allocate the buffer */
bufferSize = 0;
if (buffer)
free (buffer);
cCode = NWMSTSGetTargetResourcelInfoEx (connection, resourceName,
&bufferSize, NULL);
/* Check if error is invalid parameter, as not all resources can
return resource specific information */

if (cCode && cCode !'= NWSMTS_INVALID_PARAMETER)
continue;
else if (cCode == NWSMTS_INVALID_PARAMETER)

{

/* As the error is invalid parameter, could be that the resource
does not provide resource specific
information, continue to try and get information regarding other
resources */
cCode = 0;
continue;
}
/* Allocate the required size and invoke the API again */
buffer = malloc (bufferSize);
if (!buffer)
{
cCode = -1;
continue;
}
cCode = NWMSTSGetTargetResourcelInfoEx (connection, resourceName,
&bufferSize, buffer);
if (cCode)
{
free (buffer);
buffer = NULL;
continue;
}
/* Get the unsupported options extension from the resource
information buffer */
cCode = NWSMGetExtension (buffer, bufferSize,
NWSM_RESOURCE INFO_ EXTN UNSUPPORTED TAG, &extension, &handle);
if (cCode)
{
free (buffer);
buffer = NULL;
continue;

NDK: SMS Developer Components

unsupExtension = (NWSM RESOURCE INFO EXTN UNSUPPORTED DATA 1
*) (extension->info) ;

/* Check if modify flag is supported on the resource */

if (unsupExtension->usupportedBackupOptions &
NWSM BACK MODIFY FLAG)
/* Although this needs to be determined for each resource, this example
assumes that this is globally true */

doNotInvokeSetArchiveStatus = TRUE;
NWSMCloseExtension (&handle) ;

Target Services Functions 117

NWSMTSGetTargetScanTypeString

Returns the strings that describe a supported scan type.

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSGetTargetScanTypeString (
UINT32 connection,
UINTS8 typeNumber,
STRING scanTypeString,
UINT32 “*required,
UINT32 *disallowed) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

typeNumber
(IN) Specifies the scan bit, or scan type number, (0- 31) to query the TSA about.

scanTypeString

(OUT) Specifies the name of the scan type (maximum length is
NWSM_MAX STRING LEN).

required

(OUT) Points to the bit map of all scan type bits that must be set if typeNumber is used.

disallowed

(OUT) Points to the bit map of all scan type bits that must be cleared if typeNumber is used.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFBF NWSMTS_SCAN_TYPE_NOT_USED
OxFFFDFFDB NWSMTS_INVALID_SCAN_TYPE
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFE NWSMDR_INVALID_PARAMETER

118 NDK: SMS Developer Components

OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks

Before NWSMTSGetTargetScanTypeString is called, the engine must be connected to a TSA and
Target Service.

NWSMTSGetTargetScanTypeString returns two bit maps that indicate the other scan type options
that must be used if scan type typeNumber is used. If a TSA does not support a scan type,
NWSMTSGetTargetScanTypeString returns a NULL string and a zero completion code. To get
every scan type, the engine must call NWSMTSGetTargetScanTypeString repeatedly until
NWSMTS SCAN TYPE NOT USED is returned.

NWSMTSGetTargetScanTypeString is given a sequence number, or typeNumber, which it uses as
an index into a table of strings. This sequence number is not used to indicate the selected scan types.
The sequence number must be converted to a bit map or mask before being used.

The following table lists the masks used by SMS for predefined scan types that are used to set the
bits in the scan type bit map.

:])ptio Value Description

0 0x0001 NWSM_DO_NOT_TRAVERSE: Do not traverse the file system tree

1 0x0002 NWSM_EXCLUDE_ARCHIVED_CHILDREN: Do not scan for children data
sets whose archive flag is set.

2 0x0004 NWSM_EXCLUDE_HIDDEN_CHILDREN: Do not scan for children data sets
whose hidden flag is set.

3 0x0008 NWSM_EXCLUDE_HIDDEN_PARENT: Do not scan for parent data sets
whose hidden flag is set.

4 0x0010 NWSM_EXCLUDE_SYSTEM_CHILDREN: Do not scan for children data sets
whose system flag is set.

5 0x0020 NWSM_EXCLUDE_SYSTEM_PARENT: Do not read for parent data sets

whose system flag is set.

The following table lists the masks used for scan types that are returned by the file system TSAs:

:ptio Value Description

6 0x0040 NWSM_EXCLUDE_CHILD_TRUSTEES: Do not read for the trustee information
of children data sets.

7 0x0080 NWSM_EXCLDE_PARENT_TRUSTEES: Do not read for the trustee
information of parent data sets.

8 0x0100 NWSM_EXCLUDE_ACCESS_DATABASE: Do not read the database.

9 0x0200 NWSM_EXCLUDE_VOLUME_RESTS: Do not read for primary resource

restriction information.

Target Services Functions

119

Optio

n Value Description

10 0x0400 NWSM_EXCLUDE_DISK_SPACE_RESTS: Do not read for disk space
restriction information.

11 0x0800 NWSM_EXCLUDE_EXTENDED_ATTRIBUTES: Do not read for extended
attribute information.

12 0x1000 NWSM_EXCLUDE_DATA_STREAMS: Do not read a data set's data stream.

13 0x2000 NWSM_EXCLUDE_MIGRATED_CHILD: Do not read migrated data streams of
children data sets. Read only the stub information for these migrated children.

14 0x4000 NWSM_EXPAND_COMPRESSED_DATA: Expand the data set before scanning
it.

15 0x8000 NWSM_EXCLUDE_ARCH_CHILD_DATA: Do not scan the data of children that
have been archived. This is used only for Directory Services.

16 0x10000 NWSM_EXCLUDE_ARCH_CHILD_CHAR: Do not scan the characteristics of
children data sets. This is used only for Directory Services.

17 0x20000 NWSM_FLAG_PURGE_IMMED_ON_DELETE: Set the data set's purge
immediately flag when it is deleted.

18 0x40000 NWSM_EXCLUDE_MIGRATED_FILES: Do not scan for children whose remote
data access bit is set.

19 0x80000 NWSM_INCLUDE_PATH_COMPONENT: For each item in the include list,
backup the individual parent components before processing the data sets.

20 0x100000 NWSM_EXCLUDE_HARDLINK_DATA : Do not backup the data of consecutive

hard link nodes of a particular hardlink network, except for the first encountered
node.

To indicate the selected scan types to a TSA, set and clear the appropriate bits of scanType in the

NWSM_SCAN_CONTROL structure when calling NWSMTSScanDataSetBegin (see Connecting

to the Target Service).

The order of scan type strings corresponds to the order of the scan type bit map in the scanTjype field

of NWSM_SCAN_CONTROL-string one represents bit zero while string two represents bit one,

etc.

See Also

NWSMTSGetTargetSelectionTypeStr (page 123)

Example

#include <smsutapi.h>
#include <smstsapi.h>

typedef struct TSA SCAN TYPE

{

UINT32 scanType;
UINT32 required;
UINT32 disallowed;

120 NDK: SMS Developer Components

struct TSA SCAN TYPE *next;
UINT8 scanTypeStringl[l];
} TSA SCAN TYPE;

char scanTypeString[NWSM MAX STRING LEN];

UINT8 typeNumber = 0;

UINT32 required, disallowed, chosenScanTypes, scanType;
TSA SCAN TYPE *scanTypes = NULL, *last, *st;

NWSM SCAN CONTROL scanControl = {0};

CCODE ccode;

/* Build a list of the scan types that a TSA has. */

for (typeNumber = 0, scanType = 1; typeNumber < 32; typeNumber++,

scanType <<= 1)

{

if ((ccode = NWSMTSGetTargetScanTypeString(connection, typeNumber,
(STRING) scanTypeString, &required, &disallowed)) ==
NWSMTS_SCAN TYPE NOT USED)
continue;

if (ccode)
break;
st = (TSA_SCAN TYPE *)calloc(l, sizeof (TSA SCAN TYPE) +
strlen (scanTypeString)) ;
st->scanType = scanType;
st->required = required;
st->disallowed = disallowed;
strcpy (st->scanTypeString, scanTypeString);

if (scanTypes)
{

last->next = st;

last = st;
}
else
scanTypes = last = st;

/* Build a display from the information retrieved from
NWSMTSGetTargetScanTypeString, and get the user's selection.

The display will list the scanning type options available to the user.
The display routine will also check for invalid scan type combinations
by comparing the required and disallowed

bits of a just chosen scan type against already chosen scan types.

The valid chosen scan types will be set into chosenScanTypes. */

scanControl.scanType = chosenScanTypes;

This is a simplified example of retrieving all the scan type strings from the TSA.

/* typeNumber is initialized to zero to indicate to start from the
first scan type string.
It is then incremented from 0 to 31 to get all the strings.

Target Services Functions

121

scanType contains the scan type bit mask that represents the scan type
option.

scanType is also initialized to one since the first scan type option
starts at bit 0. */

for (typeNumber = 0, scanType = 1; typeNumber < 32; typeNumber++,
scanType <<= 1)
{
if ((ccode = NWSMTSGetTargetScanTypeString(connection, typeNumber,
(STRING) scanTypeString, &required, &disallowed)) ==
NWSMTS SCAN TYPE NOT USED)
continue;
/* The continue code takes care of cases where the TSA might not allow
specific options. scanType, scanTypeString,
required, and disallowed are copied into linked list that is used to
build the scan type option list. */

122 NDK: SMS Developer Components

NWSMTSGetTargetSelectionTypeStr

Returns the SMS-defined selection type strings.

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSGetTargetSelectionTypeStr (
UINT32 connection,
UINTS8 typeNumber,
STRING selectionTypeStringl,
STRING selectionTypeString?2) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

typeNumber
(IN) Specifies the selection type number (1-31) to query the TSA about.

selectionTypeStringl
(OUT) Receives the string that describes that describes the selection type.

selectionTypeString2

(OUT) Receives the string that describes the selection type if bit zero and typeNumber of
selectionType are set.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFBE NWSMTS_SELECTION_TYPE_NOT_USED
OxFFFDFFD9 NWSMTS_INVALID_SELECTION_TYPE
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Target Services Functions 123

Remarks

Before NWSMTSGetTargetSelectionTypeStr is called, the engine must be connected to the TSA and
Target Service.

One or both of the strings that NWSMTSGetTargetSelectionTypeStr returns can be NULL strings,
depending on the options supported by the TSA. For a list of selection types, see
NWSM_SELECTION_LIST (page 172). typeNumber is used as an index to a string table and must
be converted to a bit value before being used in the selection list.

If only one selection option of the selection option pair is supported,
NWSMTSGetTargetSelectionTypeStr returns successfully. If both selection types of the selection
pair are not supported, NWSMTSGetTargetSelectionTypeStr returns

NWSMTS SELECTION TYPE NOT USED.

If there is no option for bit zero and typeNumber of selectionType being set in selectionTypeString?2,
a NULL string is returned. The engine must allocate NWSM_MAX STRING_LEN bytes for the
buffer.

You must call NWSMTSGetTargetSelectionTypeStr repeatedly until all selection option strings are
returned.

The first pair of returned strings represents the combination of bits 0 and 1. The second pair of
returned strings represents the combination of bits 0 and 2, etc. This information is important so the
proper bits can be set when the user chooses a selection type from the selection option list.

See Also

NWSMTSGetOpenModeOptionString (page 104)

Example

/* This example retrieves the selection types from the TSA, queries the
user for the selection types to use,
and sends the user selected selection types back to the TSA. */

#include <smsutapi.h>
#include <smstsapi.h>

typedef struct TSA SELECTION_ TYPE
{
UINT32 selectionTypel;
UINT32 selectionType2;
STRING selectionStringTypel;
STRING selectionStringType2;
struct TSA SELECTION TYPE *next;
} TSA SELECTION TYPE;

typedef struct USER SELECTION

{
UINT32 selectionType;
STRING resourceName;
struct USER SELECTION *next;

124 NDK: SMS Developer Components

} USER_SELECTION;

UINT8 typeNumber;

unsigned char s1[NWSM MAX STRING LEN], s2[NWSM MAX STRING LEN];
STRING selectionTypeStringl = sl, selectionTypeString2 = s2;

TSA SELECTION TYPE *selectionTypelList = NULL, *last = NULL, *tmp;
USER_SELECTION *userSelections, *nextUserSelection;

NWSM_ SELECTION LIST *selectionList;

UINT32 HUGE nameHandle;

UINT32 selectionType;

CCODE ccode;

/* Get the target selection type strings. */
for (typeNumber = 1, selectionType = 2; typeNumber < 32; typeNumber++,
selectionType <<= 1)

if ((ccode = NWSMTSGetTargetSelectionTypeStr (connection, typeNumber,
selectionTypeStringl, selectionTypeString2)) ==
NWSMTS_SELECTION TYPE NOT USED)
continue;

if (ccode)
break;

/* Append selection type to selection type list. */

TMp = (TSA_SELECTION TYPE *)calloc(l, sizeof (TSA SELECTION TYPE));
TMp->selectionTypel = selectionType;

TMp->selectionType2 = selectionType + 1;

TMp->selectionStringTypel = selectionTypeStringl;
TMp->selectionStringType?2 selectionTypeString2;

if (last)
{
last->next = TMp;
last = TMp;
}
else
selectionTypelist = last
} /* /End for */

TMp;

/* Build a display from the information retrieved from
NWSMTSGetTargetSelectionTypeStr, and NWSMTSListTSResources or
NWSMTSScanTargetServiceResource.

The last two functions build a list of resources that can be used with
each selection type.

See "Data Set Selection Options" and "Using Resources with Selection
Options."

Also see NWSMTSListTSResources or example code. */

/* Using the display, get the user's selection (put each selection type
and resource name into a list

using USER SELECTION) userSelections points to this list. */

/* Build the selection list to pass to the TSA. For

Target Services Functions

125

defaultNameSpaceType,
reverseOrder, firstSeparator, and secondSeparator see example code of
NWSMTSListTSResources */

selectionList = NULL;

NWSMPutFirstName (&selectionlList, defaultNameSpaceType,
userSelections->selectionType, reverseOrder, firstSeparator,
secondSeparator, userSelections->resourceName, &nameHandle);

for (nextUserSelection = userSelections; nextUserSelection;
nextUserSelection = nextUserSelection->next)

NWSMPutNextName (&selectionlList, &nameHandle, defaultNameSpaceType,
nextUserSelection->selectionType, reverseOrder, firstSeparator,
secondSeparator, nextUserSelection->resourceName) ;

NWSMCloseName (&nameHandle) ;

/* Get open modes. */

This is a simplified example of retrieving strings from the TSA.

/* typeNumber is initialized to 1 to indicate to start from the first
pair of selection strings.

It is incremented from 0 through 31 to get all the strings.
selectionType contains the bit mask for the first option

of the selection pair.

One is added to this bit mask to get the bit mask for the second option
of the selection type pair.

selectionType is initialized to 0x2 because the first selection type
starts at bit 1 of the selection bit map. */

for (typeNumber = 1, selectionType = 0x2; typeNumber < 32;
typeNumber++,
selectionType <<= 1)

if ((ccode = NWSMTSGetTargetSelectionTypeStr (connection,
typeNumber,
selectionTypeStringl,
selectionTypeString2)) == NWSMTS SELECTION TYPE NOT USED)
continue;
/* Continue takes care of any cases where a TSA does not support a
selection type. */
if (ccode)

break;
/* Copy each selection type string and bit map pair (i.e.,
selectionType/
selectionTypeStringl and selectionType + 1/selectionTypeString2)

to a
linked list that is used to build the selection option list. */

126 NDK: SMS Developer Components

NWSMTSGetUnsupportedOptions

Returns a list of options not supported by the TSA.

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSGetUnsupportedOptions (
UINT32 connection,
UINT32 “*unsupportedBackupOptions,
UINT32 “*unsupportedRestoreOptions);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

unsupportedBackupOptions
(OUT) Points to a bit map that represents the TSA’s unsupported backup options.

unsupportedRestoreOptions
(OUT) Points to a bit map that represents the TSA’s unsupported restore options.
Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFEFFFF NWSMDR _INVALID_CONNECTION
Remarks

Before NWSMTSGetUnsupportedOptions is called, the engine must be connected to a TSA and
Target Service.

NWSMTSGetUnsupportedOptions returns two 32-bit maps that indicate which backup or restore
options are not supported. It also indicates which options can be used in the
NWSM_SCAN_CONTROL structure and which generic open mode options can be used by
NWSMTSOpenDataSetForRestore and NWSMTSOpenDataSetForBackup.

Use NWSMTSGetTargetResourceInfoEx to get additional information on unsupported options by a
specific primary resource.

Target Services Functions

127

unsupportedBackupOptions refers to the fields in the NWSM_SCAN_CONTROL and
NWSM_SCAN_INFORMATION structures. If an engine passes information via one of these
unsupported fields, the TSA ignores it.

The following tables list the unsupported backup and restore options that can be returned by the
TSA.

Option Value Description

0 0x01 NWSM_BACK_ACCESS_DATE_TIME: The TSA does not support the
following fields:

NWSM_SCAN_CONTROL

firstAccessDateAndTime
lastAccessDateAndTime

NWSM_SCAN_INFORMATION
accessDateAndTime

1 0x02 NWSM_BACK_CREATE_DATE_TIME: The TSA does not support the following
fields:

NWSM_SCAN_CONTROL

firstCreateDateAndTime
lastCreateDateAndTime

NWSM_SCAN_INFORMATION
createDateAndTime

2 0x04 NWSM_BACK_MODIFIED_DATE_TIME: The TSA does not support the
following fields:

NWSM_SCAN_CONTROL

firstModifiedDateAndTime
lastModifiedDateAndTime

NWSM_SCAN_INFORMATION
modifiedDateAndTime

3 0x08 NWSM_BACK_ARCHIVE_DATE_TIME: The TSA does not support the
following fields:

NWSM_SCAN_CONTROL

firstArchivedDateAndTime
lastArchivedDateAndTime

NWSM_SCAN_INFORMATION
archivedDateAndTime
NWSMTSSetArchiveStatus

setFlag
NWSM_SET_ARCHIVE_DATE_AND_TIME

128 NDK: SMS Developer Components

Option Value

Description

4 0x10

5 0x08

NWSM_BACK_SKIPPED_DATA_SETS: The TSA does not support the
following fields:

NWSM_SCAN_INFORMATION
createSkippedDataSetsFil
NWSM_BACK_MODIFY_FLAG: The TSA does not support the following fields:

NWSM_SCAN_CONTROL
scantype

NWSM_EXCLUDE_ARCHIVED_CHILDREN
NWSM_EXCLUDE_ARCH_CHILD_DATA

NWSMTSSetArchiveStatus
setFlag

NWSM_SET_MODIFY_FLAGNWSM_CLEAR_MODIFY_FLAG
NWSM_SET_ARCHIVER_ID

NWSM_SCAN_INFORMATION
attributes

NWFA_ARCHIVE
NWFA_OBJ_ARCHIVE_BIT

modifiedFlag

Optio Value

Description

0 0x01

1 0x02

2 0x04

3 0x08

NWSM_RESTORE_NEW_DATA_SET_NAME: NWSMTSOpenDataSetForRestore
does not rename data sets.

NWSM_RESTORE_CHILD_UPDATE_MODE: The TSA does not restore a child
data set if it is newer than the data set on the Target Service.

NWSM_RESTORE_PARENT_UPDATE_MODE: The TSA does not restore a parent
data set if it is newer than the one on the Target Service.

NWSM_RESTORE_PARENT_HANDLE: NWSMTSOpenDataSetForRestore and
NWSMTSWriteDataSet do not accept parent handles.

See Also

NWSMTSGetNameSpaceTypelnfo (page 102),
NWSMTSGetOpenModeOptionString (page 104),
NWSMTSGetTargetResourcelnfo (page 111),
NWSMTSGetTargetResourcelnfoEx (page 114)
NWSMTSGetTargetScanTypeString (page 118),
NWSMTSGetTargetSelectionTypeStr (page 123),
NWSMTSListSupportedNameSpaces (page 132),
NWSMTSListTSResources (page 134),
NWSMTSScanDataSetBegin (page 38),

Target Services Functions 129

NWSMTSScanSupportedNameSpaces (page 138),
NWSMTSScanTargetServiceResource (page 141),

Example

#include <smsutapi.h>
#include <smstsapi.h>
#define ADDITIONAL BUFFER SIZE 512

UINT32 unsupportedBackupOptions = 0, unsupportedRestoreOptions = 0;
NWSM SCAN CONTROL *scanControl;

/* Find out which options the TSA does not support */
NWSMTSGetUnsupportedOptions (connection, &unsupportedBackupOptions,
&unsupportedRestoreOptions) ;

/* Setup the scan control structure. Note that some fields in
scanControl are set to their default values
when the memory is calloc'd. */
scanControl = (NWSM_SCAN CONTROL *)calloc(l, sizeof (NWSM_ SCAN CONTROL)
+

ADDITIONAL BUFFER SIZE);
scanControl->bufferSize = sizeof (NWSM SCAN CONTROL) +
ADDITIONAL BUFFER_SIZE;
scanControl->scanControlSize = sizeof (NWSM_ SCAN CONTROL) ;
scanControl->otherInformationSize = 0;

/* With the unsupported options, build an appropriate display. The
display is used to gather information from the

user about which date sets are to be selected or ignored. This
information is then put into an NWSM SCAN CONTROL

structure.

This process is the same for a back-up or restore session. */

if (! (unsupportedBackupOptions & NWSM BACK ACCESS DATE TIME))

{

/* Build display field for first access time and last access time.
scanControl->firstAccessDateAndTime and scanControl-
>lastAccessDateAndTime are used to contain the input data. */

}
if (! (unsupportedBackupOptions & NWSM BACK CREATE DATE TIME))
{
/* Build display field for first created time and last created time.
scanControl->firstCreateDateAndTime and scanControl->
lastCreateDateAndTime are used to contain the input data. */

if (unsupportedBackupOptions & NWSM RESTORE PARENT HANDLE)
scanControl->returnChildTerminalNodeNameOnly = FALSE;
else
scanControl->returnChildTerminalNodeNameOnly = TRUE;

/* Display the options and gather the user's input for these options.

*/

130 NDK: SMS Developer Components

/* Get and set the scan and selection options-see
NWSMTSGetTargetScanTypeString and NWSMTGetTargetSelectionTypeStr. */
/* Pass the options to the back-up or restore process. */
/*Make a log of the data sets that where skipped during the backup
process*/
/* Read the skipped data set log from the TSA, and put the data into a
user

readable file. See NWSMTSScanDataSetBegin. */
If (! (unsupportedBackupOptions & NWSM BACK SKIPPED DATA SETS))
{

/* Read the skipped data set log from the TSA, and put the data into
a user

readable file. See NWSMTSScanDataSetBegin. */

}
/* Make a log of the errors that occurred during the backup process.
See

NWSMTSScanDataSetBegin. */

Target Services Functions 131

NWSMTSListSupportedNameSpaces

Returns the name space supported by a primary resource.

Syntax

#include <smstsapi.h>

CCODE NWSMTSListSupportedNameSpaces (
UINT32 connection,
STRING resourceName,
NWSM NAME LIST **supportedNameSpaces) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

resourceName

(IN) Specifies a resource name returned by NWSMTSListTSResources or
NWSMTSScanTargetServiceResource.

supportedNameSpaces

(OUT) Points to an allocated block of memory that contains a list of name spaces.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC5 NWSMTS_RESOURCE_NAME_NOT_FOUND
OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY

OxFFFDFFCE NWSMTS_NO_SUCH_PROPERTY
OxFFFDFFDO NWSMTS_NO_MORE_NAMES

OxFFFDFFE4 NWSMTS_INVALID_DATA_SET_NAME
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

132 NDK: SMS Developer Components

Remarks

Before NWSMTSListSupportedNameSpaces is called, the engine must be connected to a TSA and
Target Service.

NWSMTSListSupportedNameSpaces is a data requestor function. The first list element is the
default name space of resourceName.

NOTE: NWSMTSListSupportedNameSpaces is implemented with
NWSMTSScanSupportedNameSpaces.

See Also

NWSMTSScanSupportedNameSpaces (page 138)

Example

/* This example queries the user for the resource that is to be
selected for the session. */

#include <smstsapi.h>

char *defaultNameSpaceName = NULL, *name;
NWSM NAME LIST *nameList = NULL;
UINT32 defaultNameSpaceType;

/*Build a complete list of primary resources that are on the file
server. */
NWSMTSListTSResources (connection, &namelList);

/* If the resource name list is not empty, get the name spaces
supported by the first resource.
Remember that the first name returned by NWSMTSListTSResources or
NWSMScanTargetServiceResrouce is always the
resource that contains all other resources.
Here, the first name is “FILE SERVER” */
if (namelist != NULL)
{
/* Build the name space list. Remember that the first name space is
the default name space of the Target Service. */
NWSMTSListSupportedNameSpaces (connection, namelList->name,
&supportedNameSpaces) ;

/* Get default name space */
if (supportedNameSpaces)
{
defaultNameSpaceType = * ((UINT32 *)supportedNameSpaces->name) ;

name = (char *) ((UINT32 *)supportedNameSpaces->name +
sizeof (UINT32));
defaultNameSpaceName = strdup (name) ;

Target Services Functions

133

NWSMTSListTSResources

Returns a list of primary resources.

Syntax

#include <smstsapi.h>

CCODE NWSMTSListTSResources (
UINT32 connection,
NWSM NAME LIST **serviceResourcelist);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

serviceResourceList

(OUT) Points to the list containing the primary resources found on the Target Service
(maximum length is NWSM_MAX RESOURCE_LEN bytes).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_ UNSUPPORTED_FUNCTION
OxFFFEFFFD NWSMDR_OUT_OF_MEMORY
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSListTSResources is called, the engine must be connected to the TSA and Target
Service and you should call NWSMTSBuildResourceList.

The first entry in the list that NWSMTSListTSResources returns contains all the resources on a
Target Service (see Resources).

The behavior of NWSMTSListTSResources differs from cluster backup and normal backup. If the
engine is connected to a pool, NWSMTSListTSResources only lists the mounted resources under
the pool. If the engine is connected to the server node, then all the non-clustered resources that are
mounted on the server are listed.

Before passing a resource name to NWSMTSScanDataSetBegin, the engine must convert it to an
NWSM_DATA SET NAME LIST structure. Use the data set name functions described in Storage
Management Services Utilities Library to help convert this name.

134 NDK: SMS Developer Components

NWSMTSListTSResources is implemented with NWSMTSScanTargetServiceResource.

See Also

NWSMTSBuildResourceList (page 97), NWSMTSGetNameSpaceTypelnfo (page 102),
NWSMTSGetOpenModeOptionString (page 104), NWSMTSGetTargetResourcelnfo (page 111),
NWSMTSGetTargetScanTypeString (page 118), NWSMTSGetTargetSelectionTypeStr (page 123),
NWSMTSListSupportedNameSpaces (page 132), NWSMTSScanSupportedNameSpaces

(page 138), NWSMTSScanDataSetBegin (page 38)

Example

/* This example queries the user for the resource that is to be
selected for the session. */

#include <smstsapi.h>
#include <smsutapi.h>

UINT32 sequence = 0, nameSpaceType, defaultNameSpaceType,
selectionType;

char nameSpaceName[61]; /* Name space names not longer than 60
characters */

NWSM NAME LIST *nameList = NULL;

NWSM_DATA SET NAME LIST dataSetName = NULL, *parent;

NWBOOLEAN reverseOrder;

NWSM SCAN CONTROL scanControl = {0};

NWSM_ SELECTION LIST *selectionList;

STRING string = (STRING)nameSpaceName, firstResourceName
STRING BUFFER *firstSeparator = NULL, *secondSeparator = NULL;

/*Build a complete list of primary resources that are on the file
server. */
NWSMTSListTSResources (connection, &namelList);

/*If the resource name list is not empty, get the name spaces supported
on the file server. Remember that the first name

returned by NWSMTSListTSResources or NWSMScanTargetServiceResrouce is
always the resource that contains

all other resources. Here, the first name is “FILE SERVER” */

if (namelist != NULL)
{

/* Get all the name spaces supported by the file server. */

sequence = 0;
while (NWSMTSScanSupportedNameSpaces (connection, &sequence, namelList-
>name,

&nameSpaceType, string) == 0)

{

/* Build the name space list here. Remember that the first returned
name

space name is the default name space of the Target Service.
defaultNameSpaceType is set to this name space. */

Target Services Functions

135

}

/* Get the default name space information */
defaultNameSpaceType = default name space type;
NWSMTSGetNameSpaceTypelInfo (connection, defaultNameSpaceType,
&reverseOrder, &firstSeparator, &secondSeparator);

/* Present the primary resource name list to the user and find out
which resource is to be selected. */
/* If the user has chosen a resource, see if it has any secondary
resources.
If it has secondary resources, list them and show them to the user for
selection.
If the first resource name was chosen, there is no need to scan for
secondary resources.
Note: We are assuming that the selected resource was put into
firstResourceName.
The following code can form the path to what the user wants to select
or ignore. */
while (1)
{

/* First put the resource name into an NWSM DATA SET NAME LIST
structure.

selectionType is set to zero to indicate that dataSetName is
being used
as a name list only. */

selectionType = 0;

firstResourceName = namelList->name;

NWSMPutOneName (&dataSetName, nameSpaceType, selectionType,
reverseOrder, firstSeparator->string,
secondSeparator->string, firstResourceName) ;

/* Now setup scanControl to specify that we are looking for names of
the parents just under the resource, not their
path information, the following are set. Here will assume that the TSA
supports all scan types. See
NWSMTSGetTargetScanTypeString for more information. */
scanControl.scanType = 0;
scanControl.returnChildTerminalNodeNameOnly = FALSE;
scanControl.childrenOnly = FALSE;
scanControl.parentsOnly = TRUE;
scanControl.returnNameSpaceType = NWSM ALL NAME SPACES;
scanControl.bufferSize = scanControl.scanControlSize =
sizeof (NWSM_ SCAN CONTROL) ;
/* Since we want the names of all parents (subdirectories) just
under the
resource name, set selectionList to NULL. */
selectionList = NULL;
parent = NULL;
/* We do not know if the resource has any parents (subdirectories or
children (files). To find this out, call data set begin. */
if (NWSMTSScanDataSetBegin (connection, dataSetName, &scanControl,
selectionlList, &sequence, NULL, é&parent) == 0)

{

/* Found one parent. Put the name into a name list. */

136 NDK: SMS Developer Components

/* Find the rest of subdirectory names, and put them into the name
list. */
while (NWSMTSScanNextDataSet (connection, &sequence, NULL,
&dataSetname) == 0)
{

/* Put the name into the name list. */

/* Now show the finished list to the user for selection. If the user
chooses a name from this list,
it can be appended to what we already have.
Information from NWSMTSGetNameSpaceTypelInfo can be used to help build
the path. */

} /* end if data set begin */
} /* end while (1) */

Target Services Functions 137

NWSMTSScanSupportedNameSpaces

Returns information about one name space that is supported by a primary resource.

Syntax

#include <smstsapi.h>

CCODE NWSMTSScanSupportedNameSpaces (

UINT32 connection,
UINT32 *sequence,
STRING resourceName,

UINT32 *nameSpace,
STRING nameSpaceName) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

sequence

(IN/OUT) Points to the sequence to use with the supported name spaces (set to zero initially).

resourceName

(IN) Specifies a resource name returned by NWSMTSListTSResources or
NWSMTSScanTargetServiceResource.

nameSpace

(OUT) Points to a number that represents the name space.

nameSpaceName
(OUT) Specifies the name of the name space (NWSM_MAX STRING_LEN bytes).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC5 NWSMTS_RESOURCE_NAME_NOT_FOUND
OxFFFDFFDO NWSMTS_NO_MORE_NAMES

OxFFFDFFE4 NWSMTS_INVALID_DATA_SET_NAME
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFE NWSMDR_INVALID_PARAMETER

138 NDK: SMS Developer Components

OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks

Before NWSMTSScanSupportedNameSpaces is called, the engine must be connected to a TSA and
Target Service

See Also

NWSMTSListSupportedNameSpaces (page 132)

Example

/* This example queries the user for the resource that is to be
selected for the session. */

defaultNameSpaceType = * ((UINT32 *)supportedNameSpaces—->name) ;

name = (char *) ((UINT32 *)supportedNameSpaces->name + sizeof (UINT32));
defaultNameSpaceName = (char *)malloc(strlen(name) + 1);

strcpy (defaultNameSpaceName, name);

#include <smstsapi.h>

char *defaultNameSpaceName, resourceNameBuf [NWSM MAX RESOURCE LEN],
nameSpaceNameBuf[61]; /* Name space names no longer than 60 characters
*/

NWSM NAME LIST *namelList = NULL;

UINT32 defaultNameSpaceType, sequence = 0, nameSpaceType,

firstTime = TRUE;

STRING resourceName = resourceNameBuf,

nameSpaceName = nameSpaceNameBuf;

/*Build a complete list of primary resources that are on the file
server. */
NWSMTSListTSResources (connection, &namelList);

/* If the resource name list is not empty, get the name spaces
supported by the first resource.

Remember that the first name returned by NWSMTSListTSResources or
NWSMScanTargetServiceResource is always the resource

that contains all other resources. Here, the first name is “FILE
SERVER” */

if (namelist != NULL)
{

/* Build the name space list. Remember that the first name space is
the default name space of the Target Service. */

while (NWSMTSScanSupportedNameSpaces (connection, &sequence,
resourceName, &nameSpaceType, nameSpaceName) == 0)

{
if (firstTime)

{

Target Services Functions

139

/* Get default name space */

firstTime = FALSE;

defaultNameSpaceType nameSpaceType;
defaultNameSpaceName = strdup (nameSpaceName) ;

140 NDK: SMS Developer Components

NWSMTSScanTargetServiceResource
Returns the name of one primary resource.

Syntax

#include <smstsapi.h>

CCODE NWSMTSScanTargetServiceResource (

UINT32 connection,
UINT32 *rsnSequence,
STRING resourceName) ;
Parameters
connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

rsnSequence

(IN/OUT) Points to the resource sequence number.

resourceName

(OUT) Receives the name of a primary resource (maximum buffer size is
NWSM_MAX RESOURCE_LEN bytes).

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC5 NWSMTS_RESOURCE_NAME_NOT_FOUND
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSScanTargetServiceResource is called, the engine must be connected to the TSA
and Target Service and you must call NWSMTSBuildResourceList.

When provided with supporting code, NWSMTSScanTargetServiceResource provides the same
functionality as NWSMTSListTSResources.

Target Services Functions 141

The behavior of NWSMTSScanTargetServiceResource differs from cluster backup and normal
backup. If the engine is connected to a pool, NWSMTSScanTargetServiceResource only lists the
mounted resources under the pool. If the engine is connected to the server node, then all the non-
clustered resources that are mounted on the server are listed.

rsnSequence is used by the TSA to keep track of which primary resource was returned. The engine
sets rsnSequence to zero before calling NWSMTSScanTargetServiceResource the first time.

If rsnSequence is set to zero (0), resourceName returns the resource that represents all the resources
on a Target Service. For example, if the Target Service is a NetWare file server, the first resource
name is "File Server." For NetWare, if this first resource name is passed to
NWSMTSScanDataSetBegin, all binderies, volumes, directories, and files are scanned. For
example, if the Target Service is a Linux server, the first resource name is "/". If a resource is passed
to NWSMTSScanDataSetBegin, only the current mount point’s directories and files are scanned, all
other mount points under the current mount point are excluded. Additionaly, pseudo-file systems
like proc, tmpfs, admin, devpts, usbfs and device files under /dev are always excluded.

To get all the primary resources, the engine calls NWSMTSScanTargetServiceResource repeatedly
until NWSMTS RESOURCE_NAME NOT FOUND is returned.

Before passing a resource name to NWSMTSScanDataSetBegin, the engine must convert it to an
NWSM DATA SET NAME LIST structure. Use the data set name functions described in Storage
Management Services Utilities Library to help convert the name.

See Also

NWSMTSGetNameSpaceTypelnfo (page 102), NWSMTSGetOpenModeOptionString (page 104),
NWSMTSGetTargetResourcelnfo (page 111), NWSMTSGetTargetScanTypeString (page 118),
NWSMTSGetTargetSelectionTypeStr (page 123), NWSMTSListSupportedNameSpaces (page 132),
NWSMTSListTSResources (page 134), NWSMTSScanDataSetBegin (page 38),
NWSMTSScanSupportedNameSpaces (page 138)

Example

/* See NWSMTSListTargetServiceResource's example. Replace the
following code for the call to NWSMTSListTSResources. */

UINT32 sequence;
char resourceName [NWSM MAX RESOURCE LEN];
STRING string;
/*Build a complete list of primary resources that are on the file
server. */
sequence = 0;
string = resourceName;
while (NWSMTSScanTargetServiceResource (connection, &sequence, string)
== 0)
{
/* Insert resource name into a list. nameList will contain the list.
*/
}

142 NDK: SMS Developer Components

3.5 Restore Functions

The following functions restore the backed up data sets:

+ “NWSMTSIsDataSetExcluded” on page 144

+ “NWSMTSOpenDataSetForRestore” on page 146
* “NWSMTSSetRestoreOptions™ on page 152

* “NWSMTSWriteDataSet” on page 154

Target Services Functions 143

NWSMTSIsDataSetExcluded

Compares a data set name against its internal selection list (set up by NWSMTSSetRestoreOptions)
and indicates if the data set is included or not.

Syntax

#include <smstsapi.h>

CCODE NWSMTSIsDataSetExcluded (
UINT32 connection,
NWBOOLEAN isParent,
NWSM DATA SET NAME LIST *dataSetName);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

isParent

(IN) Specifies a flag returned in NWSM_SCAN_INFORMATION indicating whether the data
set is a parent:

TRUE Is a parent
FALSE Is a child

dataSetName
(IN) Points to the data set’s fully qualified path.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFDC NWSMTS_INVALID_PATH

OxFFFDFFDD NWSMTS_INVALID_PARAMETER
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFDFFF7 NWSMTS_DATA_SET_EXCLUDED
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

144 NDK: SMS Developer Components

TSA Developer

To build dataSetName the “Data Set Name Functions” listed in Storage Management Services
Library can be used.

Remarks

Before NWSMTSIsDataSetExcluded is called, NWSMTSSetRestoreOptions must be called with
dontCheckSelectionList set to TRUE.

NWSMTSIsDataSetExcluded uses the selection list from NWSMTSSetRestoreOptions to decide if
dataSetName is excluded. NWSMTSIsDataSetExcluded is used to help speed up the restore process
and does not have to be used (see Set the Restore Options).

dataSetName can be taken from a database or from a transfer buffer received from SMS DI. If the
data set name is not already in an NWSMTS DATA SET NAME LIST structure, the “Data Set
Name Functions” shown in Storage Management Services Utilities Library can be used to insert it
into the structure. The data for this list can only come from NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet. From this list, the only element that uses the name space supported by
the Target Service will be compared against the internal selection list.

NOTE: The bindery must be explicitly included in the restore session or it will not be restored.

If the data set name was not produced by the TSA, the engine must be aware of the two following
precautions:

¢ [f the engine builds the data set name list, the engine must ensure that the data set name format
and case format follows the intended name space's specifications.

+ Parent data set names may need an end separator if the name space requires it.

NOTE: NWSMTSIsDataSetExcluded will not correct improperly-formatted data set names.

See Also

NWSMTSFixDataSetName (page 85), NWSMTSSetRestoreOptions (page 152)

Target Services Functions 145

NWSMTSOpenDataSetForRestore

Creates a data set handle for the data set that is to be restored.

Syntax

#include <smsutapi.h>
#include <smstsapi.h>

CCODE NWSMTSOpenDataSetForRestore (

UINT32 connection,
UINT32 parentHandle,
NWSM DATA SET NAME LIST *newDataSetName,
UINT32 mode,
UINT32 *dataSetHandle) ;
Parameters
connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

parentHandle
(IN) Specifies the data set handle returned by NWSMTSOpenDataSetForRestore.

newDataSetName

(IN) Points to the data set's new name and location.

mode

(IN) Specifies the open modes to apply.

dataSetHandle

(OUT) Points to a data set handle to use when calling NWSMTSWriteDataSet,
NWSMTSCloseDataSet, and NWSMTSSetArchiveStatus.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
OxFFFBFFFB NWSMUT_OUT_OF_MEMORY

OxFFFBFFFC NWSMUT_NO_MORE_NAMES

OxFFFBFFFD NWSMUT_INVALID_PARAMETER

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

146 NDK: SMS Developer Components

OxFFFDFFC9 NWSMTS_OUT_OF_MEMORY

OxFFFDFFDO NWSMTS_NO_MORE_NAMES
OxFFFDFFDC NWSMTS_INVALID_PATH

OxFFFDFFDD NWSMTS_INVALID_PARAMETER
OxFFFDFFEO NWSMTS_INVALID_NAME_SPACE_TYPE
OxFFFDFFE5 NWSMTS_INVALID_DATA_SET_HANDLE
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OxFFFDFFF7 NWSMTS_DATA_SET_EXCLUDED
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Engine Developer

To build newDataSetName the “Data Set Name Functions” listed in Storage Management Services
Library can be used.

Remarks

NWSMTSOpenDataSetForRestore validates the data set handle (if it has access to the data) and
renames or moves the data set to a new location.

NWSMTSOpenDataSetForRestore requires that the combination of parentHandle,
newDataSetName, and the path information contained in the data set's data form a fully qualified
path. If parentHandle is used, the path information in newDataSetName and in the data set's data is
ignored (except the terminal node). If newDataSetName is used, the path information in the data
set's data is ignored.

If the original name of the data set is to be kept, newDataSetName must be set to NULL.

If a parent is not needed, the engine must set parentHandle to zero. If parent handles are used, the
handles must remain open until all subordinate data sets are restored.

parentHandle is like a pointer to a location in the file system tree. It is used to restore immediate
children and parents (subdirectories) of the parent referenced by the handle. Parent handles are used
when Target Services has a hierarchical file system and supports the use of parent handles. For
example, NDS is a Target Service with a hierarchical file system that does not support the use of
parent handles.

NOTE: NWSMTSGetUnsupportedOptions must be called to see if the TSA supports renaming and
moving of data set during a restore session.

newDataSetName must contain a fully qualified path if parentHandle is zero. If parentHandle is
used, only the terminal node in newDataSetName is used.

NOTE: The data set's path information will automatically be placed into the data set's data by the
TSA.

Target Services Functions

147

The following table shows when and how to use newDataSetName, parentHandle, and the path

information contained in the data set data. The newDataSetName column indicates the contents of
the data set name parameter and what portion of it is used. The parentHandle column indicates if a
parent handle is passed to the function and if it points to a new location. The third column indicates
the contents of the path information in the data set's data and how much of it is used. The first seven
rows are used if the data set is renamed or moved. The last four rows are used if the data set's
original name is used and newDataSetName is NULL. In rows five and six, parentHandle points to a
new location. In rows nine and ten, it points to the data set's original location.

Path
newDataSetName parentHandle Informationin Comments
Data Set
Renam Full path No Ignored Full path is provided by data set name.
e/move This path contains a new location and/or
new name for the data set.
Data
Set Full path (only the Yes Ignored Rename and/or move the data set.
terminal path node newDataSetName contains the data sets
is used) new name. Only the data set name is used
from newDataSetName. parentHandle
provides the rest of the path information.
parentHandle points to either the that set's
original or new location
Terminal name No Ignored Invalid-cannot form a fully qualified path.
only
Terminal name Yes Ignored newDataSetName provides the data set's
only new name and parentHandle provides the
rest of the path information. parentHandle
provides the rest of the path information.
parentHandle points to either the that set's
original or new location
NULL Yes Terminal Name parentHandle points to a new location for
only the data set.
NULL Yes Full path (only parentHandle points to a new location for
the terminal the data set.
name is used)
Original NULL No Full path Data set is restored to its original location
and retains its original name
location
NULL No Terminal name Invalid-cannot form a fully qualified path.
only
NULL Yes Full path (only Only the terminal name is used from data
the terminal set's data. parentHandle points to the data
node is used) set's original location.
NULL Yes Terminal name The data set provides the terminal name

only

only. parentHandle points to the data set's
original location.

The open modes are used by NWSMTSWriteDataSet to determine how to write the data set (see
Section 9.2, “Target Services Generic Open Mode Values,” on page 337).

148 NDK: SMS Developer Components

See Also

NWSMTSCloseDataSet (page 82), NWSMTSOpenDataSetForRestore (page 146),
NWSMTSSetRestoreOptions (page 152), NWSMTSWriteDataSet (page 154)

Example

/*This example uses a log file built by the engine from information of
a previous backup session to restore the data sets.

The log file is used to get the names of the data set, find out if it
is a parent, and build the path to the data set

and contains the information from the NWSM SCAN INFORMATION and

NWSM DATA SET NAME LIST structures.

All parents were backed up with full paths and children were backed
with no path information.

All children of a parent were backed up before the next parent was
scanned.

Only one data set existed per transfer buffer.*/

#include <smsutapi.h>
#include <smstsapi.h>

UINT32 parentHandle = 0, mode = NWSM OVERWRITE DATA SET,
dataSetHandle,

maxTransferBufferSize, transferBufferSize;
/* For more informationabout maxTransferBufferSize and
transferBufferDataOffset see NWSMSDSessionOpenForWriting
in Storage Management Services Device Interface. */

NWBOOLEAN checkCRC = TRUE, dontCheckSelectionList = TRUE;

BUFFERPTR transferBuffer;

NWSM RECORD HEADER INFO recordHeaderInfo = {0};

/* Connect to a TSA and Target Service. */

/* Build the lists to display to the user for selection including
getting information about the Target Service type,

unsupported options, name space information, primary resource list,
open modes, scan types, and selection type.

See NWSMSTGetTargetServiceType, NWSMTSGetUnsupportedOptions,
NWSMTSListSupportedNameSpaces, NWSMTSListTSResources,
NWSMTSGetOpenModeOptionString, NWSMTSGetTargetScanTypeString, and
NWSMTSGetTargetSelectionTypeStr.*/

/* Connect to SMS DI. Subjugate a device and media, and mount the
media. See document Storage Device API. */

/* Have the user choose a session to restore. After the log is chosen
and opened, match the media information in the

log file against the one on the media to verify that we have the
correct session. */

/* Rewind the media, match the session information against the one on
the media, and open the session for reading by

using NWSMSDMediaPosition and NWSMSDSessionOpenForReading.
maxTransferBufferSize and transferBufferDataOffset is set by the last
function. */

/* Display the lists previously built to the user for selection and

Target Services Functions

149

specification. After the selections are made, package

the user's restore selections into selectionList and notify the TSA
what data sets to restore by calling

NWSMTSSetRestoreOptions. mode is set during this user interaction. */

NWSMTSSetRestoreOptions (connection, checkCRC, dontCheckSelectionlList,
selectionlList) ;

/* Retrieve the selected data sets and restore them. */

while (1)

{

/* Check if the first data set in the log file is to be restored.
First, from the information in the log construct a full

path for a data set by using NWSMPutFirstName and NWSMPutNextName.
The full path is put into newDataSetName. isParent is set from the
parentFlag field of the scan information kept

in the log file. */

if (no more data sets)
break;

if (NWSMTSIsDataSetExcluded (connection, isParent, newDataSetName)

NWSMTS DATA SET EXCLUDED)
cntinue;

/* We found a data set to restore. Move the media to the data set's
address, as indicated by the log file, and read the

transfer buffer from the media. NWSMSDMediaPosition and
NWSMSDSessionReadData can be used. */

if (no transfer buffers)

break;
/*Set up transfer buffer information. */
transferBuffer = Transfer Buffer from the media;

transferBuffer += transferBufferDataOffset;
/* Point to the Data Set Header or Subheader. */

transferBufferSize = maxTransferBufferSize -
transferBufferDataOffset;
/* Extract the SIDF data from the transfer buffer. Only one SIDF data
set per transfer buffer exists and each data
set wholly occupies one transfer buffer. First, move the transfer
buffer pointer to the first record. */
while (transferBufferSize)
/* While there is data in the Transfer Buffer. */

{
/*Get the next data set header or subheader from the Transfer Buffer.
*/

NWSMGetRecordHeaderOnly (&transferBuffer, &transferBufferSize,
&recordHeaderInfo);

/* If we have a record or subrecord, get the data from the Transfer
Buffer.
Notice that the second part of the if statement will be true if we have
gone through the loop more than once
(NWSMGetDataSetInfo sets recordHeaderInfo.dataSetInfoRetrieved to

150 NDK: SMS Developer Components

DATA SET INFO SPANNED) . */
if ((recordHeaderInfo.dataSetInfoRetrieved ==
DATA SET INFO NOT STARTED)
| | (recordHeaderInfo.dataSetInfoRetrieved ==
DATA SET INFO SPANNED))
NWSMGetDataSetInfo (&tranferBuffer, &transferBufferSize,
&recordHeaderInfo);
if (!transferBufferSize)
break;
/* All data retrieved from current Transfer Buffer. Break and get the
next Transfer Buffer. */
if (recordHeaderInfo.dataSetInfoRetrieved ==
DATA SET INFO COMPLETE)
{
/* Data in recordHeaderInof.dataSetName and
recordHeaderInfo.scanInformation can now be used. */
/* Restore the data set. Because of the way the data sets were backed
up, we need to use the parent handle to restore
children. No parent handles are needed for parents, because they
contain full path information. */
if (recordHeaderInfo.scanInformation->parentFlagqg)
{
if (parentHandle) /* Close existing parent handle. */
NWSMTSCloseDataSet (connection, &parentHandle);
NWSMTSOpenDataSetForRestore (connection, 0, NULL, mode,
&parentHandle) ;
dataSetHandle = 0;

else /* We have a child. */
{
NWSMTSOpenDataSetForRestore (connection, parentHandle, NULL,

mode,
&dataSetHandle) ;

/* Now write the data to Target Service. */
NWSMTSWriteDataSet (connection, dataSetHandle ? dataSetHandle
parentHandle, recordHeaderInfo.recordSize,
transferBuffer);

/* Close the data set. */
NWSMTSCloseDataSet (connection, &dataSetHandle):;
} /* end if DATA SET INFO COMPLETE */

/* Update the buffer's information. */
transferBuffer += recordHeaderInfo.recordSize;
transferBufferSize -= recordHeaderInfo.recordSize;
} /* end while(transferBufferSize) */
} /* end while(1l) */
free (recordHeaderInfo.scanInformation) ;
free (recordHeaderInfo.dataSetName) ;

Target Services Functions

151

NWSMTSSetRestoreOptions

Sets the restore options and defines the data sets to restore.

Syntax

#include <smstsapi.h>

CCODE NWSMTSSetRestoreOptions (

UINT32 connection,
NWBOOLEAN checkCRC,
NWBOOLEAN dontCheckSelectionlList,

NWSM SELECTION LIST *selectionList);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

checkCRC
(IN) Specifies the CRC verification flag:

TRUE Check the data set's CRC
FALSE Do not check the CRC

dontCheckSelectionList
(IN) Specifies if the internal selection list should be checked.

selectionList
(IN) Points to the list of data sets to restore.
Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFB NWSMUT_OUT_OF_MEMORY
OxFFFBFFFD NWSMUT_INVALID_PARAMETER
OxFFFBFFFF NWSMUT_INVALID_HANDLE

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC9 NWSMTS_OUT_OF MEMORY
OxFFFDFFDA NWSMTS_INVALID_SEL_LIST_ENTRY
OxFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

152 NDK: SMS Developer Components

OxFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks

NWSMTSSetRestoreOptions clears the previous selection list, sets the TSA's internal restore
selection list, and allows the engine to determine the mechanism used to find a data set to restore
(see Set the Restore Options).

NWSMTSIsDataSetExcluded and NWSMTSWriteDataSet compare the names of the data sets to be
restored against selectionList twice (once for each call). To prevent this double checking, set
dontCheckSelectionList to TRUE. When the parameter is set to TRUE, only
NWSMTSIsDataSetExcluded compares the data set name. This checking enhances data integrity,
but decreases performance slightly. If no CRC was generated for the data set, no CRC check is
performed.

If dontCheckSelectionList is set to FALSE, NWSMTSWriteDataSet will verify the data set's path
information against the TSA's internal selection list. dontCheckSelectionList can be used with
NWSMTSIsDataSetExcluded to speed up the restore process.

Each entry in selectionList contains the names or name patterns of the data sets to restore. [f NULL
is passed, all data sets are restored (see Using Resources with Selection Options and Documents).
The "Data Set Name Functions" described in Storage Management Services Library can be used to
help create this list.

Each time NWSMTSSetRestoreOptions is called, the previous selectionList will be replaced.
NWSMTSSetRestoreOptions rebuilds the resource list which was built at the time of connection.
The list is rebuilt because a resource may have been mounted or dismounted, or the resource’s name
space information may have changed. To rebuild the resource list, the engine must set selectionList
to NULL and call NWSMTSSetRestoreOptions or NWSMTSBuildResourceList.

NOTE: The bindery must be explicitly included in the restore session or it will not be restored.

See Also

NWSMTSIsDataSetExcluded (page 144), NWSMTSOpenDataSetForRestore (page 146),
NWSMTSWriteDataSet (page 154)

Target Services Functions 153

NWSMTSWriteDataSet

Writes a data set to the Target Service.

Syntax

#include <smstsapi.h>

CCODE NWSMTSWriteDataSet (

UINT32 connection,
UINT32 dataSetHandle,
UINT32 bytesToWrite,

BUFFERPTR buffer);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServicEx.

dataSetHandle
(IN) Specifies the handle returned by NWSMTSOpenDataSetForRestore.

bytesToWrite
(IN) Specifies the number of bytes to write.

buffer

(IN) Points to the caller allocated buffer containing the data to be written back through the
TSA. The contents of the buffer should have been obtained previously from the
NWSMTSReadDataSet call during backup.

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
OxFFFDFFB5 NWSMTS_WRITE_ERROR

OxFFFDFFB6 NWSMTS_WRITE_ERROR_SHORT

OxFFFDFFB7 NWSMTS_WRITE_EA_ERROR

OxFFFDFFB8 NWSMTS_VALID_PARENT_HANDLE

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFC4 NWSMTS_SCAN_ERROR

OxFFFDFFC6 NWSMTS_READ_ERROR

154 NDK: SMS Developer Components

OXFFFDFFC8 NWSMTS_OVERFLOW
OXFFFDFFC9 NWSMTS_OUT_OF _MEMORY
OXFFFDFFCA NWSMTS_OUT_OF DISK_SPACE
OXFFFDFFCC NWSMTS_OPEN_ERROR

OXFFFDFFDC NWSMTS_INVALID_PATH

OXFFFDFFE5 NWSMTS_INVALID_DATA SET_HANDLE
OXFFFDFFEG NWSMTS_INVALID_DATA

OXFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL
OXFFFDFFEC NWSMTS_GET_ENTRY_INDEX_ERR
OXFFFDFFEF NWSMTS_EXPECTING_TRAILER
OXFFFDFFFO NWSMTS_EXPECTING_HEADER
OXFFFDFFF4 NWSMTS_DATA SET IS OLDER
OXFFFDFFF5 NWSMTS_DATA SET_IN_USE
OXFFFDFFF7 NWSMTS_DATA_SET_EXCLUDED
OXFFFDFFF8 NWSMTS_DATA_SET_ALREADY_EXISTS
OXFFFDFFF9 NWSMTS_CREATE_ERROR
OXFFFDFFFA NWSMTS_CREATE_DIR_ENTRY_ERR
OXFFFDFFFB NWSMTS_CLOSE_BINDERY_ERROR
OXFFFDFFFC NWSMTS_CANT_ALLOT DIR_HANDLE
OXFFFDFFFD NWSMTS_BUFFER_UNDERFLOW
OXFFFDFFFF NWSMTS_ACCESS_DENIED
OXFFFEFFFE NWSMDR_INVALID_PARAMETER
OXFFFEFFFF NWSMDR_INVALID_CONNECTION

Engine Developers

NWSMTSWriteDataSet deformats the data set data and writes it out to the Target Service. The FID
functions described in Storage Management Services Utilities Library can be used to deformat the
data set data.

Remarks

Before NWSMTSWriteDataSet is called, NWSMTSOpenDataSetForRestore must be called to open
the data set.

NWSMTSWriteDataSet must be called repeatedly until all of the data is written to Target Services.

NWSMTSWriteDataSet writes the data set to the specified location. If the data spans many buffers,
the engine will have to call NWSMTSWriteDataSet once for every buffer.

Target Services Functions 155

A special situation occurs when the restore mode is set to

NWSM_ DO NOT _OVERWRITE DATA_SET, and the data set spans multiple buffers.
NWSMTSWriteDataSet must parse through the data to find the path information which may require
sifting through multiple buffers. NWSMTSWriteDataSet can then determine if the data set exists on
the Target Service.

NWSMTSWriteDataSet may not return NWSMTS VALID PARENT HANDLE or
NWSMTS _DATA SET ALREADY_ EXISTS (indicating the data set exists) until it is called many
times (see Invalid, Valid Handle).

NWSM_VALID PARENT HANDLE is returned when enough data has been received to create a
valid parent handle and indicates that:

¢ The parent already exists on the Target Service

¢ The parent was not overwritten

¢ A parent handle was created for the existing parent

¢ The parent's children can be restored

If buffer contains fields that the TSA does not recognize, the fields are ignored.

NOTE: The bindery must be explicitly included in the restore session or it will not be restored.

See Also

NWSMTSOpenDataSetForRestore (page 146), NWSMTSSetRestoreOptions (page 152)

Example

See NWSMTSOpenDataSetForRestore (page 146) for an example.

156 NDK: SMS Developer Components

Target Services Structures

This documentation alphabetically lists the Target Services structures and describes their purpose,
syntax, and fields.

¢ “Data Set Name List” on page 158

+ “NWSM_DATA_SET NAME_LIST” on page 160

+ “NWSM_NAME LIST” on page 161

¢ “NWSM_SCAN_ CONTROL” on page 162

+ “NWSM_SCAN_INFORMATION” on page 168

+ “NWSM_SELECTION_LIST” on page 172

¢ “Selection List” on page 174

¢ “STRING BUFFER” on page 178

¢ “UINT16 BUFFER” on page 179

Target Services Structures 157

Data Set Name List

Lists the data sets to scan for or the data set just scanned in conjunction with
NWSM_DATA SET NAME_ LIST.

Syntax

UINT32 nameSpaceType;
UINT32 reserved;

UINTS8 count;
UINT16 namePositions[count];
UINT16 separatorPositions[count];

UINT16 nameLength;
STRING name [nameLength];

Fields
nameSpaceType
Specifies the name space type of the name (see “nameSpaceType Values” on page 347)

reserved

Is reserved for future use.

count

Specifies the size of namePositions and separatorPositions.

namePositions

Specifies the beginning position of each path node in name.

separatorPositions

Specifies the beginning position of each separator name.

nameLength

Specifies the length of name including the NULL terminator.

name

Specifies a NULL-terminated or fully qualified path string.

Remarks

The values that can set for nameSpaceType is listed in the following table.

Value Description

OxFFFFFFFE NWSM_TSA DEFINED_RESOURCE_TYPE: name contains a primary resource.
OxFFFFFFFC NWSM_DIRECTORY_NAME_SPACE: name contains a directory service path.
0x000 DOSNameSpace: name contains a DOS path in MBCS format.

0x001 MACNameSpace: name contains a Macintosh path in MBCS format.

158 NDK: SMS Developer Components

Value

Description

0x002
0x003
0x004
0x100
0x101
0x102
0x104

NFSNameSpace: name contains an NFS path in MBCS format.
FTAMNameSpace: name contains an FTAM path in MBCS format.
OS2NameSpace: name contains an OS/2 path in MBCS format.
DOSNameSpaceUtf8 Type: name contains a DOS path in UTF-8 format.
MacNameSpaceUtf8Type: name contains a Macintosh path in UTF-8 format.
NFSNameSpaceUtf8Type: name contains an NFS path in UTF-8 format.
LongNameSpaceUtf8Type: name contains a DOS path in UTF-8 format.

If a data set is a primary resource, nameSpaceType must be set to
NWSM_TSA DEFINED RESOURCE TYPE.

If count is zero, namePositions and separatorPositions are not used.

For more information on name positions, see Path Information and Using Resources with Selection
Options. Although the name list example is a selection list, the same principles apply.

name will have a separator at the end for a parent terminal node.

NOTE: name must be properly formatted when passed to NWSMTSIsDataSetExcluded.

Target Services Structures 159

NWSM_DATA_SET NAME_LIST

Contains the data set's path as it appears under one of more of the name spaces supported by the
Target Service.

Syntax

typedef struct

{
UINT16 bufferSize;
UINT16 dataSetNameSize;

UINTS8 nameSpaceCount;
UINTS8 keyInformationSize;
UINTS8 keyInformation[keyInformationSize];

} NWSM_DATA SET NAME LIST;

Fields
bufferSize
Specifies the actual buffer size allocated to NWSM_DATA SET NAME LIST.

dataSetNameSize

Specifies the actual memory space used by the data set name list (excluding bufferSize).

nameSpaceCount

Specifies the number of name spaces in the data set name list.

keyInformationSize

Specifies the size of keylnformation in bytes.

keyInformation

Is reserved for future use to specify key encryption information.

Remarks

NWSM_DATA SET NAME LIST consists of two parts: a list information structure and the data
set name list.The list contains the data set names and is appended to the end of the structure.

To access the data set name, see "Data Set Name Functions" in Storage Management Services
Utilities Library and can be used to help transfer the data set’s name into or out of the data set name
list.

See NWSM_DATA SET NAME LIST (page 160) for the members and definitions of the Data Set
Name List.

160 NDK: SMS Developer Components

NWSM_NAME_LIST

Builds a linked list of names that can be freed by calling NWSMFreeNamelList.

Syntax

typedef struct NWSM NAME LIST

{
_NWSM_NAME LIST *next;
STRING name;
void *other info;
} NWSM NAME LIST;

Fields
next
Points to the next element in the list or to NULL (indicating the end of the list).

name

Specifies a NULL-terminated string indicating the name space number and the associated name
space.

other_info

Points to an engine-defined value or to a structure.

Remarks

The values that can be set to name is listed in the following table, and the first four bytes of name
contain the name space number.

Value Description

OxFFFFFFFF NWSM_ALL_NAME_SPACES: Specifies all name spaces

OxFFFFFFFE NWSM_TSA_DEFINED_RESOURCE_TYPE: Specifies a TSA-defined resource

OxFFFFFFFD NWSM_CREATOR_NAME_SPACE: Specifies the name of the name space that
created the data set

OxFFFFFFFC NWSM_DIRECTORY_NAME_SPACE: Specifies the directory services string

0x0 DOSNameSpace: Specifies the DOS name space

0x1 MACNameSpace: Specifies the Macintosh name space

0x2 NFSNameSpace: Specifies the NFS name space

0x3 FTAMNameSpace: Specifies the FTAM name space

0x4 OS2NameSpace: Specifies the OS/2 name space

Target Services Structures 161

NWSM_SCAN_CONTROL

Defines the characteristics and attributes of the data sets to scan for as well as the path information
to return in conjunction with NWSM_SELECTION_LIST.

Syntax

typedef struct

{
UINT16 bufferSize;
UINT16 scanControlSize;
UINT32 scanType;
UINT32 firstAccessDateAndTime;
UINT32 lastAccessDateAndTime;
UINT32 firstCreateDateAndTime;
UINT32 lastCreateDateAndTime;
UINT32 firstModifiedDateAndTime;
UINT32 lastModifiedDateAndTime;
UINT32 firstArchivedDateAndTime;
UINT32 lastArchivedDateAndTime;

UINTS8 returnChildTerminalNodeNameOnly;
UINTS8 parentsOnly;

UINTS8 childrenOnly;

UINTS8 createSkippedDataSetsFile;

UINTS8 generateCRC;

UINTS8 returnNFSHardLinksInDataSetName;
UINTS8 reserved[6];

UINT32 scanChildNameSpaceType;
UINT32 returnNameSpaceType;

UINTS8 callScanFilter;
UINT16 otherInformationSize;
UINTS8 otherInformation[otherInformationSize];

} NWSM_ SCAN CONTROL;

Fields

bufferSize

Specifies the structure size (including memory allocated for otherInformation).

scanControlSize

Specifies the memory used by all the structure fields excluding bufferSize.

scanType

Specifies a bit map indicating the selected scan type options.

firstAccessDateAndTime

Specifies the DOS-packed date and time criteria to scan for.

lastAccessDateAndTime

Specifies the DOS-packed date and time criteria to scan for.

162 NDK: SMS Developer Components

firstCreateDateAndTime

Specifies the DOS-packed date and time criteria to scan for.

lastCreateDateAndTime

Specifies the DOS-packed date and time criteria to scan for.

firstModifiedDateAndTime

Specifies the DOS-packed date and time criteria to scan for.

lastModifiedDateAndTime

Specifies the DOS-packed date and time criteria to scan for.

firstArchivedDateAndTime

Specifies the DOS-packed date and time criteria to scan for.
lastArchivedDateAndTime

Specifies the DOS-packed date and time criteria to scan for.
returnChildTerminalNodeNameOnly

Specifies if only the name of the child will be returned by the scan:

TRUE Return only the name for a child and full path for a parent
FALSE Always return the full path for a child or parent

parentsOnly

Specifies if only parents will be scanned:

TRUE Scan only parents
FALSE Scan both parents and children

childrenOnly

Specifies if only children will be scanned:

TRUE Scan only children
FALSE Scan both children and parents

createSkippedDataSetsFile

Specifies if the TSA will create a log of the data sets that qualified for the scan but were

skipped:

TRUE Create a log file
FALSE Do not create a log file

generateCRC

Specifies if a CRC value will be generated for each data set:

TRUE Create a CRC value
FALSE Do not create a CRC value

returnNFSHardLinksINDataSetName

Specifies if the data set's NFS hard links will be returned in dataSetName:

Target Services Structures 163

TRUE dataSetName contains the returned NFS hard links
FALSE NFS hard links will not be returned

reserved

Is reserved for future use.

scanChildNameSpaceType

Specifies the name space of the child data sets to scan for-usually set to
NWSM_ALL NAME SPACES (see Returned Name Space Type).

returnNameSpaceType

Specifies the name space types that the data set's name will be returned in.

callsScanFilter

Specifies if the TSA will use the specified scan filter:

TRUE Use the specified scan filter
FALSE Do not use the specified scan filter

otherInformationSize

Specifies the size of otherInformation.

otherInformation

Specifies developer-specific information.

Remarks

bufferSize may need to be larger than the structure because otherInformation may vary in size. To
prevent the buffer size from being reallocated often, add extra space to bufferSize.

scanType is graphically represented by a 32-bitmap: bit 0-6 represents the predefined scan types and
bit 7-31 represents the TSA specific scan types

Figure 4-1 Scan Type Bitmap

Eit Ei
31 7ls 1}
‘ | . ‘

; Predefined Scan Types
T 54 Specific Scan Types

For Target Services that support purging deleted files, set scanType to
NWSM_PURGE IMMED ON DELETE before calling NWSMTSScanDataSetBegin.

LR R

The following table show the scan type that each TSA supports:

Value Description

0x0001 NWSM_DO_NOT_TRAVERSE: Do not traverse the file system tree (see Scan Settings
for more information).

164 NDK: SMS Developer Components

Value

Description

0x0002

0x0004

0x0008

0x0010

0x0020

0x0040

0x0080

0x0100

0x0200
0x0400

0x0800

0x1000
0x2000

0x4000
0x8000

0x10000

0x20000

0x40000

0x80000

0x100000

0X200000

NWSM_EXCLUDE_ARCHIVED_CHILDREN: Do not scan for children data sets whose
archive flag is set.

NWSM_EXCLUDE_HIDDEN_CHILDREN: Do not scan for children data sets whose
hidden flag is set.

NWSM_EXCLUDE_HIDDEN_PARENTS: Do not scan for parent data sets whose
hidden flag is set.

NWSM_EXCLUDE_SYSTEM_CHILDREN: Do not scan for children data sets whose
system flag is set.

NWSM_EXCLUDE_SYSTEM_PARENTS: Do not scan for parent data sets whose
system flag is set.

NWSM_EXCLUDE_CHILD TRUSTEES: Do not read the trustee information of children
data sets.

NWSM_EXCLUDE_PARENT_TRUSTEES: Do not read the trustee information of
parent data sets.

NWSM_EXCLUDE_ACCESS_DATABASE: Do not scan the database. For example,
back up of server specific info from NetWare 4.x onwards.

NWSM_EXCLUDE_VOLUME_RESTS: Do not read the resource restriction information.

NWSM_EXCLUDE_DISK _SPACE_RESTS: Do not read the disk space restriction
information.

NWSM_EXCLUDE_EXTENDED_ATTRIBUTS: Do not read the extended attribute
information.

NWSM_EXCLUDE_DATA STREAMS: Do not read a data set's data stream.

NWSM_EXCLUDE_MIGRATED_CHILD: Do not read migrated data streams of children
data sets. Read only the stub information for these migrated children.

NWSM_EXPAND_COMPRESSED_DATA: Expand the data set before scanning it.

NWSM_EXCLUDE_ARCH_CHILD_DATA: Do not scan the data of children that have
been archived.

NWSM_EXCLUDE_ARCH_CHILD_CHAR: Do not scan the child's characteristics if the
child's characteristics archive bit is set.

NWSM_FLAG_PURGE_IMMED_ON_DELETE: Set the data set's purge flag when it is
deleted.

NWSM_EXCLUDE_MIGRATED_FILES: Do not scan for children whose remote data
access bit is set.

NWSM_INCLUDE_PATH_COMPONENT: For each item in the include list, backup the
individual parent components before processing the data sets.

NWSM_EXCLUDE_HARDLINK_DATA : Do not backup the data for hardlinks except for
the first encountered data node.

NWSM_EXCLUDE_SECONDARY_DATA_STREAMS : Do not read a data set's
secondary data stream.

Target Services Structures

165

Value Description

0x400000 NNWSM_INCLUDE_SOFTLINK_CHILD : Reads the soft link along with real data of
children data set's.

0X800000 NWSM_OR_DATE_TIME_FILTER: Backup the data, if the data sets date and time
values are within the range specified in the date and time fields.

The TSA specifies which other scan types to enable and disable when a scan type is chosen. The
TSA flags can be ORed to produce the desired action. However, the combination of various scan
types can produce an illegal condition or unwanted results. The TSA will return an error indicating
that an illegal condition might exist, but it cannot signal that an undesirable result might occur.

The date and time fields specify the range for the scan criteria. A data set meets the date and time
criteria if all the data set's date and time values are within the range specified by all the date and time
fields. Zero indicates an open-ended scan for that kind of date and time information (see Date and
Time Fields for more information). These fields contain DOS-packed values and can be packed or
unpacked by calling the "DOS Date and Time functions" shown in Storage Management Services
Utilities Library. Some TSAs may not support all of the date and time fields (see
NWSMTSGetUnsupportedOptions (page 127)).

The following table gives an example of the scan type settings and indicates the results of each scan

lastAccessDateAndTim

firstAccessDateAndTime e Description
October 12, 1985 April 1, 1989 12:00:00 Returns information on all files accessed
12:00:00 between October 12, 1985 12:00:00 and April 1,

1989 12:00:00 inclusively.

0 April 1, 1989 12:00:00 Returns information on all files accessed until
and including April 1, 1989 12:00:00.

October 12, 1985 0 Returns information on all files accessed since
12:00:00 October 12, 1985 12:00:00.
0 0 Returns information about all files.

TSA support for returnChildTerminalNodeNameOnly is indicated by calling
NWSMTSGetUnsupportedOptions.

If returnChildTerminalNodeNameOnly is set to TRUE, NWSMTSScanDataSetBegin returns the
fully qualified path of the parent of the first child data set found. For the name of the first child data
set, call NWSMTSScanNextDataSet (the path information is provided by the parent).

childrenOnly must be set to false if refurnChildTerminalNodeName is set to TRUE (see Scan
Settings for more information).

TSA support for createSkippedDataSetsFile can be determined by calling
NWSMTSGetUnsupportedOptions (page 127) (see Log Files and NWSMTSScanDataSetBegin
(page 38) for more information).

generateCRC enhances data integrity, but decreases the TSA’s performance slightly if set to TRUE.

The values that can be set for returnNameSpaceType is listed in the following table.

166 NDK: SMS Developer Components

Value Description

OxFFFFFFFF NWSM_ALL_NAME_SPACES: Return all the name spaces of the data set in
Multi Byte Character Sets (MBCS) format.

OxFFFFFFFE NWSM_TSA_DEFINED_RESOURCE_TYPE: Return the data set if it is a TSA
defined resources.

OxFFFFFFFD NWSM_CREATOR_NAME_SPACE: Return only the created name space of the
data set in Multi Byte Character Sets (MBCS) format.

OxFFFFFFFC NWSM_DIRECTORY_NAME_SPACE: Return the data set if it is a Directory
Services data set.

OxFFFFFFFAL NWSM_ALL_NAME_SPACES_UTF8: Return all the supported name spaces of
the data set in UTF-8 format.

OxFFFFFFF9OL NWSM_CREATOR_NAME_SPACE_UTF8: Return only the created name space
of the data set in UTF-8 format.

OxFFFFFFF8L NWSM_ALL_NAME_SPACES_FORMATS: Return all the name spaces of the
data set in all supported formats.

0x000 DOSNameSpace: Return only for DOS data set in MBCS format.

0x001 MACNameSpace: Return only for Mac data sets in MBCS format.

0x002 NFSNameSpace: Return only for NFS data sets in MBCS format.

0x003 FTAMNameSpace: Return only for FTAM data sets in MBCS format.

0x004 OS2NameSpace: Return only for OS/2 data sets in MBCS format.

0x100 DOSNameSpaceUtf8Type: Return only for DOS data sets in UTF-8 format
0x101 MACNameSpaceUtf8Type: Return only for Mac data sets in UTF-8 format
0x102 NFSNameSpaceUtf8Type: Return only for NFS data sets inUTF-8 format
0x104 LONGNameSpaceUtf8Type: Return only for LONG data sets in UTF-8 format

TSA defined resources are logical resource groupings. Logical groupings refers to the fact that a
bindery or file server does not exist as a single entity but as a logical group of lesser resources. The
bindery consists of 3 files while the file server consists of: the bindery, volume, directories, and files.

callScanFilter is not supported under NetWare 4.

Target Services Structures 167

NWSM_SCAN_INFORMATION

Contains information about one data set.

Syntax

typedef struct

{
UINT16 bufferSize;
UINT16 scanInformationSize;
UINT32 attributes;
UINT32 creatorID;
UINT32 creatorNameSpaceNumber;
UINT32 primaryDataStreamSize;
UINT32 totalStreamsDataSize;

UINTS8 modifiedFlag;
UINTS8 deletedFlag;
UINTS8 parentFlag;

UINTS8 reserved[5];

UINT32 accessDateAndTime;

UINT32 createDateAndTime;

UINT32 modifiedDateAndTime;

UINT32 archivedDateAndTime;

UINT16 otherInformationSize;

UINTS otherInformation[otherInformationSize];
} NWSM SCAN_ INFORMATION;

Fields

bufferSize
Specifies the actual buffer size allocated for NWSM_SCAN_INFORMATION.

scanInformationSize
Specifies the total memory used by NWSM_SCAN_ INFORMATION (excluding bufferSize).

attributes

Specifies the data set's attributes.

creatorID

Specifies the ID of the entity who created the data set.

creatorNameSpaceNumber

Specifies the number of the name space that created the data set.

primaryDataStreamSize

Specifies the size of the primary data stream (not the size of the data set).

totalStreamsDataSize

Specifies the total number of 4 KB blocks used to contain all of the data set's data streams (not
the data set's size).

168 NDK: SMS Developer Components

modifiedFlag

Specifies if the data set was modified since the last backup:

TRUE Data set was modified
FALSE Data set was not modified

deletedFlag
Specifies if the data set was deleted:

TRUE Data set was deleted
FALSE Data set was not deleted

parentFlag

Specifies if the data set is a parent:

TRUE Data set is a parent
FALSE Data set is not a parent

reserved

Is reserved for future use.

accessDateAndTime

Specifies the data set's last accessed date and time in DOS-packed format.

createDateAndTime

Specifies the data set's created date and time in DOS-packed format.

modifiedDateAndTime

Specifies the data set's last modified date and time in DOS-packed format.

archivedDateAndTime

Specifies the data set's last archived date and time in DOS-packed format.

otherInformationSize

Specifies the size of otherInformation.

otherInformation

Is reserved for future use to specify TSA developer-specific information.

Remarks

The information returned by NWSM_SCAN _INFORMATION depends upon the settings of
NWSM_SCAN _CONTROL, NWSM_SELECTION_LIST, and the options supported by the TSA
(see Unsupported Backup Options). This information may be used for backup logs and determining

if the data exists before restoring it.

Not all TSAs support all the fields of NWSM_SCAN _INFORMATION. All unsupported fields are
zeroed out by the TSA. NWSM_SCAN_INFORMATION and NWSM_DATA SET NAME LIST

represents the only information available to the engine about the data set.

Target Services Structures 169

NOTE: For users of SIDF, the scan control information and the data set’s name information are
known as the data set information.

The values that can be set to attributes is listed in the following table.

Option Value Description

None 0x00000000 NWFA NORMAL: The data set has its normal attributes set.

0 0x00000001 NWFA_READ_ONLY: The data set is marked as read only.

1 0x00000002 NWFA_HIDDEN: The data set is marked as hidden.

2 0x00000004 NWFA_SYSTEM: The data set is marked as a system file.

3 0x00000008 NWFA_EXECUTE_ONLY: The data set is marked as an executable.

4 0x00000010 NWFA_DIRECTORY: The data set is a parent.

5 0x00000020 NWFA_ARCHIVE: The data set's archive bit.

6 Reserved

7 0x00000080 NWFA_SHARABLE: The data set is marked as sharable.

8-11 Reserved

12 0x00001000 NWFA_TRANSACTION: The data set is part of a transaction in progress.

13 Reserved

14 0x00004000 NWFA_READ_AUDIT: The data set is marked for read auditing.

15 0x00008000 NWFA_WRITE_AUDIT: The data set is marked for write auditing.

16 0x00010000 NWFA_PURGE: The data set marked to be purged.

17 0x00020000 NWFA_RENAME_INHIBIT: The data set cannot be renamed.

18 0x00040000 NWFA_DELETE_INHIBIT: The data set cannot be deleted.

19 0x00080000 NWFA_COPY_INHIBIT: The data set cannot be copied.

20 0x00100000 NWFA_FILE_AUDITING: The data set's file auditing flag.

21 Reserved

22 0x00400000 NWFA_REMOTE_DATA_ACCESS: The data set can be remotely
accessed.

23 0x00800000 NWFA_REMOTE_DATA_INHIBIT: The data set cannot be remotely
accessed.

24 0x01000000 NWFA_REMOTE_DATA_SAVE_KEY_BIT: The data was migrated to
tertiary storage. This bit applies only to child data sets.

25 0x02000000 NWFA_COMPRESS_FILE_IMMEDIATE: The data set is not yet
compressed.

26 0x04000000 NWFA_DATA_STREAM_IS_COMPRESSED: The data set is
compressed.

27 0x08000000 NWFA_DO_NOT_COMPRESS_FILE: The data cannot be compressed.

170 NDK: SMS Developer Components

Option Value Description

28 Reserved

29 0x20000000 NWFA_CANT_COMPRESS_DATA: The data set's data cannot be
compressed.

30 0x40000000 NWFA_OBJ_ARCHIVE_BIT: One or more of the following has been
changed since the last backup: extended attributes, owner ID, or
trustees.

creatorID is not generic and is defined by the TSA. For NetWare, it is the bindery ID.

creatorNameSpaceNumber has a corresponding name space name string that is returned by
NWSMTSListSupportedNameSpaces. This number is always returned even if the creator name
space type was not requested by field returnNameSpaceType of NWSM_SCAN_CONTROL.

Call NWSMTSGetUnsupportedOptions (page 127) to see if the TSA supports accessDateAndTime,
createDateAndTime, modifiedDateAndTime, and archivedDateAndTime.

Support for Larger Files (file size more than 4 GB)

The NSS file system supports files of sizes more than 4 GB. The primaryDataStreamSize returns the
first double word (low order four bytes) of the file size. The file system TSA returns the second
double word as part of the otherInformation while setting the otherInformationSize to 4.

Support for Scan Information Extensions

Different TSAs may have meta data regarding data sets that do not fit into the existing definition of
the scan information structure. Such information is returned as extensions in the otherInformation
field. The otherInformationSize is set to the number of bytes of extension information that is
returned in this case. This size and the otherInformation buffer can be used with the extension APIs
to process this additional meta data. See Section 6.3, “Extension Functions,” on page 218. The
extensions and their fields are detailed in Section 5.7, “Extensions,” on page 182.

NOTE: As the otherInformation field is already extended to contain the second double word to
represent QUAD file sizes, extensions are appended after the first double word when present. Use
otherInformationSize after subtracting the size of a double word to ensure that there are extensions
encoded in otherInformation.

Target Services Structures 171

NWSM_SELECTION_LIST

Contains a list of data set names, encryption key information, and search patterns to scan for in
conjunction with NWSM_SCAN_CONTROL.

Syntax
typedef struct
{
UINT16 bufferSize;
UINT16 selectionListSize;
UINTS8 selectionCount;
UINTS8 keyInformationSize;
UINTS8 keyInformation[keyInformationSize];

} NWSM SELECTION LIST;

Fields
bufferSize
Specifies the total buffer size allocated.

selectionListSize

Specifies the actual space used by the last four fields of NWSM_SELECTION_LIST as well as
the selection list.

selectionCount

Specifies the number of entries in the selection list.

keyInformationSize

Specifies the size of keylnformation in bytes.

keyInformation

Is reserved for future use to specify the key encryption information used to encrypt the
selection list.

Remarks

The selection list itself is not part of the structure declaration as shown in the following graphic. For
information about the usage of the structure and the list, see Selection Options.

172 NDK: SMS Developer Components

Figure 4-2 Selection List

Memory Buffer

Buffer Size
Selection List Size
Selection Count= N
Key Information Size
Key |nformation

Salection Mame Space Type

Sakection Type
Count

Selsction List Nams Positions

Separafor Positions
Mame Length

Nams
Salection M-1

See Selection List for the members and definitions of the selection list.

Target Services Structures 173

Selection List

Contains user-specified data set names to perform a scan against in conjunction with
NWSM_SELECTION_LIST.

Syntax

UINT32 selectionNameSpaceType;
UINT32 selectionType;

UINTS8 count;
UINT16 namePositions[count];
UINT16 separatorPositions[count];

UINT16 nameLength;
STRING name[namelLength];

Immediately following keyInformation of NWSM SELECTION LIST is an
array of user-specified data set names (the selection

list). The list is used to perform some sort of action against each
element (selection) in the list has a

selection type, which specifies how the data set is to be selected
(e.g., included in or excluded from a scan).

Fields
selectionNameSpaceType
Specifies the name space type used by name (usually the name space that created the data set).

selectionType

Specifies how to select data.

count

Specifies the size of namePositions and separatorPositions.

namePositions

Specifies the beginning position of each path node contained in name.

separatorPositions

Specifies the beginning position of each separator in name.

nameLength

Specifies the length of name including NULL.

name

Specifies a NULL-terminated path string.

Remarks

The following table lists the values that can be set for typeNumber used by
NWSMTSGetTargetSelectionTypeStr and the mask information used in selectionType.

174 NDK: SMS Developer Components

Option Value Description

0 0x0000 NONE: Cannot be used if a selection list is being built. If a data set name list is
being built, selectionType must be "No selection type".

1 0x0002 NWSM_TSA_DEFINED_RESOURCE_EXC: Do not scan for the specified TSA-
defined resources, including all of its' subordinates.

1 0x0003 NWSM_TSA DEFINED_RESOURCE_INC: Scan for the specified TSA-defined
resource, including all of its subordinates. All TSA-defined resources are
included in the scan by default if the resource name passed to
NWSMTSScanDataSetBegin is the first resource returned by

NWSMTSListTSResources.

2 0x0004 NWSM_PARENT_TO_BE_EXCLUDED: Do not scan for the specified parents,
including all of its subordinates from the scan.

2 0x0005 NWSM_PARENT_TO_BE_INCLUDED: Scan for the specified parents, including
all of its subordinates from the scan.

3 0x0008 NWSM_CHILD_TO_BE_EXCLUDED: Do not scan for the specified children.

3 0x0009 NWSM_CHILD_TO_BE_INCLUDED: Scan for the specified children.

4 0x0010 NWSM_EXCLUDE_CHILD_BY_FULL_NAME: Do not scan for the specified
child.

4 0x0011 NWSM_INCLUDE_CHILD_BY_FULL_NAME: Do not scan for the specified
child.

All selection types (except the last two) can be applied globally to the target's data.
NWSM_EXCLUDE CHILD BY FULL NAME and
NWSM_INCLUDE CHILD BY FULL NAME can be applied to only one location on the target.
However, the engine must manually set the boundaries of the area to select data sets from. For
example, to include all .c files in directory /home/user/dir1, the engine must put into a selection list
the following two list elements:

+ For the first element, set selectionType to NWSM_INCLUDE CHILD BY FULL NAME
and set name to /home/user/dirl/*.c

+ For the second element, set selectionType to NWSM_PARENT TO_ BE INCLUDED and
name to /home/user/dirl

Call NWSMTSGetTargetSelectionTypeStr to find out if a selection type is supported.

NWSM_TSA DEFINED RESOURCE _EXC and NWSM_TSA DEFINED RESOURCE _INC
are logical groupings of resources.

TSA-defined resources are logical groupings of resources. NetWare's bindery and file servers are
examples of these resource since they do not exist as a single entity, but as a logical group of lesser
resources. The bindery consists of 3 files. The file server consists of a bindery, a volume, directories,
and files.

name must contain a fully qualified path for selection types, TSA-defined resources, and full-name
parents and children.

name only contains a terminal name for NWSM_CHILD TO BE EXCLUDED and
NWSM_CHILD _TO_BE INCLUDED.

Target Services Structures

175

Wild cards are only allowed in the terminal path node (even if the node is a parent). If the terminal
path node is a parent, and if the name space requires it, an end separator is needed.

Call NWSMPutFirstName, NWSMPutNextName, NWSMPutOneName, and NWSMCloseName to
insert the path information into a selection list. See WNSMTSGetTargetSelectionTypeStr for an
example of these functions.

Example

Assume a user includes the following data sets in a backup session:
On Linux:
/nssvol/home/admin

where /nssvol/home/admin is a full path to a parent. These are the relevant fields of
NWSM_SELECTION_LIST and the Selection List:

selection 1:
selectionType = NWSM PARENT TO BE INCLUDED

count = 3

namePositions = 1, 8, 13

separatorPositions = 0, 7, 12

nameLength = 18

name [nameLength] = "/nssvol/home/admin"™ + "\0’
On NetWare:

SYS:SYSTEM/PROTO/
SYS:PUBLIC/BIN/PCONSOLE.EXE

BINDERY
Employee.Department.Company.Country

where SYS:SYSTEM/PROTO/ is a full path to a parent, SYS:PUBLIC/PCONSOLE.EXE is a full
path to a child, BINDERY is a TSA defined resource, and Employee.Department. Company.Country
is a path to a Directory Services object.

These are the relevant fields of NWSM_SELECTION_LIST and the Selection List:

selectionCount = 3
selection 1:
selectionType = NWSM PARENT TO BE INCLUDED
count = 3
namePositions = 0, 4, 11
separatorPositions = 3, 10, 16
nameLength = 18
name [nameLength] = “SYS:SYSTEM/PROTO/” + "\0’

selection 2:
selectionType = NWSM CHILD TO BE INCLUDED

count = 4
namePositions = 0, 4, 11, 15
separatorPositions = 3, 10, 14, O

nameLength = 28
name [nameLength] =
“SYS:PUBLIC/BIN/PCONSOLE.EXE” + "\0’
selection 3:
selectionType = NWSM TSA DEFINED RESOURCE

176 NDK: SMS Developer Components

count = 0

namePositions = n/a

separatorPositions = n/a

namelLength = 8

name [nameLength] = “BINDERY” + ’\0’
selection 4:

selectionType = NWSM DIRECTORY NAME SPACE

count = 4

namePositions = 27, 20, 9, O

separatorPositions = 0, 26, 19, 8

namelLength = 8

name [nameLength] = Employee.Department.Company.Country +’\0’

The name position and separator position array size are always equal, regardless of the number of
path nodes and separators in the path. Selection two shows that the last value of the separator
position array is zero which indicates that there is no last separator and that the path contains a child.
Selection three shows that the name position and separator position arrays are not used because the
path contains only one node. Selection four shows a reversed path. The indices in both position
arrays are reversed because the first index value must indicate the beginning of the most significant
path node or separator and the second index value must indicate the next significant path node or
separator.

Target Services Structures 177

STRING_BUFFER

Syntax

typedef struct

{

UINT16 size;

char string[1l];
} STRING_BUFFER;

Fields

size

Specifies the amount of memory (in bytes) allocated for string.

string
Specifies an array of one character.
Remarks

string can be declared as a NULL-terminated string array as follows:
#define SIZE 32

STRING BUFFER *s;
s = (STRING BUFFER*)malloc (sizeof (STRING BUFFER) +SIZE);

s->size = SIZE + 1;
strcpy(s->string, string);

178 NDK: SMS Developer Components

UINT16_BUFFER

Is used by NWSMTSParseDataSetName.

Syntax

typedef struct

{
UINT16 size;
UINT16 buffer[1];
} UINT16_BUFFER;

Fields

size

Specifies the size (in bytes) of buffer.

buffer

Specifies user-specific data.

Remarks

buffer can be declared as a variable-length array of unsigned integers as follows:

#define ARRAY SIZE 10
UINT16 BUFFER *ij;

i=(UINT16_ BUFFER

*)malloc (sizeof (UINT16 BUFFER)+ (sizeof (UINT16)*ARRAY SIZE));
i—>size=sizeof(UINTl6)*ARRAY_SIZE+1;

Target Services Structures 179

180 NDK: SMS Developer Components

Utility Library Concepts

This documentation describes Utility Library, its functions, and features.

¢ Section 5.1, “DOS Date and Time Format,” on page 181
¢ Section 5.2, “Unix Time Format,” on page 181

¢ Section 5.3, “Path String Formats,” on page 181

¢ Section 5.4, “Records,” on page 182

¢ Section 5.5, “Data Types,” on page 182

¢ Section 5.6, “Other Documents,” on page 182

¢ Section 5.7, “Extensions,” on page 182

5.1 DOS Date and Time Format

The DOS date and time value is an unsigned 32-bit value divided into six fields as follows:

Wear Tlowithe I Lraye Hinres I DTivote s I EBieconds

[[owe [[[[[mwz [[[[[out [[]][mmo]]

BiTTEI BJEI

The legal values for each field is listed in the following table.

Field Value

Year Offset from 1980 (e.g., decimal 10 is 1990)
Months 1-12

Days 1-31

Hours 0-23

Minutes 0-59

Biseconds 0-29

Each bisecond indicates two seconds.

5.2 Unix Time Format

The Unix date and time format is contained in an unsigned 32-bit field and contains the number of
seconds since Greenwich Mean Time (GMT), January 1, 1970.

5.3 Path String Formats

NetWare Macintosh path strings have the following format:

“volume: :dir:dir:file”

Utility Library Concepts 181

NetWare DOS, OS/2, FTAM, and NFS path strings have the following format:
“volume:dir/dir/file”

Linux NFS path strings have the following format:
/dir/dir/file

5.4 Records

A record consists of three SIDF objects: the data set header, the data set information, and the data set
data. A subrecord consists of the data set subheader plus the remaining data from the data set
information and/or data set data (data that could not fit into the record). The terms record and
subrecord are used only when referring to NWSMSetNewRecordHeader,
NWSMUpdateRecordHeader, and NWSMGetRecordHeaderOnly.

5.5 Data Types

The utility library uses the following data types:

BUFFER unsigned char

BUFFERPTR unsigned char *

CCODE unsigned long, 4 bytes

LSTRING length (1 byte) preceded char array
NWBOOLEAN short, 2 bytes

STRING NULL terminated unsigned char array
UINTS8 unsigned char, 1 byte

INT16 signed short, 2 bytes

UINT16 unsigned short, 2 bytes

UINT32 unsigned long, 4 bytes

5.6 Other Documents
Standard ECMA-208 is available free of charge from:

+ ECMA,114 Rue du Rhone, CH-1204 Geneva, Switzerland

+ Fax:+41 22 849.60.01

¢ Internet:helpdesk@ecma.ch

¢ It's also available as the E208-DOC.EXE or E208-PSC.EXE file from ECMANEWS.

5.7 Extensions

An extension contains TSA specific encoded data. TSAs can return relevant information regarding
data sets that cannot be represented by the existing structures and their field definitions using
extensions.

An extension is returned as a size, buffer pair. The size holds the number of encoded bytes of
information in the buffer. All extension functions require the buffer and size parameters to process
the extensions.

Each extension is represented by a extension tag and a tag version. the extension tag is used to
denote the type of extension that is returned and the version is used to denote the version of the

182 NDK: SMS Developer Components

extension. Extension versions are provided to have the capability to extend existing tags without
disrupting existing applications usage of older versions of the same tag.

As extension information for some tags can have dynamic fields, all extension functions allocate the
extension pointer and require a close of the extension to free the allocated resources.

Extension structure provides the extension information as a void pointer and hence can be type
casted to the appropriate structure for accessing the structure fields.

Utility Library Concepts 183

184 NDK: SMS Developer Components

Utility Library Functions

This section lists the Utility Library functions and describes their purpose, syntax, parameters, and
return values.
¢ Section 6.1, “Date and Time Functions,” on page 185
¢ Section 6.2, “Data Set Name Functions,” on page 198
¢ Section 6.3, “Extension Functions,” on page 218
¢ Section 6.4, “List Functions,” on page 225
¢ Section 6.5, “Path Functions,” on page 229
¢ Section 6.6, “Miscellancous Functions,” on page 257
¢ Section 6.7, “SIDF Functions,” on page 260
¢ Section 6.8, “SMDF Functions,” on page 276
¢ Section 6.9, “SMDR Functions,” on page 296

6.1 Date and Time Functions

Date and Time functions pack, unpack, and convert date and time data to DOS, UNIX, ECMA
formats for DOS and UNIX file systems. They also provide the capability to check for the valid date
and time and retrieve the current date and time.

¢ “NWSMCheckDateAndTimeRange” on page 186

+ “NWSMDOSTimeToECMA” on page 187

+ “NWSMECMATimeCompare” on page 188

+ “NWSMECMAToDOSTime” on page 189

+ “NWSMECMAToUnixTime” on page 190

+ “NWSMGetCurrentDateAndTime” on page 191

* “NWSMPackDate” on page 192

* “NWSMPackDateTime” on page 193

+ “NWSMPackTime” on page 194

+ “NWSMUnixTimeToECMA” on page 195

* “NWSMUnpackDate” on page 196

¢ “NWSMUnPackDateTime” on page 197

¢ “NWSMUnpackTime” on page 198

Utility Library Functions 185

NWSMCheckDateAndTimeRange

Compares a date and time value against a date and time range.

Syntax

#include <smsutapi.h>

CCODE NWSMCheckDateAndTimeRange (
UINT32 firstDateAndTime,
UINT32 lastDateAndTime,
UINT32 compareDateAndTime) ;

Parameters

firstDateAndTime
(IN) Specifies the starting date and time value in DOS date and time format.

lastDateAndTime
(IN) Specifies the ending date and time value in DOS date and time format.

compareDateAndTime

(IN) Specifies the date and time value to be compared against the starting and ending values in
DOS date and time format.

Return Values

The following table lists the return values associated with the function.

TRUE compareDateAndTime is out of bounds.
FALSE compareDateAndTime is within bounds.
Remarks

NWSMCheckDateAndTimeRange assumes that the input values are correct. Zero specifies no
beginning or ending boundary and FALSE will be returned.

See Also

NWSMGetCurrentDateAndTime, NWSMPackDateTime

186 NDK: SMS Developer Components

NWSMDOSTimeToECMA

Converts a DOS format date and time value to ECMA's local date and time format.

Syntax

#include <smsutapi.h>
UINT32 NWSMDOSTimeToECMA (

UINT32 dosDateTime,
ECMATime *ecmaTime) ;

Parameters

dosDateTime

(IN) Specifies the DOS packed date and time value to convert.

ecmaTime
(OUT) Points to the ECMA equivalent of dosDateTime.

Return Values

NWSMDOSTimeToECMA always returns zero.

Utility Library Functions 187

NWSMECMATimeCompare

Compares two ECMA time values and indicates if they are the same, less than, or greater than one
another.

Syntax

#include <smsutapi.h>
int NWSMECMATimeCompare (

ECMATime *ECMATimel,
ECMATime *ECMATime?2);

Parameters

ECMATimel
(IN) Points to the time to compare against ECMATime2.

ECMATime2
(IN) Points to the time to compare against ECMATimel.

Return Values

The following table lists the return values associated with the function.

1 ECMATime1 is greater than ECMATime2.
0 ECMATime1 equals ECMATime2.

-1 ECMATime1 is less than ECMATime2.
0xF801 ECMA_TIME_ZONE_UNKNOWN (-2047)
Remarks

ECMA TIME ZONE UNKNOWN is returned if either, or both, time zones of ECMATimel and
ECMATime2 are unknown.

188 NDK: SMS Developer Components

NWSMECMAToDOSTime

Converts an ECMA time value to a DOS packed date and time value.

Syntax

#include <smsutapi.h>
CCODE NWSMECMAToDOSTime (

ECMATime *ecmaTime,
UINT32 *dosTime) ;

Parameters

ECMATime
(IN) Points to the ECMA time value to convert.

dosTime
(OUT) Points to the DOS packed date and time equivalent of ECMATime.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
Nonzero Cannot convert ECMATime to a valid DOS time value.
Remarks

If ECMATime contains a date value that is before 1980, dosTime returns zero and
NWSMECMAToDOSTime returns a nonzero value.

Utility Library Functions 189

NWSMECMAToUnixTime

Converts an ECMA date and time value to a Unix time value.

Syntax

#include <smsutapi.h>

CCODE NWSMECMAToUnixTime (
ECMATime *ecmaTime,

UINT32 *unixTime,
INT32 *tzOffset);
Parameters
ecmaTime

(IN) Points to the ECMA date and time value to convert.

unixTime

(OUT) Points to the Unix time equivalent of ecmaTime.

tzOffset
(OUT) Points to the offset in minutes from Coordinated Universal Time (CUT).

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
Nonzero Cannot convert ecmaTime to valid Unix time.
Remarks

If ecmaTime.typeAndTimeZone contains an invalid type, it is set to
ECMA _TIME ZONE UNKNOWN.

If unixTime contains local time, tzOffset contains the offset from Coordinated Universal Time.
Otherwise tzOffset is set to zero.

If ECMATime contains a value before 1970, unixTime returns 0 and NWSMECMAToUnixTime
returns a nonzero value.

tzOffset is always zero if unixTime contains a CUT value, and nonzero if unixTime contains a local
time value.

See Also

NWSMUnixTimeToECMA (page 195)

190 NDK: SMS Developer Components

NWSMGetCurrentDateAndTime

Returns the current date and time information into a DOS packed date and time value.

Syntax

#include <smsutapi.h>

UINT32 NWSMGetCurrentDateAndTime (
void) ;

Return Values

If NWSMGetCurrentDateAndTime is successful, it returns a DOS packed date and time value.

Utility Library Functions 191

NWSMPackDate

Packs separate date values into a DOS packed date value.

Syntax

#include <smsutapi.h>
UINT16 NWSMPackDate (
UINT16 year,

UINT16 month,
UINT16 day) ;

Parameters

year

(IN) Specifies the year value, in DOS date and time format, to pack (minimum value is 1980).

month

(IN) Specifies the month value, in DOS date and time format, to pack (1-12).

day
(IN) Specifies the day value, in DOSdate and time format, to pack (1-31).

Return Values

If NWSMPackDate is successful, it returns the packed date.

Remarks

NWSMPackDate returns the year, month, and day as a 16-bit DOS packed value as follows:
yyyyyyymmmmddddd

NWSMPackDate assumes that the input values are correct.

See Also

NWSMUnpackDate (page 196)

192 NDK: SMS Developer Components

NWSMPackDateTime

Packs the date and time information into a DOS packed date and time value.

Syntax

#include <smsutapi.h>

UINT32 NWSMPackDateTime (
UINT16 year,
UINT16 month,
UINT16 day,
UINT16 hours,
UINT16 minutes,
UINT16 seconds) ;

Parameters

year

(IN) Specifies the year value to pack (minimum value is 1980).

month
(IN) Specifies the month value to pack (1-12).

day
(IN) Specifies the day value to pack (1-31).

hours
(IN) Specifies the hour value to pack (0-23).

minutes
(IN) Specifies the minute value to pack (0-59).

seconds
(IN) Specifies the seconds value to pack (0-59).

Return Values

If NWSMPackDateTime is successful, it returns a DOS packed date and time.

Remarks

NWSMPackDateTime assumes that the input values are correct.

Do not divide seconds by two.

See Also

NWSMUnPackDateTime (page 197)

Utility Library Functions 193

NWSMPackTime

Packs time information into a DOS packed time value.

Syntax

#include <smsutapi.h>

UINT1l6 NWSMPackTime (
UINT16 hours,
UINT16 minutes,
UINT16 seconds) ;

Parameters

hours
(IN) Specifies the hour value to pack (0-23).

minutes

(IN) Specifies the minute value to pack (0-59).

seconds

(IN) Specifies the number of seconds to pack.

Return Values

If NWSMPackTime is successful, it returns the DOS packed time value.

Remarks

NWSMPackTime returns a DOS packed time value in a 16-bit variable as follows:
hhhhhmmmmmmbbbbb

where

h = hours
m = minutes
b= biseconds

NWSMPackTime assumes that all input values are correct.

Do not divide seconds by two.

See Also

NWSMUnpackTime (page 198)

194 NDK: SMS Developer Components

NWSMUnixTimeToECMA

Converts a Unix local or Coordinated Universal Time (CUT) time value to ECMA date and time

format.

Syntax
#include <smsutapi.h>

CCODE NWSMUnixTimeToECMA (
UINT32 unixTime,
ECMATime *ECMATime,
NWBOOLEAN32 local);

Parameters

unixTime

(IN) Specifies the Unix local or CUT time value.
ECMATime

(OUT) Points to the converted time value in ECMA date and time format.

local

(IN) Specifies the time format flag:

TRUE Local Time
FALSE CUT Time

Return Values

NWSMUnixTimeToECMA always returns zero.

Remarks

NWSMUnixTimeToECMA does not convert local time to CUT, or vice-versa and accounts for day

light savings.

If unixTime contains a CUT value, ECMATime.typeAndTimeZone is set to zero.

See Also

NWSMECMAToUnixTime (page 190)

Utility Library Functions 195

NWSMUnpackDate

Unpacks a DOS packed date value into its separate year, month, and day values.

Syntax

#include <smsutapi.h>

void NWSMUnPackDate (
UINT16 date,
UINT1l6 *year,
UINT16 *month,
UINT16 *day);

Parameters

date
(IN) Specifies he date and time to unpack in DOS date and time format.

year

(OUT) Points to the unpacked year value.

month
(OUT) Points to the unpacked month value.

day
(OUT) Points to the unpacked day value.

Remarks

NWSMUnPackDate assumes that the input value is correct.

See Also

NWSMPackDate (page 192)

196 NDK: SMS Developer Components

NWSMUnPackDateTime

Unpacks a DOS packed date and time value into separate date and time values.

Syntax

#include <smsutapi.h>

void NWSMUnPackDateTime (
UINT32 dateTime,
UINT1l6 *year,
UINT16 *month,
UINT1l6 *day,
UINT16 *hours,
UINT16 “*minutes,
UINT16 *seconds);

Parameters

dateTime

(IN) Specifies the date and time value to unpack in DOS date and time format.

year

(OUT) Points to the unpacked year value.

month

(OUT) Points to the unpacked month value.

day
(OUT) Points to the unpacked day value.

hours

(OUT) Points to the unpacked hours value.

minutes

(OUT) Points to the unpacked minutes value.

seconds

(OUT) Points to the unpacked seconds value.

Remarks

NWSMUnPackDateTime assumes that the input value is correct.

Do not divide seconds by two.

See Also

NWSMPackDateTime (page 193)

Utility Library Functions 197

NWSMUnpackTime

Unpacks a DOS packed time value into its separate hour, minute, and second values.

Syntax

#include <smsutapi.h>

void NWSMUnPackTime (
UINT16 time,
UINT16 *hours,
UINT16 “*minutes,
UINT16 *seconds);

Parameters
time
(IN) Specifies the time value to unpack in DOS time format.

hours
(OUT) Points to the unpacked hour value.

minutes

(OUT) Points to the unpacked hour value.

seconds

(OUT) Points to the unpacked seconds value.

Remarks

NWSMUnPackTime assumes that the input value is correct.

Do not divide seconds by two.

See Also

NWSMPackTime (page 194)

6.2 Data Set Name Functions

Data Set Name functions parse and build the NWSM_DATA SET NAME LIST and
NWSM_SELECTION_LIST structures. The Data Set Name functions support maximum of 255
names or paths.

Data Set Name functions use the following definitions:
#define VALID O0x2AAAAAAAL
#define INVALID 0x15555555L

198 NDK: SMS Developer Components

Context information for each data set name list or selection list is kept in a list handle. valid contains
two values, VALID or INVALID, which indicates if the structure is still allocated (VALID), or
previously released (INVALID).

+ “NWSMCloseName” on page 200

+ “NWSMGetDataSetName” on page 201

¢ “NWSMGetFirstName” on page 202

+ “NWSMGetNextName” on page 204

* “NWSMGetOneName” on page 206

¢ “NWSMPutFirstLName” on page 207

¢ “NWSMPutFirstName” on page 209

+ “NWSMPutNextLName” on page 211

¢+ “NWSMPutNextName” on page 213

¢+ “NWSMPutOneLName” on page 215

¢+ “NWSMPutOneName” on page 217

Utility Library Functions 199

NWSMCloseName

Prematurely ends the parsing started by calling NWSMGetFirstName , or ends the name insertion
process started by calling NWSMPutFirstName or NWSMPutFirstLName .

Syntax

#include <smsutapi.h>

CCODE NWSMCloseName (
SMS HANDLE SM HUGE *handle);

Parameters

handle

(IN) Points to the name handle set by calling NWSMGetFirstName, NWSMPutFirstName, or
NWSMPutFirstLName.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFBFFFF NWSMUT _INVALID_HANDLE

200 NDK: SMS Developer Components

NWSMGetDataSetName

Returns the data set name in the specified name space type.

Syntax

#include <smsutapi.h>

CCODE NWSMGetDataSetName (
void HUGE *pbuffer,
UINT32 nameSpaceType,
NWSM DATA SET NAME HUGE *name) ;

Parameters

buffer

(IN) Points to the NWSM_DATA SET NAME LIST or NWSM_SELECTION_LIST
structure and accompanying name list.

nameSpaceType

(IN) Specifies the name space type of name (see “nameSpaceType Values” on page 347).

name

(OUT) Points to the data set name as it appears in nameSpaceType.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFD NWSMUT _INVALID_PARAMETER
OxFFFBFFFB NWSMUT_OUT_OF _MEMORY
OxFFFBFFFC NWSMUT_NO_MORE_NAMES
See Also

NWSMGetNextName (page 204)

Utility Library Functions 201

NWSMGetFirstName

Returns the first data set name contained in NWSM_DATA SET NAME LIST or
NWSM_SELECTION_LIST.

Syntax

#include <smsutapi.h>

CCODE NWSMGetFirstName (

void SM_HUGE *buffer,
NWSM DATA SET NAME SM HUGE *name,
SMSiHANDLE SMiHUGE *handle) ;
Parameters
buffer

(IN) Points to the NWSM_DATA SET NAME LIST or NWSM_SELECTION_LIST
structure plus its accompanying name list.

name
(OUT) Points to the data set name.

handle

(OUT) Points to the name handle used for all subsequent get name functions.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFC NWSMUT_NO_MORE_NAMES
OxFFFBFFFD NWSMUT _INVALID_PARAMETER
OxFFFBFFFB NWSMUT_OUT_OF_MEMORY
Remarks

NWSMGetFirstName returns the first name contained in buffer. To get the next name in the list, call
NWSMGetNextName. To end the retrieval of data set names, call NWSMCloseName.

buffer could contain a list of terminal path names, full path names, or a single TSA defined object.
If NWSMGetFirstName returns NWSMUT NO_MORE NAMES, do not call NWSMCloseName.

If the creator name space was requested when buffer was built, name contains the data set name as it
appears under that name space.

202 NDK: SMS Developer Components

See Also

NWSMCloseName (page 200), NWSMGetNextName (page 204)

Utility Library Functions 203

NWSMGetNextName

Continues the data set name parsing process started by calling NWSMGetFirstName .

Syntax

#include <smsutapi.h>
CCODE NWSMGetNextName (

SMS_HANDLE SM_HUGE *handle,
NWSM _DATA SET NAME SM HUGE *name) ;

Parameters

handle
(IN) Points to the name handle returned by NWSMGetFirstName.

name

(OUT) Points to the data set name information.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

O0xFFFBFFFD NWSMUT_INVALID_PARAMETER
OxFFFBFFFF NWSMUT _INVALID_HANDLE
OxFFFBFFFC NWSMUT_NO_MORE_NAMES
Remarks

NWSMGetNextName returns the next name contained in buffer.

To close handle, call NWSMCloseName. handle is automatically closed when
NWSMGetNextName returns NWSMUT NO MORE NAMES.

See Also

NWSMCloseName (page 200), NWSMGetFirstName (page 202)

NWSMGetNextName Example

#include <smsutapi.h>
CCODE ccode;

UINT32 HUGE handle
NWSM DATA SET NAME HUGE name;

204 NDK: SMS Developer Components

NWSM DATA SET NAME LIST *dataSetList;
void HUGE *buffer;

buffer = dataSetList;

if ((ccode = NWSMGetFirstName (buffer, &name, &handle)) == 0)
{

while ((ccode = NWSMGetNextName (&handle, &name)) == 0)
{

}
if (!ccode)
NWSMCloseName (&handle) ;

Utility Library Functions 205

NWSMGetOneName

Returns the first data set name from a buffer.

Syntax

#include <smsutapi.h>

CCODE NWSMGetOneName (
void HUGE *pbuffer,
NWSM DATA SET NAME HUGE *name) ;

Parameters

buffer

(IN) Points to the NWSM_DATA SET NAME LIST or NWSM_SELECTION_LIST
structure plus its accompanying name list.

name

(OUT) Points to the data set name.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFD NWSMUT _INVALID_PARAMETER
OxFFFBFFFB NWSMUT_OUT_OF_MEMORY
OxFFFBFFFC NWSMUT_NO_MORE_NAMES
See Also

NWSMGetFirstName (page 202), NWSMGetNextName (page 204)

206 NDK: SMS Developer Components

NWSMPutFirstLName

Clears the name list and places one data set name into a date set name list or a selection list.

Syntax

#include <smsutapi.h>

CCODE NWSMPutFirstLName (
void SM HUGE **buffer,

UINT32 nameSpaceType,
UINT32 selectionType,
NWBOOLEAN reverseOrder,
void *sepl,

void *sep2,

UINT32 namelength,
void *name,

SMS_HANDLE SM_HUGE *handle) ;

Parameters

buffer
(IN/OUT) Points to the NWSM_DATA SET NAME LIST or NWSM_SELECTION_LIST
structure to receive the data set name.

nameSpaceType

(IN) Specifies the name space type of name (see “nameSpaceType Values” on page 347).

selectionType

(IN) Specifies the selection type for a selection list (see “selectionType Values” on page 348).

reverseOrder
(IN) Specifies the order of the characters in name, sepl, and sep2, when placed into buffer as
returned by NWSMTSGetNameSpaceTypelnfo:

TRUE Reverse the names
FALSE Do not reverse the names

sepl
(IN) Points to the first separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

sep2
(IN) Points to the second separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

nameLength

(IN) Specifies the number of bytes within name to put into the list.

Utility Library Functions 207

name

(IN) Points to the name of the data set as it exists in the specified name space.

handle

(OUT) Points to the name handle to use for subsequent name insertion functions.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFD NWSMUT_INVALID_PARAMETER: name is a NULL pointer.
Also returned if Turbo C or Microsoft C is used and the increase
in buffer size is larger than 32,767 bytes.

OxFFFBFFFB NWSMUT_OUT_OF_MEMORY

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The list of names or paths
is greater than 255.

Remarks

NWSMPutFirstLName is similar to NWSMPutFirstName. However, NWSMPutFirstLName
requires the length of the data set name.

NWSMPutFirstLName also supports data set names in Unicode format.

If there is not enough space for the name, the buffer is resized. If buffer is set to NULL, memory is
allocated to it. You are responsible to free the memory allocated by buffer.

If buffer contains a data set name list, selectionType must be set to zero. If buffer contains a
selection list, selectionType must be set to a selection type.

If reverseOrder is TRUE, C:\\SYSTEM\TEMP.EXE would be EXE. TEMP\SYSTEM\\:C.

See Also

NWSMCloseName (page 200), NWSMPutFirstName (page 209), NWSMPutNextLName
(page 211), NWSMPutNextName (page 213)

208 NDK: SMS Developer Components

NWSMPutFirstName

Places the first data set name into a NWSM_DATA NAME LIST or NWSM_SELECTION LIST
structure.

Syntax

#include <smsutapi.h>

CCODE NWSMPutFirstName (
void SM HUGE **pbuffer,

UINT32 nameSpaceType,
UINT32 selectionType,
NWBOOLEAN reverseOrder,
void *sepl,
void *sep2,
void *name,

SMS HANDLE SM HUGE *handle) ;

Parameters

buffer
(IN/OUT) Points to the NWSM_DATA SET NAME LIST or NWSM_SELECTION_LIST
structure to receive the data set name.

nameSpaceType

(IN) Specifies the name space type of name (see “nameSpaceType Values” on page 347).

selectionType

(IN) Specifies the selection type for a selection list (see “selectionType Values” on page 348).

reverseOrder
(IN) Specifies the order of the characters in name, sepl, and sep2, when placed into buffer as
returned by NWSMTSGetNameSpaceTypelnfo:

TRUE Reverse the names
FALSE Do not reverse the names

sepl
(IN) Points to the first separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

sep2
(IN) Points to the second separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

name

(IN) Points to the name of the data set as it exists in the specified name space.

Utility Library Functions 209

handle

(OUT) Points to the name handle to use for subsequent name insertion functions.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFD NWSMUT_INVALID_PARAMETER: name is NULL.
OxFFFBFFFB NWSMUT_OUT_OF_MEMORY

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The list of names or paths

is greater than 255.

Remarks

NWSMPutFirstName allocates memory for buffer, clears the existing name list, and inserts one data
set name into the name list. All appropriate fields in the buffer are updated to indicate the number of
data set names in the name list.

NWSMPutFirstName can build a selection list or data set name list for NWSMTSScanDataSetBegin
and NWSMTSScanDataSetNext.

NWSMPutFirstName is similar to NWSMPutFirstLName. However, NWSMPutFirstLName
requires the length of the data set name.

NWSMPutFirstName also supports data set names in Unicode format.

If there is not enough space for the name, the buffer is resized. If buffer is set to NULL, memory is
allocated to it. You are responsible to free the memory allocated by buffer.

If buffer contains a data set name list, selectionType must be set to zero. If buffer contains a
selection list, selectionType must be set to a selection type.

If reverseOrder is TRUE, C:\\SYSTEM\\TEMP.EXE would be EXE. TEMP\SYSTEM\\:C.

See Also

NWSMCloseName (page 200), NWSMPutFirstLName (page 207), NWSMPutNextLName
(page 211), NWSMPutNextName (page 213)

210 NDK: SMS Developer Components

NWSMPutNextLName

Continues the data set name insertion process started by calling NWSMPutFirstLName and places
the next data set name into a date set name list or a selection list.

Syntax
#include <smsutapi.h>

CCODE NWSMPutNextLName (

void SM HUGE **puffer,
SMS HANDLE SM HUGE *handle,
UINT32 nameSpaceType,
UINT32 selectionType,
NWBOOLEAN reverseOrder,
void *sepl,
void *sep2,
UINT32 namelength,
void *name) ;
Parameters
buffer

(IN/OUT) Points to the NWSM_DATA SET NAME LIST or NWSM_SELECTION_LIST
structure to receive the data set name.

handle
(IN) Points to the name handle returned by NWSMPutFirstName or NWSMPutFirstLName.

nameSpaceType

(IN) Specifies the name space type of name (see “nameSpaceType Values” on page 347).

selectionType
(IN) Specifies the selection type for a selection list (see “selectionType Values” on page 348).

reverseOrder

(IN) Specifies the order of the characters in name, sepl, and sep2, when placed into buffer as
returned by NWSMTSGetNameSpaceTypelnfo:

TRUE Reverse the names
FALSE Do not reverse the names
sepl

(IN) Points to the first separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

sep2

(IN) Points to the second separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

Utility Library Functions 211

nameLength

(IN) Specifies the number of bytes within name to put into the list.

name

(IN) Points to the name of the data set as it exists in the specified name space.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFD NWSMUT_INVALID_PARAMETER

OxFFFBFFFB NWSMUT_OUT_OF_MEMORY

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The list of names or paths is
greater than 255.

Remarks

NWSMPutNextLName is similar to NWSMPutNextName. However, NWSMPutNextLName
requires the length of the data set name.

NWSMPutNextLName also supports data set names in Unicode format.

If there is not enough space for the name, the buffer is resized. If buffer is set to NULL, memory is
allocated to it. You are responsible to free the memory allocated by buffer.

If buffer contains a data set name list, selectionType must be set to zero. If buffer contains a
selection list, selectionType must be set to a selection type.

If reverseOrder is TRUE, C:\\SYSTEM\TEMP.EXE would be EXE. TEMP\SYSTEM\\:C.

See Also

NWSMCloseName (page 200), NWSMPutFirstName (page 209), NWSMPutNextName (page 213)

212 NDK: SMS Developer Components

NWSMPutNextName

Continues the data set name insertion process started by calling NWSMPutFirstName and places the
next data set name into a date set name list or a selection list.

Syntax

#include <smsutapi.h>

CCODE NWSMPutNextName (

void SM HUGE **puffer,
SMS HANDLE SM HUGE “*handle,
UINT32 nameSpaceType,
UINT32 selectionType,
NWBOOLEAN reverseOrder,
void *sepl,
void *sep2,
void *name) ;
Parameters
buffer

(IN/OUT) Points to the NWSM_DATA SET NAME LIST or NWSM_SELECTION_LIST
structure to receive the data set name.

handle
(IN) Points to the name handle returned by NWSMPutFirstName or NWSMPutFirstLName.

nameSpaceType

(IN) Specifies the name space type of name (see “nameSpaceType Values” on page 347).

selectionType
(IN) Specifies the selection type for a selection list (see “selectionType Values” on page 348).

reverseOrder
(IN) Specifies the order of the characters in name, sepl, and sep2, when placed into buffer as
returned by NWSMTSGetNameSpaceTypelnfo:

TRUE Reverse the names
FALSE Do not reverse the names

sepl
(IN) Points to the first separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

sep2

(IN) Points to the second separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

Utility Library Functions 213

name

(IN) Points to the name of the data set as it exists in the specified name space.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFD NWSMUT _INVALID_PARAMETER: handle is invalid or name is
NULL.

OxFFFBFFFB NWSMUT_OUT_OF_MEMORY

OxXFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The list of names or paths is

greater than 255.

Remarks

NWSMPutNextName increments the number of list entries by one.
To end the data set name insertion, call NWSMCloseName.

NWSMPutNextName is similar to NWSMPutNextLName. However, NWSMPutNextLName
requires the length of the data set name.

NWSMPutNextName also supports data set names in Unicode format.

If there is not enough space for the name, the buffer is resized. If buffer is set to NULL, memory is
allocated to it. You are responsible to free the memory allocated by buffer.

If buffer contains a data set name list, selectionType must be set to zero. If buffer contains a
selection list, selectionType must be set to a selection type.

If reverseOrder is TRUE, C:\\SYSTEM\TEMP.EXE would be EXE. TEMP\SYSTEM\\:C.

See Also

NWSMCloseName (page 200), NWSMPutFirstLName (page 207), NWSMPutNextLName
(page 211)

214 NDK: SMS Developer Components

NWSMPutOneLName

Places one data set name into a data set name list or a selection list.

Syntax

#include <smsutapi.h>

CCODE NWSMPutLOneName (
void HUGE **puffer,

UINT32 nameSpaceType,
UINT32 selectionType,
NWBOOLEAN reverseOrder,
void *sepl,
void *sep2,
UINT32 namelength,
void *name) ;
Parameters
buffer

(OUT) Points to the NWSM_DATA SET NAME LIST or NWSM_SELECTION LIST
structure to receive the data set name.

nameSpaceType
(IN) Specifies the name space type of name (see “nameSpaceType Values” on page 347).

selectionType

(IN) Specifies the selection type for a selection list (see “selectionType Values” on page 348).

reverseOrder
(IN) Specifies the order of the characters in name, sepl, and sep2, when placed into buffer as
returned by NWSMTSGetNameSpaceTypelnfo:

TRUE Reverse the names
FALSE Do not reverse the names
sepl

(IN) Points to the first separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

sep2

(IN) Points to the second separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

nameLength

(IN) Specifies the number of bytes within name to put into the list.

name

(IN) Points to the name of the data set as it exists in the specified name space.

Utility Library Functions 215

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFB NWSMUT_OUT_OF_MEMORY

OxFFFBFFFD NWSMUT_INVALID_PARAMETER

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The list of names or paths

is greater than 255.

Remarks

NWSMPutOneLLName is similar to NWSMPutOneName. However, NWSMPutOneLLName requires
the length of the data set name.

NWSMPutOneLName also supports data set names in Unicode format.

If there is not enough space for the name, the buffer is resized. If buffer is set to NULL, memory is
allocated to it. You are responsible to free the memory allocated by buffer.

If buffer contains a data set name list, selectionType must be set to zero. If buffer contains a
selection list, selectionType must be set to a selection type.

If reverseOrder is TRUE, C:\\SYSTEM\TEMP.EXE would be EXE. TEMP\SYSTEM\\:C.

See Also

NWSMPutOneName (page 217)

NWSMPutOneLName Example

#include <smsutapi.h>

CCODE ccode;

void HUGE *buffer;

UINT32 nameSpaceType, selectionType, len;
STRING sepl, sep2, name;

NWBOOLEAN reverseOrder;
len = strlen (name) ;

ccode = NWSMPutOneLName (&buffer, nameSpaceType, selectionType,
reverseOrder, sepl, sep2, len, name);

216 NDK: SMS Developer Components

NWSMPutOneName

Places one data set name into a data set name list or a selection list.

Syntax

#include <smsutapi.h>

CCODE NWSMPutOneName (
void HUGE **puffer,

UINT32 nameSpaceType,
UINT32 selectionType,
NWBOOLEAN reverseOrder,
void *sepl,
void *sep2,
void *name) ;
Parameters
buffer

(OUT) Points to the NWSM_DATA SET NAME LIST or NWSM_SELECTION LIST
structure to receive the data set name.

nameSpaceType
(IN) Specifies the name space type of name (see “nameSpaceType Values” on page 347).

selectionType

(IN) Specifies the selection type for a selection list (see “selectionType Values” on page 348).

reverseOrder

(IN) Specifies the order of the characters in name, sepl, and sep2, when placed into buffer as
returned by NWSMTSGetNameSpaceTypelnfo:

TRUE Reverse the names
FALSE Do not reverse the names

sepl

(IN) Points to the first separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

sep2

(IN) Points to the second separator used for paths in the specified name space as returned by
NWSMTSGetNameSpaceTypelnfo.

name

(IN) Points to the name of the data set as it exists in the specified name space.

Return Values

The following table lists the return values associated with the function.

Utility Library Functions 217

0x00000000 Successful

OxFFFBFFFB NWSMUT_OUT_OF_MEMORY

OxFFFBFFFD NWSMUT_INVALID_PARAMETER

OxFFFBFFFF NWSMUT_INVALID_HANDLE

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The list of names or paths

is greater than 255.

Remarks

NWSMPutOneName destroys the existing name list in buffer, puts one data set name into buffer,
and sets the name list count to one.

NWSMPutOneName is similar to NWSMPutOnelLName. However, NWSMPutOneLName requires
the length of the data set name.

NWSMPutOneName also supports data set names in Unicode format.
NWSMPutOneName can build the resourceName parameter for NWSMTSScanDataSetBegin.

If there is not enough space for the name, the buffer is resized. If buffer is set to NULL, memory is
allocated to it. You are responsible to free the memory allocated by buffer.

If buffer contains a data set name list, selectionType must be set to zero. If buffer contains a
selection list, selectionType must be set to a selection type.

If reverseOrder is TRUE, C:\\SYSTEM\TEMP.EXE would be EXE. TEMP\SYSTEM\\:C.

Set nameSpaceType to NWSM_TSA DEFINED RESOURCE if name was returned by
NWSMTSListTSResources.

6.3 Extension Functions

Extension information buffers are encoded in a byte array, the following extension functions parse
the encoding and return the information as an extension structure.

These functions build the NWSM_EXTENSION INFORMATION structure. The context
information regarding the extensions are kept in the list handle.

+* “NWSMCloseExtension” on page 219

+ “NWSMGetExtension” on page 220

+ “NWSMGetFirstExtension” on page 222

+ “NWSMGetNextExtension” on page 224

218 NDK: SMS Developer Components

NWSMCloseExtension

Prematurely ends the parsing started by NWSMGetFirstExtension. Also, used to free resources
allocated when processing extension information using NWSMGetExtension.

Syntax

#include <smsutapi.h>

CCODE NWSMCloseExtension (
SMS HANDLE SM HUGE *handle);

Parameters

handle

(IN) Points to the extension handle set by calling NWSMGetExtension or
NWSMGetFirstExtension.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFBFFFF NWSMUT _INVALID_HANDLE

Utility Library Functions 219

NWSMGetExtension

Returns the extension as specified by the extension tag.

Syntax

#include <smsutapi.h>

CCODE NWSMGetExtension (

void SM HUGE *pbuffer,
UINT32 size,
UINT32 extensionTag,
NWSM EXTENSION INFORMATION SM HUGE **extension,
SMS HANDLE *handle) ;
Parameters
buffer

(IN) Points to the start of the extension buffer.

size

(IN) Size of the extension buffer.

extensionTag

(IN) Specifies the required extension information tag.

extension

(OUT) Points to the required extension information.

handle

(OUT) Points to the extension handle, used to maintain context information.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

O0xFFFBFFFD NWSMUT_INVALID_PARAMETER
O0xFFFBFFFB NWSMUT_OUT_OF_MEMORY
OxFFFBFFF8 NWSMUT_NO_MORE_EXTENSIONS
Remarks

Extension information field info can contain pointer type fields and hence internal allocation are
made to return such elements. NWSMCloseExtension should be called to free the resources that are
allocated for such purpose.

On errors NWSMCloseExtension need not be called.

220 NDK: SMS Developer Components

buffer should point to the start of the extension buffer. The size parameter should be set to the byte
count of information present in the buffer parameter.

Application should copy the extension information as the pointer is reused by the call to get the next
extension. To free the extension buffer call NWSMCloseExtension.

See Also

NWSMGetFirstExtension, NWSMCloseExtension

Utility Library Functions 221

NWSMGetFirstExtension

Returns the first extension contained in buffer.

Syntax

#include <smsutapi.h>
CCODE NWSMGetFirstExtension (

void SM HUGE *pbuffer,
UINT32 *size,
NWSM_ EXTENSTION TINFORMATION SM_HUGE **extension,
SMS_HANDLE SM HUGE *handle) ;
Parameters
buffer

(IN) Points to the start of the extension buffer.

size

(IN) Size of the extension buffer.

extension

(OUT) Points to the required extension information.

handle

(OUT) Points to the extension handle, used to maintain context information.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFD NWSMUT _INVALID_PARAMETER
OxFFFBFFFB NWSMUT_OUT_OF_MEMORY
OxFFFBFFF8 NWSMUT_NO_MORE_EXTENSIONS
Remarks

NWSMGetFirstExtension returns the first extension encountered in buffer. To get the next extension
in buffer, call NWSMGetNextExtension. To end the retrieval of extensions call
NWSMCloseExtension.

buffer should point to the start of the extension buffer. The size parameter should be set to the byte
count of information present in the buffer parameter.

On errors NWSMCloseExtension need not be called.

222 NDK: SMS Developer Components

See Also

NWSMGetNextExtension, NWSMCloseExtension

Utility Library Functions 223

NWSMGetNextExtension

Continues the extension parsing process started by NWSMGetFirstExtension.

Syntax

#include <smsutapi.h>
CCODE NWSMGetNextExtension (

SMS_HANDLE SM_HUGE *handle,
NWSM_EXTENSION INFORMATION SM HUGE **extension);

Parameters

handle
(IN) Points to the extension handle as returned by NWSMGetFirstExtension.

extension

(OUT) Points to the extension information.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

O0xFFFBFFFD NWSMUT_INVALID_PARAMETER
O0xFFFBFFFB NWSMUT_OUT_OF_MEMORY
OxFFFBFFF8 NWSMUT_NO_MORE_EXTENSIONS
Remarks

NWSMGetNextExtension returns the next extension contained in buffer passed in to
NWSMGetFirstExtension.

On errors NWSMCloseExtension need not be called.
Using extension handles as obtained from NWSMGetExtension can lead to unpredictable results.

Application should copy the extension information as the pointer is reused by the call to get the next
extension. To free the extension buffer call NWSMCloseExtension.

See Also

NWSMGetFirstExtension

224 NDK: SMS Developer Components

6.4 List Functions

List functions manage a linked list(s). Each element of the list has a text descriptor field and another
information field in which any data can be stored.

+ “NWSMAppendToList” on page 226
+ “NWSMDestroyList” on page 227

* “NWSMGetListHead” on page 228
+ “NWSMiInitList” on page 229

Utility Library Functions 225

NWSMAppendToList

Appends an element to NWSM_LIST list.

Syntax

#include <smsutapi.h>

NWSM LIST *NWSMAppendToList (
NWSM LIST PTR *listPtr,

BUFFERPTR text,
void *otherInfo) ;

Parameters

listPtr

(IN) Points to the list to append (cannot be a NULL pointer).

text

(IN) Points to the text information to be added to a new element.

otherInfo

(IN) Points to the buffer containing information associated with text (optional).

Return Values

The following table lists the return values associated with the function.

Nonzero Successful, returns a pointer to the appended element.
NULL Out of memory
Remarks

NWSMAppendToList creates an element, copies text to the element, attaches otherInfo to the
element, and appends the element to the end of the list.

NWSMAppendToList assumes that list is valid.

listPtr was initialized by NWSMInitList.

See Also

NWSMDestroyList (page 227), NWSMInitList (page 229)

226 NDK: SMS Developer Components

NWSMDestroyList

Releases the memory associated with NWSM_LIST.

Syntax

#include <smsutapi.h>

void NWSMDestroyList (
NWSM LIST PTR *list);

Parameters
list

(IN) Points to a list initialized by NWSMInitList (cannot be NULL).

Remarks
Everything in the list, except the list head, is freed when NWSMDestroyList is called.

If the engine did not specify a free memory routine by calling NWSMInitList, NWSMDestroyList
will free the elements, but not the engine defined structures.

Utility Library Functions 227

NWSMGetListHead

Returns the first element in a list.

Syntax

#include <smsutapi.h>

NWSM LIST *NWSMGetListHead (
NWSM LIST PTR *1listPtr);

Parameters

listPtr
(IN) Points to a list initialized by NWSMInitList (cannot be a NULL pointer).

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
Nonzero Points to the first element in the list.
NULL The list is empty.

228 NDK: SMS Developer Components

NWSMinitList

Initializes a list head for an NWSM_LIST list, and sets the functions to use in the list.

Syntax

#include <smsutapi.h>

void NWSMInitList (
NWSM LIST PTR *1listPtr,
void (*freeRoutine)
(void *memoryPointer));

Parameters

listPtr
(IN/OUT) Points to an NWSM_LIST PTR structure.

freeRoutine

(IN) Points to the routine to free the memory associated with each element's otherInfo field.

Remarks

NWSMDestroyList uses NWSMInitList to help destroy the list.

NWSMilnitList initializes a list head structure as follows:

head = tail = NULL
sortProc = stricmp
freeProcedure = freeRoutine

You can set sortProc to another compare function.
To get the current list head, call NWSMGetListHead. To build the list, call NWSMAppendToList.

If the list element's otherInfo field contains a non-allocated value, freeRoutine must be set to NULL.
However, this routine will not free the memory allocated to otherInfo.

See Also

NWSMAppendToList (page 226), NWSMDestroyList (page 227)

6.5 Path Functions

Path functions remove a child node, return a pointer to the child node, qualify a path, verify a
NetWare DOS name, concatenate strings, etc.

+ “NWSMAllocGenericString” on page 231

+ “NWSMAllocString” on page 232

* “NWSMCatGenericString” on page 233

* “NWSMCatGenericStrings” on page 235

Utility Library Functions 229

* “NWSMCatString” on page 237

* “NWSMCatStrings” on page 239

+ “NWSMCopyGenericString” on page 241
+ “NWSMCopyString” on page 243

+ “NWSMFreeGenericString” on page 245
+ “NWSMFreeString” on page 246

* “NWSMGenericlsWild” on page 247

* “NWSMGenericStr” on page 248

* “NWSMGenericWildMatch” on page 250
* “NWSMIsWild” on page 252

+ “NWSMMatchName” on page 253

* “NWSMStr” on page 255

* “NWSMWildMatch” on page 256

230 NDK: SMS Developer Components

NWSMAIllocGenericString

Allocates or reallocates memory for a STRING BUFFER structure.

Syntax

#include <smsutapi.h>

STRING BUFFER *NWSMAllocGenericString(
UINT32 nameSpaceType,

STRING BUFFER **string,

INT32 size);

Parameters

nameSpaceType

Specifies the name space type of the source and destination strings (see “nameSpaceType
Values” on page 347).

string
(IN/OUT) Points to the new or reallocated buffer.

size

(IN) Specifies the size of the new or reallocated structure.

Return Values

The following table lists the return values associated with the function.

NULL Cannot reallocate memory.
Nonzero Reallocation is successful and the pointer points to string.
Remarks

NWSMAllocGenericString is an enhanced version of NWSMAllocString and it supports strings in
UTF-8 format.

You must free the memory allocated to buffer by calling NWSMFreeString.

If string is NULL, a new structure is allocated. Otherwise NWSMAllocGenericString assumes that
it is a valid pointer and reallocates more memory for string.

If string is not NULL, and size is less than or equal to zero, a standard increment size is added to the
structure's existing size or string is reallocated to the number of bytes specified by size.

The standard size is currently 256 bytes.

See Also

NWSMFreeString (page 246)

Utility Library Functions 231

NWSMAIllocString

Allocates or reallocates memory for a STRING_BUFFER structure.

Syntax

#include <smsutapi.h>

STRING_BUFFER *NWSMAllocString (
STRING BUFFER **string, INT16 size);

Parameters

string
(IN/OUT) Points to the new or reallocated buffer.

size

(IN) Points to the size of the new or reallocated structure.

Return Values

The following table lists the return values associated with the function.

NULL Cannot reallocate memory.
Nonzero Reallocation is successful and the pointer points to string.
Remarks

NOTE: This function is supported only for backward compatibility, the NWSMAIllocGenericString
function can be used instead of this, as it provides the same functionality.

You must free the memory allocated to buffer by calling NWSMFreeString.

If string is NULL, a new structure is allocated. Otherwise NWSMAIllocString assumes that it is a
valid pointer and reallocates more memory for string.

If string is not NULL, and size is less than or equal to zero, a standard increment size is added to the
structure's existing size or string is reallocated to the number of bytes specified by size.

The standard size is currently 256 bytes.

See Also

NWSMFreeString (page 246)

232 NDK: SMS Developer Components

NWSMCatGenericString

Appends a specified number of bytes from the source string to the destination string.

Syntax

#include <smsutapi.h>

void* NWSMCatGenericString (

UINT32 nameSpacetype,
STRING BUFFER **dest,
void *source) ;
Parameters
name SpaceType

(IN) Specifies the name space type of the source and destination strings (see “nameSpaceType
Values” on page 347).

dest
(IN/OUT) Points to the string to append.

source

(IN) Points to the string to append to the end of dest.

Return Values

The following table lists the return values associated with the function.

NULL Cannot concatenate the strings.
Nonzero The strings are concatenated and the pointer points to dest.string.
Remarks

NWSMCatGenericString supports strings in UTF-8 format and mult-byte formatting.
To free the string, call NWSMFreeString.

If dest is NULL, NWSMCatGenericString allocates memory for the string. If dest.string is too small
to contain the concatenated strings, NWSMCatGenericString frees the memory and allocates a new
structure with more memory.

See Also

NWSMCatStrings (page 239), NWSMFreeString (page 246), NWSMStr (page 255)

Utility Library Functions 233

NWSMCatGenericString Example

#include <smsutapi.h>

STRING resultString;

STRING BUFFER *dest = NULL;

char *source = “*.exe”, *destString = “/home/user/dirl”;
INT16 srclLen = -1;

UINT16 destlen;

destLen = strlen(destString);
dest = (STRING BUFFER *)malloc(sizeof (STRING BUFFER) + destLen);
dest->size = destlLen + 1;

strcpy (dest->string, destString);

resultString = NWSMCatString (&dest, source, srclen);

234 NDK: SMS Developer Components

NWSMCatGenericStrings

Concatenates a specified number of strings into a STRING_BUFFER structure.

Syntax

#include <smsutapi.h>

void* NWSMCatGenericStrings (

UINT32 nameSpaceType,
UINTS8 numStrings,
STRING BUFFER **dest,
void *srcl,
void *SYc2,...);
Parameters
nameSpaceType

(IN) Specifies the name space type of the source and destination strings (see “nameSpaceType
Values” on page 347).

numsStrings

(IN) Specifies the number of source strings to concatenate.

dest

(OUT) Points to the buffer to receive the concatenated strings.

srcl

(IN) Points to the first string to concatenate.

src2

(IN) Points to the second string to concatenate.

(IN) Points to other strings to concatenate.

Return Values

The following table lists the return values associated with the function.

NULL Cannot concatenate the strings.
Nonzero The strings are concatenated and the pointer points to dest.string.
Remarks

NWSMCatGenericStrings supports strings in UTF-8 format and mult-byte formatting.

To free the string, call NWSMFreeString.

Utility Library Functions 235

If dest is NULL, NWSMCatGenericStrings allocates memory for the string. If dest.string is too
small to contain the concatenated strings, NWSMCatGenericStrings frees the memory and allocates
a new structure with more memory.

See Also

NWSMCatStrings (page 239), NWSMFreeString (page 246), NWSMStr (page 255)

NWSMCatGenericStrings Example

#include <smsutapi.h>

STRING resultString;

UINTS8 numStrings = 2;

STRING BUFFER *dest = NULL;

char *destString = “/home/user/dirl”, *srcl = “dirl”, *src2 = “*.c”;
UINT16 destlen;

destlLen = strlen(destString);
dest = (STRING BUFFER *)malloc(sizeof (STRING BUFFER) + destLen);
dest->size = destLen + 1;

strcpy (dest->string, destString);

resultString = NWSMCatStrings (numStrings, &dest, srcl, src2);

236 NDK: SMS Developer Components

NWSMCatString

Appends a specified number of characters to a string.

Syntax

#include <smsutapi.h>

STRING NWSMCatString (
STRING_ BUFFER **dest,

void *source,
INT1l6 srclen) ;
Parameters
dest

(IN/OUT) Points to the string to append.

source

(IN) Points to the string to append to the end of dest.

srcLen

(IN) Specifies the length of source.

Return Values

The following table lists the return values associated with the function.

NULL Cannot concatenate the strings.
Nonzero The strings are concatenated and the pointer points to dest.string.
Remarks

NOTE: This function is supported only for backward compatibility, the NWSMCatGenericString

function can be used instead of this, as it provides the same functionality.

To free the string, call NWSMFreeString.

If dest is NULL, NWSMCatString allocates memory for the string. If dest.string is too small to
contain the concatenated strings, NWSMCatString frees the memory and allocates a new structure

with more memory.

If srcLen is set to -1, NWSMCatString calculates the length of source.

See Also

NWSMCatStrings (page 239), NWSMFreeString (page 246), NWSMStr (page 255)

Utility Library Functions 237

NWSMCatString Example

#include <smsutapi.h>

STRING resultString;

STRING BUFFER *dest = NULL;

char *source = “*.exe”, *destString = “/home/user/dirl”;
INT16 srclLen = -1;

UINT16 destLen;

destLen = strlen(destString);
dest = (STRING BUFFER *)malloc(sizeof (STRING BUFFER) + destLen);
dest->size = destlLen + 1;

strcpy (dest->string, destString);

resultString = NWSMCatString (&dest, source, srclen);

238 NDK: SMS Developer Components

NWSMCatStrings

Concatenates a specified number of strings into a STRING_BUFFER structure.

Syntax

#include <smsutapi.h>

STRING NWSMCatStrings (

UINTS8 numStrings,
STRING_ BUFFER **dest,
void *srcl,
void *sSrc2, ...);
Parameters
numsStrings

(IN) Specifies the number of source strings to concatenate.

dest

(OUT) Points to the buffer to receive the concatenated strings.

srcl

(IN) Points to the first string to concatenate.

src2

(IN) Points to the second string to concatenate.

(IN) Points to other strings to concatenate.

Return Values

The following table lists the return values associated with the function.

NULL Cannot concatenate the strings.
Nonzero The strings are concatenated and the pointer points to dest.string.
Remarks

NOTE: This function is supported only for backward compatibility, the NWSMCatGenericStrings
function can be used instead of this, as it provides the same functionality.

To free the string, call NWSMFreeString.

If dest is NULL, NWSMCatStrings allocates memory for the string. If dest.string is too small to
contain the concatenated strings, NWSMCatStrings frees the memory and allocates a new structure
with more memory.

Utility Library Functions 239

See Also

NWSMCatStrings (page 239), NWSMFreeString (page 246), NWSMStr (page 255)

NWSMCatStrings Example

#include <smsutapi.h>

STRING resultString;

UINT8 numStrings = 2;

STRING BUFFER *dest = NULL;

char *destString = “/home/user/dirl”, *srcl = “dirl”, *src2 = “*.c”;
UINT16 destlen;

destlLen = strlen(destString);
dest = (STRING BUFFER *)malloc(sizeof (STRING BUFFER) + destLen);
dest->size = destlLen + 1;

strcpy (dest->string, destString);

resultString = NWSMCatStrings (numStrings, &dest, srcl, src2);

240 NDK: SMS Developer Components

NWSMCopyGenericString

Copies the source string to the destination string.

Syntax

#include <smsutapi.h>

void* NWSMCopyGenericString (

UINT32 nameSpaceType,
STRING BUFFER **dest,
void *src) ;
Parameters
nameSpaceType

(IN) Specifies the name space type of the source and destination strings (see “nameSpaceType
Values” on page 347).

dest
(OUT) Points to the buffer to receive the copied string.

src

(IN) Points to the string to copy.

Return Values

The following table lists the return values associated with the function.

NULL Cannot copy the strings.
Nonzero The strings are copied and the pointer points to dest.string.
Remarks

NWSMCopyGenericString supports strings in UTF-8 format and mult-byte formatting.
To free the string, call NWSMFreeString.

If dest is NULL, NWSMCopyGenericString allocates memory for the string. If dest.string is too
small to contain the concatenated strings, NWSMCopyGenericString frees the memory and
allocates a new structure with more memory.

See Also

NWSMFreeString (page 246)

Utility Library Functions 241

NWSMCopyGenericString Example

#include <smsutapi.h>

STRING resultString;
STRING BUFFER *dest =
char *src = “string”;

INT16 srclLen = sizeof(src);

resultString = NWSMCopyString (&dest,

242 NDK: SMS Developer Components

src,

srcLen) ;

NWSMCopyString

Copies a specified number of characters to a buffer.

Syntax

#include <smsutapi.h>

STRING NWSMCopyString (
STRING BUFFER **dest,

void *src,
INT1l6 srclen) ;
Parameters
dest

(OUT) Points to the buffer to receive the copied string.

Sre

(IN) Points to the string to copy.

srcLen

(IN) Specifies the length of src.

Return Values

The following table lists the return values associated with the function.

NULL Cannot copy the strings.
Nonzero The strings are copied and the pointer points to dest.string.
Remarks

NOTE: This function is supported only for backward compatibility, the NWSMCopyGenericString

function can be used instead of this, as it provides the same functionality.

To free the string, call NWSMFreeString.

If dest is NULL, NWSMCopyString allocates memory for the string. If dest.string is too small to
contain the concatenated strings, NWSMCopyString frees the memory and allocates a new structure

with more memory.

If srcLen is set to -1, NWSMCopyString calculates the length of src.

See Also

NWSMFreeString (page 246)

Utility Library Functions 243

NWSMCopyString Example

#include <smsutapi.h>

STRING resultString;
STRING BUFFER *dest = NULL;
char *src = “string”;
INT16 srclen = sizeof (src);

resultString = NWSMCopyString (&dest,

244 NDK: SMS Developer Components

src,

srcLen) ;

NWSMFreeGenericString

Releases the memory held by a STRING_BUFFER structure.

Syntax

#include <smsutapi.h>

void NWSMFreeGenericString (
STRING_ BUFFER **string);

Parameters

string
(IN) Points to the STRING_BUFFER structure to free.

Remarks

NWSMFreeGenericString frees the memory allocated to string and sets it to NULL.
If string is NULL, NWSMFreeGenericString does nothing.

Utility Library Functions 245

NWSMFreeString

Releases the memory held by a STRING BUFFER structure.

Syntax

#include <smsutapi.h>

void NWSMFreeString (
STRING_ BUFFER **string);

Parameters

string
(IN) Points to the STRING_BUFFER structure to free.

Remarks

NOTE: This function is supported only for backward compatibility, the NWSMFreeGenericString
function can be used instead of this, as it provides the same functionality.

NWSMFreeString frees the memory allocated to string and sets it to NULL.

If string is NULL, NWSMFreeString does nothing.

246 NDK: SMS Developer Components

NWSMGenericlsWild

Indicates if a path contains wildcard characters.

Syntax

#include <smsutapi.h>
NWBOOLEAN NWSMGenericIsWild (

UINT32 nameSpaceType,
void *string);

Parameters

nameSpaceType
(IN) Specifies the name space type of the string (see “nameSpaceType Values” on page 347).

string

(IN) Points to the path to search for wildcard characters (see “Wildcard Values” on page 349).

Return Values

The following table lists the return values associated with the function.

TRUE string contains wildcards.
FALSE string does not contain wildcards.
Remarks

NWSMGenericIsWild supports strings in UTF-8 format.

The path node can be a parent or a child. Only the terminal path node can contain wildcards.

NWSMGenericlsWild Example

#include <smsutapi.h>

NWBOOLEAN isWild;

char stringBuf[15]; /* Arbitrary size */
STRING string = (STRING)stringBuf;

UINT32 nameSpace=DOSNameSpace;
isWild = NWSMGenericIsWild (nameSpace,string);

Utility Library Functions 247

NWSMGenericStr

Concatenates the specified number of strings together.

Syntax

#include <smsutapi.h>

void* NWSMGenericStr (
UINT32 nameSpaceType,

UINTS n,

void *dest,

void *srcl,

void *src2, ...);
Parameters
nameSpaceType

(IN) Specifies the name space type of the source and destination strings (see “nameSpaceType
Values” on page 347).

(IN) Specifies the number of source strings to concatenate.

dest
(OUT) Points to the concatenated strings (cannot be a NULL pointer).

srcl

(IN) Points to the first string to concatenate.

src2

(IN) Points to the second string to concatenate.

(IN) Points to other strings to concatenate.

Return Values

The following table lists the return values associated with the function.

NULL Failure
Nonzero The pointer points to dest.
Remarks

NWSMGenericStr supports strings in UTF-8 format.

dest must be large enough to hold all the strings.

248 NDK: SMS Developer Components

See Also

NWSMCatStrings (page 239), NWSMFreeString (page 246)

Utility Library Functions 249

NWSMGenericWildMatch

Indicates if a string matches a search pattern.

Syntax

#include <smsutapi.h>

NWBOOLEAN NWSMGenericWildMatch (
UINT32 nameSpaceType,
void *pattern,
void *string);

Parameters

nameSpaceType

(IN) Specifies the name space type of the string and pattern (see “nameSpaceType Values” on
page 347).

pattern

(IN) Points to the pattern to search for (see “Wildcard Values” on page 349).

string

(IN) Points to the string to analyze.

Return Values

The following table lists the return values associated with the function.

TRUE string meets the pattern specifications.
FALSE string does not match the pattern.
Remarks

NWSMGenericWildMatch supports strings in UTF-8 format.

pattern can contain the following wild cards: ASTERICKS, QUESTION, SQUESTION, or
SPERIOD.

If you need double-byte enabling, call NWSMMatchName.

See Also

NWSMIsWild (page 252)

NWSMGenericWildMatch Example

#include <smsutapi.h>

250 NDK: SMS Developer Components

CCODE isWildMatch;
char patternBuf[15], stringBuf[15]; /* Arbitrary size. */
STRING pattern = (STRING)patternBuf, string = stringBuf;

UINT32 nameSpace=DOSNameSpace;
isWildMatch = NWSMGenericWildMatch (nameSpace,pattern,string);

Utility Library Functions 251

NWSMIsWild

Indicates if a path contains a wildcard.

Syntax

#include <smsutapi.h>

NWBOOLEAN NWSMIsWild (
STRING string);

Parameters

string

(IN) Specifies the path to search for wildcards (see “Wildcard Values” on page 349).

Return Values

The following table lists the return values associated with the function.

TRUE string contains a wild card.
FALSE string does not contain a wild card.
Remarks

NOTE: This function is supported only for backward compatibility, the NWSMGenericlsWild
function can be used instead of this, as it provides the same functionality.

Only the terminal path node can have wild cards. The path node can be a parent or a child.

NWSMiIsWild Example

#include <smsutapi.h>

NWBOOLEAN isWild;

char stringBuf[15]; /* Arbitrary size */
STRING string = (STRING)stringBuf;

isWild = NWSMIsWild(string);

252 NDK: SMS Developer Components

NWSMMatchName

Performs a case-sensitive search for long spaces and case-insensitive search for all the other
namespaces for a pattern in a string.

Syntax
#include <smsutapi.h>

int NWSMMatchName (

UINT32 nameSpaceType,
void *pattern,
void *string,

NWBOOLEAN returnMatchToPatternEndIfWild) ;

Parameters

nameSpaceType

(IN) Specifies the name space type of string and pattern. (see “nameSpaceType Values” on
page 347).

pattern

(IN) Points to the pattern to search for (see “Wildcard Values” on page 349).

string

(IN) Points to the string to search.

returnMatchToPatternEndIfWild
(IN) Specifies whether string is a directory path:

TRUE Directory path
FALSE Not a directory path

Return Values

The following table lists the return values associated with the function.

-1 NWSM_MATCH_UNSUCCESSFULL
0 NWSM_MATCH_SUCCESSFULL

1 NWSM_MATCH_TO_STRING_END
2 NWSM_MATCH_TO_PATTERN_END
Remarks

NWSMMatchName also supports strings in UTF-8 format.

Wild card matching is allowed if the name space supports it.

Utility Library Functions 253

NWSM_MATCH_TO_STRING_END is returned if string matches the first part of pattern.

NWSM_MATCH_TO PATTERN_END is returned when part of string matches pattern exactly. For
example, when pattern is set to "*ted" and string is set to "sorted i."

returnMatchToPatternEndIfWild allows NWSMMatchName to return the correct return value for
directory paths that matches a pattern to its end.

NWSMMatchName Example

UINT32 nameSpaceType = DOSNameSpace;
char patternBuf[15], stringBuf[1l5]; /* Arbitrary size.*/

STRING pattern = patternBuf, string = stringBuf;
StGCY(pattern, “?eS*_*”) ;

strcpy (string, “test.exe”);

NWSMMatchName (nameSpaceType, pattern, string, TRUE);

254 NDK: SMS Developer Components

NWSMStr

Concatenates a specified number of strings together.

Syntax

#include <smsutapi.h>

STRING NWSMStr (

UINT8 n,

void *dest,

void *srcl,

void *src2, ...);
Parameters
n

(IN) Specifies the number of source strings to concatenate with dest.
dest

(OUT) Points to the concatenated strings (cannot be a NULL pointer).
srcl

(IN) Points to the first string to concatenate.
src2

(IN) Points to the second string to concatenate.

(IN) Points to other strings to concatenate.

Return Values

The following table lists the return values associated with the function.

NULL Failure
Nonzero The pointer points to dest.
Remarks

NOTE: This function is supported only for backward compatibility, the NWSMGenericStr function
can be used instead of this, as it provides the same functionality.

dest must be large enough to hold all the strings.

See Also

NWSMCatStrings (page 239), NWSMFreeString (page 246)

Utility Library Functions 255

NWSMWildMatch

Indicates if a string matches a search pattern.

Syntax

#include <smsutapi.h>
NWBOOLEAN NWSMWildMatch (

STRING pattern,
STRING string);

Parameters

pattern

(IN) Specifies the pattern to search for (see “Wildcard Values” on page 349).

string

(IN) Specifies the string to search.

Return Values

The following table lists the return values associated with the function.

TRUE string meets the pattern’s specifications.
FALSE string does not match the pattern.
Remarks

NOTE: This function is supported only for backward compatibility, the NWSMGenericWildMatch
function can be used instead of this, as it provides the same functionality.

pattern can contain the following wild cards: ASTERICKS, QUESTION, SQUESTION, or
SPERIOD.

If you need double-byte enabling, call NWSMMatchName.

See Also

NWSMIsWild (page 252)

NWSMWildMatch Example

#include <smsutapi.h>

CCODE isWildMatch;
char patternBuf[15], stringBuf[15]; /* Arbitrary size. */

256 NDK: SMS Developer Components

STRING pattern = (STRING)patternBuf, string = stringBuf;

isWildMatch = NWSMWildMatch (pattern, string);

6.6 Miscellaneous Functions

Miscellaneous functions generate a CRC and list the SMDRs.

* “NWSMFreeNameList” on page 258
+* “NWSMGenerateCRC” on page 259

Utility Library Functions 257

NWSMFreeNamelList

Frees the memory held by an NWSM_NAME _LIST object.

Syntax

#include <smsutapi.h>

CCODE NWSMFreeNameList (
NWSM NAME LIST **namelList);

Parameters

nameList

(IN) Points to the name list to free on input. Points to NULL on output.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION: namelList is NULL.
O0xFFFBFFFD NWSMUT_INVALID_PARAMETER

258 NDK: SMS Developer Components

NWSMGenerateCRC

Generates a CRC value for the given data or continues the CRC calculation from previous data to
the current data.

Syntax

#include <smsutapi.h>
UINT32 NWSMGenerateCRC (
UINT32 size,

UINT32 crc,
BUFFERPTR ptr);

Parameters

size
(IN) Specifies the number of bytes in the buffer pointed to by ptr.

crc

(IN) Specifies the initial CRC value (-1) or a previously accumulated CRC.

ptr
(IN) Points to the data used in calculating the CRC.
Return Values

If NWSMGenerateCRC is successful, it returns the new CRC value.

Remarks

NWSMGenerateCRC returns a 32-bit CRC. A CRC value needs to be calculated for the whole data
set. However, the whole data set cannot be brought into memory; so the data set is broken into
sections and CRC values are generated for each section. CRC values generated for the previous
section are passed to NWSMGenerateCRC when calculating the current section’s CRC.

Example

#include <smsutapi.h>

UINT32 genCRC, size, crc = -1;
BUFFERPTR ptr;

/* Set ptr to point to a buffer and set size to the number of data
bytes in the buffer */

genCRC = NWSMGenerateCRC (size, crc, ptr);

Utility Library Functions 259

6.7 SIDF Functions

SIDF functions simplify the building and parsing of SIDF sections.

*

“NWSMGetDataSetInfo” on page 261

+ “NWSMGetMediaHeaderInfo” on page 263
* “NWSMGetRecordHeaderOnly” on page 265
* “NWSMGetSessionHeaderInfo” on page 268
+ “NWSMPadBlankSpace” on page 269

+ “NWSMSetMediaHeaderInfo” on page 270

* “NWSMSetNewRecordHeader” on page 272
* “NWSMSetSessionHeaderInfo” on page 274
+ “NWSMUpdateRecordHeader” on page 276

For more information about SIDF sections and fields, see Standard ECMA-208 (http://www.ecma-
international.org/publications/standards/Ecma-208.htm)

260 NDK: SMS Developer Components

http://www.ecma-international.org/publications/standards/Ecma-208.htm

NWSMGetDataSetinfo

Returns the data set information.

Syntax

#include <smsutapi.h>

CCODE NWSMGetDataSetInfo (
BUFFERPTR “*buffer,
UINT32 *bufferSize,
NWSM RECORD HEADER INFO
*recordHeaderInfo) ;

Parameters

buffer

(IN/OUT) Points to the beginning of the data set information section of buffer on input. Points
to the section following the data set information on ouput.

bufferSize

(IN/OUT) Points to the amount of data left to read in buffer on input. Points to the amount of
data in buffer minus the amount of data just read from buffer on output.

recordHeaderInfo

(OUT) Points to the data set information and scan information.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFB NWSMUT_OUT_OF MEMORY

OxFFFBFFFO NWSMUT_BUFFER_UNDERFLOW: A field cannot fit into buffer.
Remarks

Call NWSMGetRecordHeaderOnly before calling NWSMGetDataSetInfo.

NWSMGetDataSetInfo extracts the data set and scan information from a buffer and places it into
recordHeaderInfo.

If the data set information spans buffer, NWSMGetDataSetInfo saves the information to an internal
buffer and sets recordHeaderInfo.dataSetInfoRetrieved to DATA_SET INFO SPANNED. When
the function returns, get the next buffer, call NWSMGetRecordHeaderOnly to get the Data Set
Subheader, and call NWSMGetDataSetInfo to get the rest of the data. Continue this process until
recordHeaderInfo.dataSetInfoRetrieved is DATA_SET INFO_COMPLETE.

Utility Library Functions 261

recordHeaderInfo.recordSize is decremented to reflect the amount of data transferred from the
buffer.

If the data set information spans the buffer, buffer points to the end of the buffer on return.

recordHeaderInfo.dataSetName and recordHeaderInfo.scanInformation will be set to NULL or to a
valid structure. The memory used by the data set name or scan information will be resized if there is
not enough space.

recordHeaderInfo.recordSize is the size of the record minus the amount of data put into
scanInformation and dataSetName.

recordHeaderInfo.headerSize returns the size of the data set header or data set subheader.

The following recordHeaderInfo fields are not used by NWSMGetDataSetInfo:

archiveDateAndTime
addressOfRecordSize
addressForCRC
crcBegin

crcLength

See Also

NWSMGetRecordHeaderOnly (page 265)

262 NDK: SMS Developer Components

NWSMGetMediaHeaderIinfo

Separates an SIDF media header into its various components.

Syntax

#include <smsutapi.h>

CCODE NWSMGetMediaHeaderInfo (
BUFFERPTR headerBuffer,
UINT32 headerBufferSize,
NWSM MEDIA INFO *mediaInfo);

Parameters

headerBuffer
(IN) Points to the beginning of the buffer containing an SIDF media header.

headerBufferSize
(IN) Specifies the size of the media header in bytes.

medialnfo

(OUT) Points to the unformatted media header information.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFO NWSMUT_BUFFER_UNDERFLOW
OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW
OxFFFBFFF9 NWSMUT_INVALID_FIELD_ID
OxFFFBFFFD NWSMUT_INVALID_PARAMETER

NWSMGetMediaHeaderinfo Example

/* example using SMS DI */
#define MY BUFFER SIZE 1024 /* arbitrary size */

NWSM MEDIA INFO mediaInfo;

NWSMSD CONTROL_BLOCK controlBlock; /* SMS DI structure */
NWSMSD HEADER BUFFER *headerBuffer;

NWSMSD MEDIA HANDLE mediaHandle;

NWBOOLEAN32 verifyHeader;

NWSMSD HEADER BUFFER *mediaHeader;

CCODE ccode, completionStatus;

/* Allocate memory for headerBuffer. maxTransferBufferSize is

set by

Utility Library Functions 263

NWSMSDSessionOpenForReading */

headerBuffer=(NWSMSD HEADER BUFFER *)malloc(sizeof (NWSMSD HEADER BUFFE
R) + maxTransferBufferSize - 1);
headerBuffer->bufferSize = maxTransferBufferSize;

/* Set up the media header buffer information */
mediaHeader = (NWSMSD HEADER BUFFER *)

malloc (sizeof (NWSMSD HEADER BUFFER) +MY BUFFER SIZE - 1);
mediaHeader->bufferSize = MY BUFFER SIZE;

verifyHeader = TRUE;
ccode = NWSMSDMediaHeaderReturn (sdiConnection, mediaHandle,
verifyHeader, mediaHeader, 0, &completionStatus);

if (ccode)
{ /* handle error here */
return ccode;

/* Wait for the function to complete its task. The engine can do other
things while waiting. */

while (completionStatus == NWSMSD WAIT PENDING)
MyDelay () ;
if (completionStatus == 0)

NWSMGetMediaHeaderInfo ((BUFFERPTR) headerBuffer->headerBuffer,
headerBuffer->headerSize, &medialInfo);

264 NDK: SMS Developer Components

NWSMGetRecordHeaderOnly

Returns only the record/subrecord header information.

Syntax

#include <smsutapi.h>

CCODE NWSMGetRecordHeaderOnly (
BUFFERPTR “*buffer,
UINT32 *bufferSize,
NWSM RECORD HEADER INFO
*recordHeaderInfo) ;

Parameters

buffer

(IN/OUT) Points to the beginning of the SIDF data or subdata set in a transfer buffer on input.
Points to the data set data on output.

bufferSize

(IN/OUT) Points to the size of the transfer buffer minus the transfer buffer header size on input.
Points to the size of the data left in the transfer buffer on output.

recordHeaderInfo

(OUT) Points to the next section (record or subrecord).

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFD NWSMUT_INVALID_PARAMETER: The section does not begin with a
synchronization field.

Remarks

To get the data set information and data set data, call NWSMGetDataSetInfo.

NWSMGetRecordHeaderOnly indicates one of two conditions: a new record or a record containing
data that spans a transfer buffer.

A new record is indicated as follows:

recordHeaderInfo->isSubRecord = FALSE;
recordHeaderInfo->dataSetInfoRetrieved = DATA SET INFO NOT STARTED;

A record containing spanned data is indicated as follows:

recordHeaderInfo->isSubRecord = TRUE;
recordHeaderInfo->dataSetInfoRetrieved = DATA SET INFO DOES NOT EXIST;

Utility Library Functions 265

See Also

NWSMGetDataSetInfo (page 261)

NWSMGetRecordHeaderOnly Example

/* Simplified example from the FILES.C file. It assumes that there is a
media transfer buffer, and that it
starts on the first record. */

UINT32 bufferSize, maxTransferBufferSize, transferBufferDataOffset;
BUFFERPTR bufferPtr;
NWSM RECORD HEADER INFO recordHeaderInfo = {0};

while (there are buffers on the media)

{

/* This function is not defined. It gets the next transfer buffer from
the media and points to the beginning of
the transfer buffer. */

GetTheNextBuffer (&bufferPtr);

/* Point to the transfer buffer data. maxTransferBufferSize and
transferBufferDataOffset are returned by
NWSMSDSessionOpenForReading. */
bufferSize = maxTransferBufferSize - transferBufferDataOffset;
bufferPtr += bufferSize;

while (bufferSize) /* While there is data in the transfer buffer. */
{ /* Get the next record/subrecord from the transfer buffer. */

NWSMGetRecordHeaderOnly (&bufferPtr, &bufferSize,
&recordHeaderInfo) ;

/* If a record/subrecord, get the data from the transfer buffer.
Note: DATA SET INFO SPANNED is set by NWSMGetDataSetInfo. */
if

((recordHeaderInfo.dataSetInfoRetrieved==DATA SET INFO NOT STARTED)

| | (recordHeaderInfo.dataSetInfoRetrieved ==
DATA SET INFO SPANNED))

NWSMGetDataSetInfo (&bufferPtr, &bufferSize,
&recordHeaderInfo) ;

if (!'bufferSize)
break; /* All data retrieved from current transfer buffer. Break
and
get the next transfer buffer. */

if (recordHeaderInfo.dataSetInfoRetrieved ==
DATAfSETiINF07COMPLETE)
{ /* dataSetName and scanInformation can now be used. */

}
/* Update the buffer's information. */
bufferPtr += recordHeaderInfo.recordSize;

266 NDK: SMS Developer Components

bufferSize -= recordHeaderInfo.recordSize;
/* end while (bufferSize) */

Utility Library Functions 267

NWSMGetSessionHeaderlnfo

Separates an SIDF session header into it various components.

Syntax

#include <smsutapi.h>

CCODE NWSMGetSessionHeaderInfo (
BUFFERPTR headerBuffer,
UINT32 headerBufferSize,
NWSM SESSION INFO *sessionInfo);

Parameters

headerBuffer

(IN) Points to the buffer containing the SIDF session header data that can be returned by
NWSMSDOpenSessionForReading.

headerBufferSize
(IN) Specifies the size of headerBuffer in bytes.

sessionInfo

(OUT) Points to the unformatted session information.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW
OxFFFBFFF9 NWSMUT_INVALID_FIELD_ID
OxFFFBFFFO NWSMUT_BUFFER_UNDERFLOW

268 NDK: SMS Developer Components

NWSMPadBlankSpace

Inserts a blank space section if there is room in the buffer, or fills the unused area of a buffer with
ZEeros.

Syntax

#include <smsutapi.h>

void NWSMPadBlankSpace (
BUFFERPTR bufferPtr,
UINT32 unusedSize) ;

Parameters

bufferPtr
(OUT) Points to the area in the buffer to fill with blank spaces or zeros.

unusedSize

(IN) Specifies the size of the area in buffer to pad.

Remarks

If unusedSize is less than MIN_ BLANK SPACE _SECTION_SIZE, the unused area is filled with
zeros. If unusedSize is larger than or equal to MIN_ BLANK SPACE_SECTION_SIZE, the Blank
Space section is put into the unused area.

NWSMPadBlankSpace Example

#define BUFFER SIZE 2048 /* Arbitrary size. */
char buf [BUFFER SIZE];

BUFFERPTR bufferPtr = buf;

UINT32 unusedSize = BUFFER SIZE;

/* Put data into buffer pointed to by bufferPtr. */

/* Update buffer information. */

bufferPtr = bufferPtr + amount of data put into buffer;
unusedSize -= (bufferPtr - buf);

/* Pad unused buffer area. */
NWSMPadBlankSpace (bufferPtr, unusedSize);

Utility Library Functions 269

NWSMSetMediaHeaderInfo

Formats media header information into an SIDF compliant media header.

Syntax

#include <smsutapi.h>

CCODE NWSMSetMediaHeaderInfo (
NWSM MEDIA INFO *medialInfo,

BUFFERPTR buffer,
UINT32 bufferSize,
UINT32 *headerSize) ;
Parameters
medialnfo

(IN) Points to the media header information to format.

buffer

(OUT) Points to the buffer to receive the formatted media header information.

bufferSize
(IN) Specifies the size of buffer.

headerSize

(OUT) Points to the size (in bytes) of the formatted media header.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFO NWSMUT_BUFFER_UNDERFLOW: The buffer is out of space.
OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW

OxFFFBFFFD NWSMUT_INVALID_PARAMETER: One or more of the parameters were set

to an invalid value.

See Also

NWSMGetMediaHeaderInfo (page 263)

Example

/* Some functions and structures are defined by SMS DI.
#include <smssdapi.h>
#include <smsdefns.h>
#define MY BUFFER SIZE 1024 /* arbitrary buffer size */

270 NDK: SMS Developer Components

CCODE ccode;

NWSM_MEDIA INFO mediaInfo;

NWSMSD HEADER BUFFER *mediaHeader;

UINT32 dataFormatType, mediumCreatedDateTime, setCreatedDateTime,
mediaNumber = 0;

NWSMSD MEDIA HANDLE mediaHandle;

/* Get date and time of the media set's creation date and time */
setCreatedDateTime = NWSMGetCurrentDateAndTime () ;

/* Setup the media header buffer information. */
mediaHeader = (NWSMSD HEADER BUFFER *)
malloc(Sizeof(NWSMSD_HEADER_BUFFER) + MY BUFFER SIZE);
mediaHeader->bufferSize = MY BUFFER SIZE + 1;
mediaHeader->overflowSize = 0;

/* Create the media header information */

mediumCreatedDateTime = NWSMGetCurrentDateAndTime () ;
NWSMDOSTimeToECMA (mediumCreatedDateTime, & (medialInfo.timeStamp));
strcpy (mediaInfo.label, “The media set label”);

mediaInfo.number = ++mediaNumber;

/* Format the media header information according to SIDF. */
NWSMSetMediaHeaderInfo (&mediaInfo, (BUFFERPTR)mediaHeader-
>headerBuffer, mediaHeader->bufferSize,
smediaHeader->headerSize) ;

/* Label the media. */

dataFormatType = NWSMSD DFT SIDEF;

ccode = NWSMSDMedialabel (sdiConnection, mediaHandle, dataFormatType,
mediaHeader, 0, &completionStatus);

Utility Library Functions 271

NWSMSetNewRecordHeader

Creates a record or a subrecord header.

Syntax

#include <smsutapi.h>

CCODE NWSMSetNewRecordHeader (
BUFFERPTR “*buffer,
UINT32 *bufferSize,
UINT32 *bufferData,
NWBOOLEAN setCRC,
NWSM RECORD HEADER INFO
*recordHeaderInfo) ;

Parameters

buffer

(OUT) Points to the beginning of the buffer to contain the SIDF data set header on input. Points
to where the data set data should be placed on output.

bufferSize
(IN/OUT) Points to the amount of free space in buffer.

bufferData
(IN/OUT) Points to the total number of bytes written to buffer.

setCRC
(IN) Specifies the CRC flag:

CRC _NO The CRC field is set to zero.
CRC_YES A CRC value is calculated for the entire data set.
CRC_LATER The engine will generate the CRC value.

recordHeaderInfo
(IN/OUT) Points to the data for the record header and data set information.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFD NWSMUT_INVALID_PARAMETER
OxFFFBFFFA NWSM_BUFFER_OVERFLOW
OxFFFBFFFO NWSM_BUFFER_UNDERFLOW

272 NDK: SMS Developer Components

Remarks

If a record is being created, set recordHeaderInfo.isSubRecord to FALSE. When
NWSMSetNewRecordHeader is called, a data set header is created and placed into buffer. The data
set information is formatted according to SIDF and placed, along with the data set' s data, after the
header.

If a subrecord is being created, set recordHeaderInfo.isSubRecord to TRUE. When
NWSMSetNewRecordHeader is called, a data set subheader is created and placed into buffer. Call
NWSMUpdateRecordHeader to place the rest of the data into buffer.

If buffer already contains 36 KB of data, bufferData must be set to 32 KB.
NWSMSetNewRecordHeader will add the number of bytes copied into buffer to the current value.

If CRC is specified, the CRC data for the last section field is set to zero.

The following figure shows the buffer area represented by bufferData and bufferSize:

Enff er

Trata Witter trferData

Tarffer

Trffer Sie

See Also

NWSMUpdateRecordHeader (page 276)

Utility Library Functions 273

NWSMSetSessionHeaderinfo

Formats the session header information into an SIDF compliant session header.

Syntax

#include <smsdefns.h>
#include <smsutapi.h>

CCODE NWSMSetSessionHeaderInfo (
NWSM SESSION INFO *sessionInfo,

BUFFERPTR buffer,
UINT32 bufferSize,
UINT32 *headerSize) ;
Parameters
sessionInfo

(IN) Points to the session header information to be formatted.

buffer

(OUT) Points to the buffer to receive the formatted session information.

bufferSize
(IN) Specifies the size of buffer.

headerSize
(OUT) Points to the size of the formatted header.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFO NWSMUT_BUFFER_UNDERFLOW: An internal error occurred.
OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW

OxFFFBFFFD NWSMUT_INVALID_PARAMETER: An internal error occurred.
Remarks

If you are using SMS DI, call NWSMSDOpenSessionForWriting to write the header out to the
medium.

To get the SMDR name, call NWSMListSMDRs.

See Also

NWSMGetSessionHeaderInfo (page 268), NWSMListSMDRs (page 301)

274 NDK: SMS Developer Components

NWSMSetSessionHeaderInfo Example

#include <smstsapi.h>
#include <smsutapi.h>
#include <smsdefns.h>

NWSM_ SESSION INFO sessionInfo;
NWSMSD HEADER BUFFER *sessionHeaderInfo;
UINT32 sessionDateTime;

/* Setup the session header buffer information. maxTransferBufferSize
is set by NWSMSDSessionOpenForWriting */

sessionHeaderInfo = (NWSMSD HEADER BUFFER *)

malloc (sizeof (NWSMSD HEADER BUFFER) + maxTransferBufferSize - 1);
sessionHeaderInfo->bufferSize = maxTransferBufferSize;

/* Setup the session header information. */

sessionDateTime = NWSMGetCurrentDateAndTime () ;
NWSMDOSTimeToECMA (sessionDateTime, & (sessionInfo.timeStamp));
strcpy (sessionInfo.description, “Backup file server”);

strcpy (sessionInfo.softwareName, “SBackup”):;

strcpy (sessionInfo.softwareType, “SMS”);

strcpy (sessionInfo.softwareVersion, “Wer 4.x");
sessionInof.serviceName = name from NWSMTSListTargetServices or
NWSMTSScanTargetServices;

NWSMTSGetTargetServiceType (connection, (STRING)sessionInfo.sourceName,
(STRING) sessionInfo.sourceType,

(STRING) sessionInfo.sourceVersion) ;

/* Format the session information according to SIDF, and put the
resulting data into the session header buffer. */
NWSMSetSessionHeaderInfo (&sessionInfo, sessionHeaderInfo-
>headerBuffer, sessionHeaderInfo->bufferSize,
&sessionHeaderInfo->headerSize) ;

Utility Library Functions 275

NWSMUpdateRecordHeader

Updates a record/subrecord's size and CRC information.

Syntax

#include <smsutapi.h>

CCODE NWSMUpdateRecordHeader (
NWSM RECORD HEADER INFO *recordHeaderInfo);

Parameters

recordHeaderInfo
(IN/OUT) Points to the record/subrecord to update on input.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

Remarks

Call NWSMUpdateRecordHeader after inserting data into a transfer buffer.

See Also

NWSMGetRecordHeaderOnly (page 265), NWSMSetNewRecordHeader (page 272)

6.8 SMDF Functions

SMDF functions simplify the building and parsing of SIDF fields.

*

“SMDFAddUINT64” on page 278

+ “SMDFDecrementUINT64” on page 279
+ “SMDFGetFields” on page 280

+ “SMDFGetNextField” on page 282

+ “SMDFGetUINT64” on page 285

+ “SMDFIncrementUINT64” on page 286
¢ “SMDFPutFields” on page 287

+ “SMDFPutNextField” on page 290

¢ “SMDFPutUINT64” on page 293

+ “SMDFSetUINT32Data” on page 294

+ “SMDFSetUINT64” on page 295

276 NDK: SMS Developer Components

+ “SMDFSubUINT64” on page 296

Utility Library Functions 277

SMDFAddUINT64

Adds two UINT64 values together.

Syntax

#include <smsutapi.h>

CCODE SMDFAdJUINTG64 (
UINT64 “*terml,
UINT64 *term2,
UINT64 *sum);

Parameters

term1

(IN) Points to the first term to be added.

term2
(IN) Points to the second term to be added.

sum

(OUT) Points to the sum of term1 and term?2.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The sum of term1 and term2 produces
a number to large to be contained in term1

278 NDK: SMS Developer Components

SMDFDecrementUINT64

Subtracts a UINT32 value from a UINT64 value.

Syntax

#include <smsutapi.h>
CCODE SMDFDecrementUINT64 (

UINT64 *terml,
UINT32 term?2) ;

Parameters

term1

(IN/OUT) Points to the value of term1 on input. Points to the results of term1 - term2 on output.

term2

(IN) Specifies the amount terml is to be decremented by.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFBFFFO NWSMUT_BUFFER_UNDERFLOW
OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW

SMDFDecrementUINT64 Example

UINT64 terml;
UINT32 term2 = OxF;

SMDFPutUINT64 (&terml, OXFFF);
SMDFDecrementUINT64 (&terml, term?2);

Utility Library Functions 279

SMDFGetFields

Separates an SIDF section into its various components.

Syntax

#include <smsutapi.h>

CCODE SMDFGetFields (

UINT32 headFID,
NWSM GET FIELDS TABLE table[1,
BUFFERPTR *buffer,
UINT32 *bufferSize);
Parameters
headFID
(IN) Specifies the FID value of the first field in the section that the engine expects to find in
buffer.
table

(IN/OUT) Points to the table to receive the parsed section.

buffer

(IN/OUT) Points to the beginning of the section to be parsed in the buffer on input. Points to
the next section on output.

bufferSize

(IN/OUT) Points to the size of buffer on input. Points to the buffer’s size minus the size of the
returned section on ouput.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxXFFFBFFFA NWSMUT_BUFFER_OVERFLOW: buffer is to small to contain the fields of
table.

OxFFFBFFFO NWSMUT_BUFFER_UNDERFLOW: A field's data spans buffer.

OxFFFBFFF9 NWSMUT_INVALID_FIELD_ID: headFid does not match the section FID in
buffer.

Remarks

Before you call SMDFGetFields, set found to FALSE and fid to the field to look for.

280 NDK: SMS Developer Components

SMDFGetFields parses a section into a table by calling SMDFGetNextField repetitively.
SMDFGetFields does not handle buffer overflow or buffer underflow, but returns a completion code
indicating the condition.

If SMDFGetFields returns an error, buffer and bufferSize may not contain their original values.

Each element in the table array represents one field in the section. The order of the elements, except
the first and last elements (and where noted by SIDF), is not important to SMDFGetFields. If
SMDFGetFields encounters a field that is not defined in table, the field is ignored.

See Also

SMDFGetNextField (page 282)

SMDFGetFields Example

#define SECTION FID O

#define NAME INDEX 1

UINT16 syncData;

/* buffer and bufferSize are set elsewhere in the program. */
BUFFERPTR origBufferPtr = buffer;

UINT32 origBufferSize = bufferSize;

NWSM GET FIELDS TABLE table[] =
{
/* Section FID is FAKE FID */
{ FAKE FID, NULL, sizeof (UINT16), FALSE },
{ NWSM_ SOURCE NAME, NULL, NWSM MAX TARGET SRVC NAME LEN, FALSE },
/* End of table */
{ NWSM_END }
}i

/* Link the data fields to the variables */
table[SECTION FID].data = &syncData;
table[NAME INDEX].data = calloc(l, NWSM MAX TARGET SRVC NAME LEN);

if (SMDFGetFields (FAKE FID, table, &buffer, &bufferSize) != 0)

{
/* Error occurred, reset buffer information to known values. */
buffer = origBufferPtr;
bufferSize = origBufferSize;

Utility Library Functions 281

SMDFGetNextField

Separates an SIDF compliant field into its various components.

Syntax

#include <smsutapi.h>

CCODE SMDFGetNextField (
BUFFERPTR buffer,
UINT32 bufferSize,
SMDF FIELD DATA *field);

Parameters

buffer
(IN) Points to the buffer containing the field to be parsed.

bufferSize
(IN) Specifies the size of buffer.

field
(OUT) Points to the structure to receive the parsed data.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

Remarks

SMDFGetNextField parses the next field in buffer into its various field components. If buffer
contains a partial field (because the field spans the buffer), field.dataOverFlow is set to a positive
value. You must save this data, call the function again with the next buffer, and append the spanned
data.

The FID from buffer is converted to a byte stream when it is placed into field.fid.

See Also

SMDFPutFields (page 287)

SMDFGetNextField Example

CCODE GetFields (UINT32 sectionFID, NWSM GET FIELDS TABLE section[],
BUFFERPTR *buffer, UINT32 *bufferSize)

{
CCODE ccode;

282 NDK: SMS Developer Components

SMDF_FIELD DATA field;
int index;

/* Get the first field from buffer. */
if ((ccode = SMDFGetNextField (*buffer, *bufferSize, &field)) != 0)
goto Return;

/* If the first field is not the section field, return. */
if (field.fid != sectionFID)
{
ccode = NWSMUT INVALID FIELD ID;
goto Return;

/* Adjust the buffer information to point to the next field. */
*buffer += field.bytesTransfered;
*bufferSize -= field.bytesTransfered;

/* Search through buffer for the fields specified in section until
you find the section's ending field. */
while (1)
{
if ((ccode = SMDFGetNextField (*buffer, *bufferSize, &field)) !=

goto Return;

/* Adjust the buffer information to point to the next field. */
*pbuffer += field.bytesTransfered;
*pbufferSize -= field.bytesTransfered;

/* If the section's last field is found, break. */
if (field.fid == sectionFID)
break;

/* See if field is in section; if it is, put field's information
into section. The code will loop until field
matches a corresponding element in section, or when all elements in
section are searched.*/

for (index = 0; section[index].fid != NWSM END; index++)
{
/* If the field was previously found, break and get the next
field. */
if (section[index].found)
break;

/* Put the field into section. */
if (field.fid == section[index].fid)
{
UINT32 dataSize;

/* Check if the field's data will fit into section’s buffer */
SMDFGetUINTo64 (&field.dataSize, &dataSize):;

Utility Library Functions 283

if (dataSize > section[index].dataSize)

{
ccode = NWSMUT BUFFER OVERFLOW;

goto Return;

memmove (section[index] .data, field.data, dataSize);

section[index] .dataSize = dataSize;
section[index] .found = TRUE;
break;

}
} /* end of for loop */
} /* end of while loop */

Return:
return (ccode) ;

284 NDK: SMS Developer Components

SMDFGetUINT64

Returns the lower four bytes from a UINT64 value.

Syntax

#include <smsutapi.h>

CCODE SMDFGetUINT64 (
UINT64 *src,
UINT32 *dest);

Parameters

sre
(IN) Points to the UINT64 value.

dest

(OUT) Points to the lower 4 bytes of the UINT64 value.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The upper 4 bytes of src are nonzero.
See Also

SMDFSetUINT64 (page 295)

Utility Library Functions 285

SMDFIncrementUINT64

Adds a UINT32 value to a UINT64 value.

Syntax

#include <smsutapi.h>

CCODE SMDFIncrementUINT64 (
UINT64 “*terml,
UINT32 term?2) ;

Parameters

term1

(IN/OUT) Points to the value of the first term on input. Points to the sum of term1 and term2 on
ouptut.

term2

(IN) Specifies the second term.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The sum of term1 and term2 produces
a number to large to be contained in term1.

286 NDK: SMS Developer Components

SMDFPutFields

Formats data into an SIDF section.

Syntax

#include <smsutapi.h>

CCODE SMDFPutFields (

NWSM_ FIELD TABLE DATA table[1,
BUFFERPTR *buffer,
UINT32 *pbufferSize,
UINT32 crcFlag) ;
Parameters
table][]

(IN) Points to the table that represents the section to put into buffer.

buffer

(OUT) Points to the part of the buffer where the section should be placed on input. Points to the
beginning of the next section on output.

bufferSize
(IN/OUT) Points to the amount of free space in buffer.

crcFlag
(IN) Specifies the CRC flag:

CRC_YES Generate CRC now
CRC_NO Do not generate CRC
CRC_LATER Generate the CRC at a later time

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFO NWSMUT_BUFFER_UNDERFLOW: The offset to end value cannot fit into
the provided space.

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: The buffer is too small. Increase the
buffer size and call SMDFPutFields again.

OxFFFBFFFD NWSMUT_INVALID_PARAMETER

Remarks

SMDFPutFields checks for boundary conditions such as field and buffer overflow or underflow, but
it does not handle buffer overflow or underflow conditions or check for valid FIDs.

Utility Library Functions 287

SMDFPutFields converts table into a section and writes it into buffer by calling
SMDFPutNextField.

SMDFPutFields sets the size of the data to 4 and the field data to 0OXA55A (synchronization data).
The data for Offset to End field is set if table contains this field.

crcFlag affects the data portion of the last field in the section. If no CRC NO is passed, the CRC
data is zero. If CRC_LATER is passed, the CRC data is OxFFFFFFFF. You must decrement buffer
by four bytes (UINT32) before inserting its CRC value into buffer.

See Also

SMDFPutNextField (page 290)

SMDFPutFields Example

/* This example shows how to use the structures. */

#define DEBUG_CODE 1

#define OFFSET_TO END INDEX 4

#define VOLUME NAME INDEX 5

#define HEADER STRING “NWSM VOLUME RESTRICTIONS”

#define HEADER STRING LEN sizeof (NWSM HEADER DEBUG STRING)

char buffer[255]; /* arbitrary size */
UINT32 bufferSize = 255;
UINT64 offsetToEnd = UINT64 ZERO;

NWSM FIELD TABLE DATA volumeRestrictionHeaderTable[] =
{
/* Signal SMDFPutFields that the second field in the table is the
beginning of the section.
Create the synchronization data for that field. */
{ { NWSM_BEGIN } },

/* The next field contains the section FID, used to construct the
start and end Fields of the section. */

{ {NWSM7VOLUME7RESTRICTIONS, UINT6472ERO, NULL, O, UINT6472ERO }, 0O,
NULL, O 1},

/* The field is not required, but it is helpful when searching. It
places a string describing the section into
the data stream. */

{ {NWSM HEADER DEBUG STRING, UINT64 ZERO, HEADER STRING},
HEADER STRING LEN, NULL, HEADER STRING LEN},

/* For this field we want the address of the data area in buffer */
{ { NWSM OFFSET TO END, UINT6472ERO, NULL, O, UINT6472ERO }, 4,
GET ADDRESS, 4},

/* This field needs a string, but the information will not be known

until the program is running. */
{ { NWSM_VOLUME NAME, UINT64 ZERO, NULL, 0, UINT64 ZERO }, 0, NULL,

288 NDK: SMS Developer Components

NWSM VARIABLE SIZE},

/* This field is required to let the function know that this the end
of the table. The section header field does
not repeat. */
{ {NWSM _END } }
}I
volumeRestrictionEntryTable[] =
/* Another table. Note that this one does not have a “beginning” field.
*/
{
#if defined (NETWARE V320)
{ { NWSM_VOLUME RSTRCTNS NAME, UINT64 ZERO, NULL, 0, UINT64 ZERO },
0, NULL, NWSM VARIABLE SIZE },
#else
{ { NWSM_VOLUME RSTRCTNS ID, UINT64 ZERO, NULL, 0, UINT64 ZERO },
0, NULL, NWSM VARIABLE SIZE },
#endif
{ { NWSM_VOLUME RSTRCTNS LIMIT, UINT64 ZERO, NULL, 0, UINT64 ZERO
}, 0, NULL, O },
{ { NWSM END } }
bi

/* Set up the variable data for sourceVersion to the table. Set
volumeName somewhere in the program. */
SMDFPutUINT64 (
&volumeRestrictionHeaderTable [VOLUME NAME INDEX].field.dataSize,
(UINT32)strlen (volumeName)) ;
volumeRestrictionHeaderTable [VOLUME NAME INDEX].field.data
volumeName;
volumeRestrictionHeaderTable [VOLUME NAME INDEX].sizeOfData =
(UINT32)strlen (volumeName) ;
volumeRestrictionHeaderTable [VOLUME NAME INDEX].dataSizeMap =
(UINT8) strlen (volumeName) ;
SMDFPutFields (volumeRestrictionHeaderTable, &buffer, &bufferSize,
CRC NO) ;

/* Now set the offset to end value. */
SMDFPutUINT64 (&offsetToEnd, buffer -
((BUFFERPTR) volumeRestrictionHeaderTable|[
OFFSET_TO END INDEX].addressOfData +

volumeRestrictionHeaderTable [OFFSET TO END INDEX].dataSizeMap)) :;
memcpy (volumeRestrictionHeaderTable [OFFSET TO END INDEX] .addressOfData

4

&offsetToEnd,
volumeRestrictionHeaderTable [OFFSET TO END INDEX].dataSizeMap);

Utility Library Functions

289

SMDFPutNextField

Formats data into an SIDF compliant field.

Syntax

#include <smsutapi.h>

CCODE SMDFPutNextField (

BUFFERPTR buffer,
UINT32 bufferSize,
SMDF FIELD DATA *field,
UINTS8 dataSizeMap,
UINT32 sizeOfData) ;
Parameters
buffer

(IN) Points to the buffer to receive the field.

bufferSize

(IN) Specifies the amount of free space in buffer.

field
(IN) Points to the field information to format.

dataSizeMap
(IN) Specifies where to find the data size for field.data.

sizeOfData
(IN) Specifies how many bytes of data are in field.data.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW
O0xFFFBFFFD NWSMUT_INVALID_PARAMETER
Remarks

SMDFPutNextField puts one field into a buffer and indicates how many bytes were moved into
buffer.

Even if SMDFPutNextField successfully completes, you should always check for a data overflow
condition. If the data overflows, field.dataOverflow contains the amount of data that was not
transferred.

290 NDK: SMS Developer Components

If field.data contains part of the total field data, you must put the rest of the data into the buffer. To
figure out where to put the rest of the data, track the offset into buffer through
field.bytesTransferred.

The value of dataSizeMap depends upon the amount of data in field.data. If the total amount of data
is less than 128 bytes, set dataSizeMap to the data’s size. If the total amount of data is 128 bytes or
more, set dataSizeMap to NWSM_VARIABLE SIZE and field.dataSize to the total amount of data
that the field will contain.

field.dataSize specifies the total amount of data the field will contain. This value may or may not be
the size of data because data might point to only part of the field's data. For example, if the data set's
size is 64 KB, but only 32 KB is being transferred, this field contains 64 KB.

See Also

SMDFPutFields (page 287)

SMDFPutNextField Example

/* Places a whole section with no offset to end field. */

PutSection (BUFFERPTR buffer, UINT32 bufferSize, NWSM FIELD TABLE DATA
*section)
{

UINT16 sync = 0xA55A, 1i;

SMDF FIELD DATA lastField = {{0},0};

BUFFERPTR begin = buffer;

UINT32 crc = OXFFFFFFFEF;

/* The first element is the section fid. */

section->sizeOfData = section->dataSizeMap = sizeof (UINT16) ;

section->data = &sync;

SMDFPutNextField (buffer, bufferSize, §ion->field, section-
>dataSizeMap, section->sizeOfData);

buffer += section->field.bytesTransferred;

bufferSize -= section->field.bytesTransferred;

for (i = 1; section[i].field.fid != NWSM END; i++)
{
SMDFPutNextField (buffer, bufferSize, §ion[i].field,
section[i] .dataSizeMap, section[i].sizeOfData);
buffer += section[i].field.bytesTransferred;
bufferSize -= section[i].field.bytesTransferred;

/* Set the last field into the buffer */

lastField.fid = section[0].field.fid;

crc = NWSMGenerateCRC (buffer - begin, crc, begin);

lastField.data = &crc;

SMDFPutUINT64 (&lastField.dataSize, sizeof (UINT32));

SMDFPutNextField (buffer, bufferSize, &lastField,
(UINT8)sizeof (UINT16),

Utility Library Functions

291

(UINT32)sizeof (UINT16)) ;

292 NDK: SMS Developer Components

SMDFPutUINT64

Converts a UINT32 data type to a UINT64 data type.

Syntax

#include <smsutapi.h>
void SMDFPutUINT64 (

UINT64 *dest,
UINT32 src) ;

Parameters

dest
(OUT) Points to the UINT64 equivalent of src.

Sre

(IN) Specifies the value to be converted to a UINT64.

Utility Library Functions 293

SMDFSetUINT32Data

Copies four or less bytes from a buffer to a UINT32 variable.

Syntax

#include <smsutapi.h>

CCODE SMDFSetUINT32Data (

UINT64 *dataSize,
BUFFERPTR buffer,
UINT32 *data) ;
Parameters
dataSize

(IN) Points to the number of bytes the data size occupies (maximum of 4).

buffer
(IN) Points to the data to copy to data.

data
(OUT) Points to the data from buffer.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: dataSize is more than 4.

294 NDK: SMS Developer Components

SMDFSetUINT64

Copies eight or less bytes from a buffer to a UINT64 variable.

Syntax

#include <smsutapi.h>

CCODE SMDFSetUINT64 (
UINT64 *data,
void *pbuffer,
UINT16 dataSize) ;

Parameters

data
(OUT) Points to the data copied from buffer.

buffer
(IN) Points to the data to copy.

dataSize

(IN) Specifies the number of bytes to copy (maximum of 8).

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFBFFFA NWSMUT_BUFFER_OVERFLOW: dataSize is greater than 8.
Remarks

SMDFSetUINT64 calls memcpy to copy the data.

If buffer is NULL, data is set to 0.

See Also

SMDFGetUINT64 (page 285)

Utility Library Functions 295

SMDFSubUINT64

Subtracts two UINT64 values.

Syntax

#include <smsutapi.h>

CCODE SMDFSubUINT64 (
UINT64 “*terml,
UINT64 *term2,
UINT64 *diff);

Parameters

term1

(IN) Points to the left-hand operand.

term2

(IN) Points to the right-hand operand.
diff
(OUT) Points to the result of term1 - term?2.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFBFFFO NWSMUT_BUFFER_UNDERFLOW: term2 is larger than term1.
See Also

SMDFDecrementUINT64 (page 279)

6.9 SMDR Functions

This section contains SMDR functions.

+ “NWSMConvertError” on page 297

* “NWSMGetRequestorVersionInfo” on page 298

+ “NWSMGetSMSModuleVersionInfo” on page 299
+ “NWSMGetResponderVersionInfo” on page 300

* “NWSMListSMDRs” on page 301

296 NDK: SMS Developer Components

NWSMConvertError

Returns the string that represents the specified completion code.

Syntax

#include <sms.h>

CCODE NWSMConvertError (

UINT32 connection,
CCODE error,
char *message) ;
Parameters
connection

(IN) Specifies the TSA or SMS DI connection handle.

error

(IN) Specifies the completion code to translate.

message

(OUT) Points to the string that describes error (initialize to
NWSM_MAX ERROR STRING LEN + I bytes).

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFEFFEF NWSMDR_INVALID_MESSAGE_NUMBER
Remarks

NWSMConvertError accepts error codes that begin with NWSMTS, NWSMDR, and NWSMUT.

Utility Library Functions 297

NWSMGetRequestorVersioninfo

Queries the local SMDR for its version information.

Syntax

#include <sms.h>
CCODE NWSMGetRequestorVersionInfo (

UINT32 connection,
NWSM_MODULE VERSION INFO *versionInfo);

Parameters

connection

(IN) Specifies the connection information that NWSMConnectToTSA returned.

versionInfo
(OUT) Points to a NWSM_MODULE_VERSION_INFO structure.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFEFFFF NWSMDR_INVALID_CONNECTION
OxFFFEFFFC NWSMDR_TRANSPORT_FAILURE
Remarks

You are responsible for freeing the memory held by versionInfo.

298 NDK: SMS Developer Components

NWSMGetSMSModuleVersioninfo

Queries the connected SMS module for its version information.

Syntax

#include <sms.h>
CCODE NWSMGetSMSModuleVersionInfo (

UINT32 connection,
NWSM MODULE VERSION INFO *info) ;

Parameters

connection
(IN) Specifies a TS API or SMS DI connection handle.

info
(OUT) Points to a NWSM_MODULE_VERSION_INFO structure containing information
about the module.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFEFFFF NWSMDR_INVALID_CONNECTION
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFE9 NWSMDR _INVALID_CONTEXT
Remarks

If a TS API connection handle is passed to connection, you must be connected to the TSA and
Target Service.

Utility Library Functions 299

NWSMGetResponderVersioninfo

Queries the responder used by the specified connection for its version information.

Syntax

#include <sms.h>
CCODE NWSMGetResponderVersionInfo (

UINT32 connection,
NWSM_MODULE VERSION INFO *versionInfo);

Parameters

connection

(IN) Specifies the connection information that NWSMConnectToTSA returned.

versionInfo
(OUT) Points to a NWSM_MODULE_VERSION_INFO structure.

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
OxFFFEFFE9 NWSMDR _INVALID_CONTEXT
Remarks

If the only SMDR is local, its version information is returned.

You are responsible for freeing the memory held by versionInfo.

300 NDK: SMS Developer Components

NWSMListSMDRs

Returns the names of all active SMDRs.

Syntax

#include <smsdrapi.h>

CCODE NWSMListSMDRs (
char *pattern,
NWSM NAME LIST **tsaNamelList) ;

Parameters

pattern
(IN) Specifies the pattern:
“*” Return all SMDR names
“*xxxx” Return all SMDR names that end with “xxxx”

“xxxx*” Return all SMDR names that begin with “xxxx”
“xxxx” Find the SMDR named “xxxx”

tsaNameList

(OUT) Points to a block of memory containing the list of specified SMDRs (cannot be a NULL
pointer but can be a pointer set to a NULL pointer).

Return Values

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFBFFFB NWSMUT_OUT_OF_MEMORY
OxFFFEFFF6 NWSMDR_NO_SUCH_SMDR
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
OxFFFEFFE9 NWSMDR_INVALID_CONTEXT
Remarks

For clusters, the virtual NCP server name is listed.

After an SMDR name is selected, it is passed to NWSMListTSAs to find the available TSAs that are
local to that SMDR. The SMDR name is the same as the Target Service's name. NWSMListSMDRs
may speed up the listing of SMS modules.

Call NWSMFreeNameList to free the memory allocated to namelL.ist.

Utility Library Functions 301

302 NDK: SMS Developer Components

Utility Field Macros

Field Macros are macros that manipulate and return information about SIDF data at the bit level.

In the field macros section, it is important to remember that formatted FID values are put into a
section as a byte stream where the most significant byte is first, the second most significant byte is
next, etc.

Where noted, the macros depend upon longFid (a local variable) being set before the macros are
called.

If the FID is long, the engine sets longFID to TRUE. If the FID is not long, longFID is set to FALSE.
The following function is used to set longFID:

int IsLong(unsigned char *fid)

{
if(*fid & 0x80)

{
//fid is a Standard or OS FID

if (*fid == 0x80 || ((*fid & O0xCO) == 0x80))
++fid; // fid is Standard or 0OS FID
else

fid += 2; // fid is Developer FID

if (*fid & 0x80)
return TRUE; // fid is a long FID

else
return FALSE; //fid is a Short FID

else
return FALSE; //fid is Small FID

}

The function is used as follows:
UINT8 longFid;

char *fid;

UINT32 fidvalue = 0x8000CO0;

fid = (char *)s&fidvValue;
longFid = IsLong(fid);

A special note is needed for macro parameters. The contents of non-pointer parameters in macros
can be changed. The parameter prototypes will not show as pointer types because the macro does
not use a pointer to change the parameter's contents. For example, macro “typedef Demo(param)
((param) = 0)” changes the contents of param.

Utility Field Macros 303

SIDF_GetFixedSize

Indicates if a FID has a fixed or variable data size.

Syntax

#include <sidf.h>

int SIDF GetFixedSize (
UINT32 fid);

Parameters
fid

(IN) Specifies the FID value to be identified.
Return Values

If SIDF_GetFixedSize is successful, it returns nonzero if the FID is fixed and zero if it is not fixed.

The following table lists the return values associated with the function.

0x00000000 Not fixed: fid is not a fixed FID.
nonzero Fixed size value: size of fixed fid.
Remarks

longFid must be set before you call this macro.

Example

UINT32 fid;
BUFFERPTR bufferPtr = buffer;
UINT8 longFid;

longFid = IsLong((char *)&fid);
if (SMDFFixedFid(fid))

/* FID is fixed. */

else
/* FID is variable. */

304 NDK: SMS Developer Components

SMDFSizeOfFID

Determines the size of a FID.

Syntax

#include <smsutapi.h>

int SMDFSizeOfFID (
UINT32 fid);

Parameters

fid
(IN) Specifies the FID to analyze.

Return Values

The following table lists the return values associated with the function.

nonzero FID size (1 through 4 bytes)

Remarks

The return value does not describe the size of the data associated with the FID, but only the FID’s
size.

Utility Field Macros 305

SMDFSizeOfFieldData

Returns the size information in data size format 2 for a given data size.

Syntax

#include <smsutapi.h>

int SMDFSizeOfFieldData (
UINT64 dataSize,
UINTS dataSizeMap) ;

Parameters

dataSize

(IN) Specifies the size of the data size descriptor.

dataSizeMap

(OUT) Specifies a size format 2 descriptor that indicates the number of size bytes that should
follow the descriptor.

Return Values

The following table lists the return values associated with the function.

0x0 Invalid data size value. The data’s size is between 0 and 127 bytes (size format
1 should be used).

0x1 The data size value will occupy one byte.
0x2 The data size value will occupy 2 bytes.
Ox4 The data size value will occupy 4 bytes.
0x8 The data size value will occupy 8 bytes.
Remarks

For data size values that fall within the range of Size Format 2, SMDFSizeOfFieldData returns a
size descriptor and indicates the number of bytes the data size value will occupy. These values are
used to fill in the data size values of an SIDF field.

dataSizeMap returns one of the following values:

0x00 dataSize contains an invalid value
0x80 20 size bytes follow
0x81 21 size bytes follow
0x82 22 size bytes follow
0x83 23 size bytes follow

306 NDK: SMS Developer Components

SMDFBIitNIsSet

Checks if a bit is set.

Syntax

#include <smsutapi.h>

int SMDFBitNIsSet (
unsigned char c);

Parameters

(IN) Specifies the bit to test.

Return Values

The following table lists the return values associated with the function.

0x00000000 Bit N is not set.
nonzero Bit N is set.
Remarks

SMDFBitNIsSet is actually a set of macros where N stands for the bit to be tested. N ranges from 1
to 6 as shown below:

SMDFBitl1lIsSet Checks if bit 0 is set
SMDFBit6IsSet Checks if bit 6 is set

Utility Field Macros 307

SMDFSetBitN

Sets bit N.

Syntax

#include <smsutapi.h>

void SMDFSetBitN (
unsigned char c);

Parameters

c
(IN/OUT) Specifies the bit to set.

Remarks

Bits 6 and 7 are not affected by SMDFSetBitN.

SMDFSetBitN is actually a set of macros where N stands for the number of the bit to be set. N
ranges from 1 to 6 as shown below:

SMDFSetBitl Set bit O
SMDFSetBit6 Set bit 5

308 NDK: SMS Developer Components

SMDFSizeOfUINT32Data

Determines the number of bytes the data occupies.

Syntax

#include <smsutapi.h>

int SMDFSizeOfUINT32Data (
UINT32 sizeOfData) ;

Parameters

sizeOfData
(IN) Specifies the size of the data.

Return Values

If SMDFSizeOfUINT32Data is successful, it returns the size of the data.

Utility Field Macros 309

SMDFSizeOfUINT32Data0

Determines the number of bytes the FID's data size descriptor occupies.

Syntax

#include <smsutapi.h>

int SMDFSizeOfUINT32Datal (
UINT32 fid);

Parameters

dataSize

(IN) Specifies the data’s size.

Return Values

If SMDFSizeOfUINT32Data0 is successful, it returns the size of the data size descriptor.

310 NDK: SMS Developer Components

SMDFSizeOfUINT64Data

Determines the number of bytes used by a UINT64 value.

Syntax

#include <smsutapi.h>

UINT32 SMDFSizeOfUINT64Data (
UINT64 data);

Parameters

data
(IN) Specifies the data to count.

Return Values

The following table lists the return values associated with the function.

0x00000000 The value of data is zero.

0x1 data has a value that uses only the lowest byte.
0z2 data has a value that uses only the lower 2 bytes.
0z4 data has a value that uses only the lower 4 bytes.
0z8 data has a value that uses all 8 bytes.
Remarks

The value returned by SMDFSizeOfUINT64Data is rounded to the next highest power of two. For
example, if data uses five bytes, SMDFSizeOfUINT64Data returns 8.

Utility Field Macros 311

SMDFZeroUINT64

Sets a UINT64 variable to zero.

Syntax

#include <smsutapi.h>

void SMDFZeroUINT64 (
UINT64 *data):;

Parameters

data
(OUT) Specifies the variable to be set.

312 NDK: SMS Developer Components

Utility Library Structures

This documentation alphabetically lists the Utility Library structures and describes their purpose,
syntax, and fields.

+ “ECMATime” on page 314

¢ “NWSM DATA SET NAME” on page 316

¢ “NWSM_EXTENSION INFORMATION” on page 317

¢ “NWSM_FIELD TABLE DATA” on page 318

¢ “NWSM_GET FIELDS TABLE” on page 319

¢ “NWSM_LIST” on page 320

¢ “NWSM_LIST PTR” on page 321

¢+ “NWSM_MEDIA INFO” on page 323

¢ “NWSM_MODULE VERSION_INFO” on page 324

¢ “NWSM_RECORD HEADER_INFO” on page 325

¢ “NWSM_RESOURCE_INFO_EXTN NETWARE DATA 1” on page 328

¢ “NWSM_RESOURCE_INFO_EXTN_UNIX DATA 1" on page 330

¢ “NWSM_RESOURCE_INFO_EXTN UNSUPPORTED DATA 1” on page 331

¢ “NWSM_SCAN _INFO EXTN NFS DATA 1” on page 332

¢+ “NWSM_SESSION_INFO” on page 333

¢ “SMDF _FIELD DATA” on page 335

¢ “UINT64” on page 336

Utility Library Structures 313

ECMATime

Contains the date and time information that conforms to the ISO/IEC-13346 (section 7.3) standard
for date and time.

Syntax

typedef struct

{
UINT16 typeAndTimeZone;

INT16 year;

UINT8 month;

UINTS8 day;

UINTS8 hour;

UINTS8 minute;

UINT8 second;

UINT8 centiSecond;

UINT8 hundredsOfMicroseconds;
UINT8 microSeconds;

UINT32 reserved;
} ECMATime;

Fields

typeAndTimeZone

Specifies the type of time zone and a time zone value (see “Time Zone Values” on page 349).

year

Specifies the year value (1-9999).

month

Specifies the month value (1-12).

day
Specifies the day value (1-31).
hour
Specifies the hour value (0-23).
minute
Specifies the minute value (0-59).
second
Specifies the second value (0-60 for a local type and 0-59 for other types).
centiSecond

Specifies the hundredths of second value (0-99).

hundredsOfMicroseconds

Specifies the hundreds of microsecond value (0-99).

314 NDK: SMS Developer Components

microSeconds

Specifies the microsecond value (0-99).

Utility Library Structures 315

NWSM_DATA_SET_NAME

Describes the path to a data set.

Syntax

typedef struct

{
UINT32 nameSpaceType;
UINT32 selectionType;
UINT16 count;

UINT16 HUGE “*namePositions;
UINT16 HUGE “*separatorPositions;
UINT16 namelength;
STRING name;

} NWSM DATA SET NAME;

Fields

nameSpacetype

Specifies the name space type of name (see “nameSpaceType Values” on page 347).

selectionType

Specifies how the data set is selected.

count

Specifies the size of the namePositions and separatorPositions array.

namePositions

Specifies part of an array that contains the beginning position of each path node in name.

separatorPositions
Specifies part of an array that contains the index location of the beginning of the separator in
name.

nameLength

Specifies the size of name in bytes.

name

Specifies the data set's name as it appears in the specified name space.

Remarks

NWSM_DATA _SET NAME is used to copy from or append to list elements that are part of the
NWSM_DATA SET NAME LIST or NWSM_SELECTION_LIST structure and shows the name
space, path node and separator positions, path length, and path.

You must set selectionType to zero if an element is appended to an
NWSM _DATA SET NAME LIST. If an element is being appended to an
NWSM_SELECTION_LIST, it cannot be zero.

316 NDK: SMS Developer Components

NWSM_EXTENSION_INFORMATION

Describes an extension information.

Syntax

typedef struct

{
UINT32 extensionTag ;
UINT32 tagVersion ;
UINT32 extensionSize;
void info;

} NWSM_EXTENSION INFORMATION;

Fields

extensionTag

Specifies the extension tag value. See Section 9.5, “ExtensionTag Values,” on page 350.

tagVersion

Specifies the extension tag version. See Section 9.5, “ExtensionTag Values,” on page 350.

extensionSize

Contains the extension size in bytes as encountered in the encoded extension buffer.

info
Points to the extension information. Encoded as per the extension tag and version structure
definition.

Remarks

extensionSize points to the number of bytes of information that was used in the encoded extension
buffer to represent the extension. This does not represent the size of the info field.

The info field can be type casted to the extensionTag structure whose version is equal to or lower
than tagVersion field.

info field may contain a NULL if the extension was not encoded.

Extension tag structures that contain pointers fields may contain NULL if no information is encoded
regarding the same.

Utility Library Structures 317

NWSM_FIELD TABLE_DATA

Syntax

typedef struct

{
SMDF_FIELD DATA field;

UINT32 sizeOfData;
void *addressOfData;
UINTS8 dataSizeMap;
UINTS8 reserved[3];

} NWSM_FIELD TABLE DATA;

Fields

field
Specifies the field's data.
sizeOfData

Specifies the number of bytes in fieldData (must be the same as fieldDataSize).

addressOfData

Specifies where the data was placed into buffer (optional).

dataSizeMap
Specifies if dataSizeMap or fieldDataSize contains the total size of the data to be put into field.

Remarks

Two fields that are not part of the section must be created to indicate that the first field of the section
needs synchronization data, and the other field to signal the end of the section. These fields are the
beginning field and the ending field. Only the fid value for these fields are specified. See

SMDF FIELD DATA on the next page for more information.

addressOfData is valid if it is set to GET ADRESS before you call SMDFPutFields. You can use
this field to store data at a later time.

If the total amount of data to be put into field is less than 128 bytes, set dataSizeMap to the data’s
size. If the total amount of data is 128 bytes or more, set dataSizeMap to
NWSM_VARIABLE SIZE and field.dataSize to the total amount of data that the field will contain.

318 NDK: SMS Developer Components

NWSM_GET_FIELDS TABLE

Contains information about each table entry.

Syntax

typedef struct

{
UINT32 fid;
void *data;
UINT32 dataSize;

NWBOOLEAN found;
} NWSM GET FIELDS TABLE;

Fields

fid
Specifies the FID of the field the you are looking for.

data
Specifies the field's data.

dataSize

Specifies the size of data in bytes.

found

Specifies a flag that indicates if a FID that matches fid was found (initialize to FALSE):

TRUE Match was found
FALSE No match was found

Remarks

Set fid to NWSM_RECORD_SIZE. The fid value of the first element must be set to the section FID.
The fid value of the last element must be set to NWSM_END to indicate the end of the table.

data is allocated by the calling function. If the buffer is too small, BUFFER _OVERFLOW is

returned.

Utility Library Structures 319

NWSM_LIST

Contains list information.

Syntax

typedef struct NWSM LIST STRUCT

{
UINTS8 marked;
struct NWSM LIST STRUCT “*prev;
struct NWSM LIST STRUCT “*next;
void *otherInfo;
BUFFER text[1l];

} NWSM LIST;

Fields

marked

Specifies if the data is valid or has been touched.

prev

Specifies the previous list element.

next

Specifies the next list element.

otherInfo

Specifies either a buffer containing user-defined information or an integer value (optional).

text

Specifies further information about the element.

Remarks

Do not modify marked.
The size of text is determined by the amount of text to be stored.

SMS uses NWSM_LIST for scan types. text contains the scan type string, and otherInfo contains the
scan type bit map.

320 NDK: SMS Developer Components

NWSM_LIST PTR

Specifies the beginning and ending list elements containing list information.

Syntax

typedef struct
{

NWSM LIST *head;

NWSM_ LIST *tail;

int (*sortProc) () ;

void (*freeProcedure) (void *memoryPointer);
} NWSM LIST PTR;

Fields

head
Specifies the first element as returned by NWSMGetListHead.

tail
Specifies the last element.

sortProc

Specifies the function that compares the text portion of an element.

freeProcedure

Specifies a function that frees the memory allocated to an element's otherInfo field.

Remarks
The following figure shows the relationship between NWSM_LIST PTR and NWSM_LIST:

MWEM_LIST_PTR

Head " Banee 0 |
Tail Mlarkied
St E]mnmt 1 Prevr
Fres Hent
Other Fif w Engite Defined
Stouchure
Text l
= Engine Defined
_'_____ﬁ‘,_h________,f Structire
LN’WSM_LIST #

For example, suppose that a program needs to display a list of resources and resource information
(free space, block size, etc.) when the user selects a resource name. The list functions can be used to
put the resource name and resource information into the above structure to associate them as a unit.

Call NWSMGetListHead to get the list head, rather than traversing the list.

To get the list tail, find the list head and traverse the list until you find NULL.

Utility Library Structures 321

The function specified by sortProc performs a case insensitive sort. sortProc is always set by the
utilities library, but you can reset this pointer to another sort function. The prototype of sortProc is:

int sortProc(char *sl, char *s2);

The return values are:

>0 String sl is greater than s2.
0 The strings match.
<0 String sl is less than s2.

sl and s2 are NULL-terminated strings.

Call NWSMlInitList to initialize freeProcedure. The function pointed to by this field is called when
you call NWSMDestroyList.

If otherInfo contains a non-allocated value such as an integer, freeProcedure must be set to NULL.
It's prototype is:
voilid freeProcedure (void *ptr);

322 NDK: SMS Developer Components

NWSM_MEDIA_INFO

Syntax

typedef struct
{
ECMATIME timeStamp;
ECMATIME setTimeStamp;
BUFFER label [NWSM MAX MEDIA LABEL LEN];
UINT32 number;
} NWSM MEDIA INFO;

Fields

timeStamp

Specifies the date and time the media header was written in ECMA date and time standards.

setTimeStamp

Specifies the date and time the media set was created.

label

Specifies the name of the media set (NWSM_MEDIA LABEL LEN includes the NULL
terminator).

number

Specifies the position of the medium within the media set (beginning with 1).

Remarks

If a media set contains three media, and the back up session started on July 3, 1991 at 11:30 p.m., the
time stamp for each medium would indicate the following as each media header is written:

medium 1 July 3, 1991 11:300 p.m.
medium 2 July 4, 1991 12:00 a.m.
medium 3 July 4, 1991, 12:30 a.m.

SMS DI users should initialize the first timeStamp value to setTimeStamp. SMS DI will
automatically update each time stamp value for subsequent media.

setTimeStamp is the same for all media in the media set.

Utility Library Structures 323

NWSM_MODULE_VERSION_INFO

Contains information about the module.

Syntax

typedef struct

{
char moduleFileName [256];
UINTS8 moduleMajorVersion,
UINTS8 moduleMinorVersion;
UINT16 moduleRevisionLevel;
char base0S[64];
UINTS8 baseOSMajorVersion,
UINTS8 baseOSMinorVersion;

UINT16 baseOSRevisionLevel;
} NWSM_ MODULE VERSION INFO;

Fields

moduleFileName

Specifies the file name of the module.

moduleMajorVersion

Specifies the whole number portion of the version number.

moduleMinorVersion

Specifies the decimal portion of the version number.

moduleRevisionLevel

Specifies the letter portion of the version number.

baseOS

Specifies the OS the module is running on.

baseOSMajorVersion

Specifies the whole number portion of the OS version number.

baseOSMinor Version

Specifies the decimal portion of the OS version number.

baseOSRevisionLevel

Specifies the letter portion of the OS version number.

Remarks

If the version number is 1.3a, moduleMajorVersion, moduleMinorVersion, and
moduleRevisionLevel return "1," "3," and "a" respectively.

324 NDK: SMS Developer Components

NWSM_RECORD_HEADER_INFO

Syntax

typedef struct
{
NWBOOLEAN
UINT32
UINT32

NWSM_DATA SET NAME LIST

NWSM_ SCAN_ INFORMATION
ECMATime

UINT32

UINT32

BUFFERPTR

UINT32

UINT32

UINT32

BUFFERPTR

} NWSM_RECORD HEADER INFO;

Fields

headerSize

isSubRecord;

headerSize;

recordSize;
*dataSetName;
*scanInformation;

archiveDateAndTime;
*addressOfRecordSize;
*addressForCRC;

crcBegin;

crcLength;

dataSetInfoRetrieved;

saveBufferSize;
saveBuffer;

Specifies the total size of the data set header or subheader.

recordSize

Specifies the size of the data in the record (the data set information and the portion of the data

set's data in the record).

isSubRecord

Specifies if the record is a subrecord:

TRUE NWSMUT BUFFER OVERFLOW was returned from NWSMSetNewRecordHeader
FALSE Need a header for a new data set

dataSetName

Specifies the data set name space type as returned by NWSMTSScanDataSetBegin or

NWSMTSScanNextDataSet.

scanInformation

Specifies the data set's scan information as returned by NWSMTSScanDataSetBegin or

NWSMTSScanNextDataSet.

archiveDateAndTime

Specifies the date and time the data set was added to the buffer.

addressOfRecordSize

Specifies the record size value (UINT32) in the SIDF data set header or subheader.

Utility Library Structures 325

addressForCRC
Specifies the address for the data set header CRC value:

crcBegin

Specifies where the CRC will be applied.

crcLength

Specifies the number of bytes the CRC was applied to (not valid until
NWSMUpdateRecordHeader is called).

dataSetInfoRetrieved
Is used internally by NWSMGetDataSetInfo and NWSMGetRecordHeaderOnly.

saveBufferSize
Is used internally by NWSMGetDataSetInfo and NWSMGetRecordHeaderOnly.

saveBuffer
Is used internally by NWSMGetDataSetInfo and NWSMGetRecordHeaderOnly.

Remarks

recordSize is the size of the record minus the amount of data put into scanInformation and
dataSetName. It is decremented to reflect the amount of data transferred from the buffer to the
recordHeaderInfo parameter.

When the data set data is added to the record, you must update recordSize to reflect the record's new
size.

isSubRecord remains TRUE until all of a data set's data is written to the buffer.

The time specified by archiveDateAndTime may not be the same as
scanInformation.archiveDateAndTime.

addressForCRC is usually used by NWSMUpdateRecordHeader to update the CRC value after the
data is inserted into the transfer buffer.

The CRC for the data set information is calculated and placed into the section automatically if
setCRC is CRC_YES or CRC_LATER and no pointer is returned for addressForCRC.

crcBegin is usually used by NWSMUpdateRecordHeader to update the CRC value after the data is
inserted into the transfer buffer.

The values that can be set for dataSetInfoRetrieved is listed in the following table.

Value Description

0x00000000 DATA_SET_INFO_NOT_STARTED: The data set information has not been
processed yet as set by NWSMGetRecordHeaderOnly. The retrieval of the data
from the new record has not begun. Call NWSMGetDataSetinfo to retrieve this data
from the transfer buffer.

0x00000001 DATA_SET_INFO_SPANNED: The data set name list or scan information spans the
buffer. Call NWSMGetDataSetInfo with the same recordHeaderlInfo.

326 NDK: SMS Developer Components

Value Description

0x00000002 DATA_SET_INFO_COMPLETE: dataSetName and scaninformation specify
complete structures. Until dataSetinfoRetrieved returns this value, dataSetName
and scaninformation cannot be used.

0x00000003 DATA_SET_INFO_DOES_NOT_EXIST: The data set information starts in the next
transfer buffer. In a backup session, if the data set information cannot fit into the
space left in the transfer buffer, the data set information is placed into the next
transfer buffer, preceded by a subrecord header as set by
NWSMGetRecordHeaderOnly. The retrieval of the data has begun. Call
NWSMGetDataSetInfo to get the next portion of the data from the transfer buffer.

Set dataSetName and scanInformation to NULL or to a valid structure. The memory used by the
data set name or scan information will be resized if there is not enough space.

The following fields in recordHeaderInfo are not used by NWSMGetRecordHeaderOnly:

dataSetName
scanInformation
addressOfRecordSize
addressForCRC
crcBegin

crcLength
saveBufferSize
saveBuffer

Utility Library Structures 327

NWSM_RESOURCE_INFO_EXTN_NETWARE_DA
TA_1

Describes the NetWare file systems primary resource meta data.

Syntax

typedef struct

{
UINT16 blockSize;
UINT32 totalBlocks;
UINT32 freeBlocks;
NWBOOLEAN resourcelsRemovable;
UINT32 purgableBlocks;
UINT32 notYetPurgableBlocks;
UINT32 migratedSectors;
UINT32 preCompressedSectors;
UINT32 compressedSectors;

} NWSM_RESOURCE_INFO EXTN NETWARE DATA 1;

Fields

blockSize

Contains the resource’s disk block size.

totalBlocks

Contains the total number of blocks on the resource.

freeBlocks

Contains the number of free blocks on the resource.

resourcelsRemovable
Contains a flag indicating whether the resource is removable.
TRUE Resource is removable.

FALSE Resource is not removable.

purgableBlocks

Contains the total number of blocks set aside as purgeable blocks.

notYetPurgeableBlocks

Contains the number of blocks not marked to be purged.

migratedSectors

Contains the number of migrated sectors.

precompressedSectors

Contains the number of sectors used by all data sets before they were compressed.

328 NDK: SMS Developer Components

compressedSectors

Contains the number of sectors used by all compressed data sets.

Utility Library Structures 329

NWSM_RESOURCE_INFO_EXTN_UNIX_DATA 1

Describes the Linux file system primary resource meta data.

Syntax

typedef struct

{
char *mnt_ fsname;
char *mnt_ type;
char *mnt_ opts;

} NWSM_RESOURCE_INFO EXTN UNIX DATA 1;

Fields

mnt_fsname

Name of the mounted file system.

mnt_type
Type of mount.

mnt_opts

Mount options used to mount the file system.

Remarks

See SLES man pages getmntent(3), mount(8), and mntent.h header for various values of these fields.

330 NDK: SMS Developer Components

NWSM_RESOURCE_INFO_EXTN_UNSUPPORTE
D_DATA_1

Describes the unsupported TSA options.

Syntax

typedef struct

{ UINT32 unsupportedBackupOptions;
UINT32 unsupportedRestoreOptions;

} NWSM_RESOURCE_INFO EXTN UNSUPPORTED DATA 1;

Fields

unsupportedBackupOptions
Contains a bit map that represents the TSA’s unsupported backup options.

unsupportedRestoreOptions

Contains a bit map that represents the TSA’s unsupported restore options.

Remarks

See NWSMTSGetUnsupportedOptions for a list of unsupported backup and restore options.

Utility Library Structures 331

NWSM_SCAN_INFO_EXTN_NFS_DATA_1

Describes the NFS file system meta data.

Syntax

typedef struct

{
UINT32 nfs st mode;
UINT32 nfs st nlinks;
UINT32 nfs st nlinks;
UINT32 nfs st gid;
UINT32 nfs st ctime;
} NWSM SCAN INFO EXTN NFS DATA 1;

Fields

nfs_st_mode
Contains the file permission mode as defined by stat.h in the IEEE Std 1003.1.

nfs_st_nlinks
Contains the number of links to the data set as defined by stat.h in the IEEE Std 1003.1

nfs_st uid
Contains the user ID of the data set as defined by stat.h in the IEEE Std 1003.1

nfs_st gid
Contains the group ID of the data set as defined by stat.h in the IEEE Std 1003.1

nfs_st_ctime
Contains the time of last file status change as defined by stat.h in the IEEE Std 1003.1

332 NDK: SMS Developer Components

NWSM_SESSION_INFO

Syntax

typedef struct

{
ECMATime timeStamp;

UINT32 sessionID;

BUFFER description;

BUFFER softwareName;
BUFFER softwareType;
BUFFER softwareVersion;
BUFFER sourceName;

BUFFER sourceType;

BUFFER sourceVersion;
BUFFER sidfSourceNameType;
BUFFER sidfSourceName;

} NWSM_SESSION INFO;

Fields

timeStamp

Specifies the date and time the session was created.

sessionID

Specifies the unique ID that identifies the session.

description
Specifies a user-defined string including a NULL terminator (maximum of
NWSM_MAX DESCRIPTION_LEN).

softwareName
Specifies the name of the software servicing the target (maximum of
NWSM_MAX SOFTWARE NAME LEN).

softwareType
Specifies the type of the software doing the backup (maximum of
NWSM_MAX SOFTWARE TYPE LEN).

softwareVersion
Specifies the software version string (maximum of NWSM_MAX SOFTWARE VER LEN).

sourceName

Specifies the target service's name as returned by NWSMTSGetTargetServiceType (page 71)
(maximum of NWSM_MAX TARGET SRVC NAME LEN).

Utility Library Structures 333

sourceType
Specifies the target's type string as returned by NWSMTSGetTargetServiceType (page 71)
(maximum of NWSM_MAX TARGET SRVC TYPE LEN).

sourceVersion
Specifies the target's version string as returned by NWSMTSGetTargetServiceType (page 71)
(maximum of NWSM_MAX TARGET SRVC VER_LEN).

sidfSourceNameType
Specifies the type of string contained in sidfSourceName (maximum of

NWSM_MAX_SIDF_SRC_NAME):

SMS SMS string
common Non-SMS string

sidfSourceName
Specifies the name of the target (maximum of NWSM_MAX SIDF SRC NM TYPE LEN).

Remarks

The two kinds of format used by sidfSourceName is listed in the following table.

Format Description
SMS SMDR_name.TSA_name.Target_Service_Name
common String can contain anything

To get the SMDR name, refer to NWSMListSMDRs (page 301).

334 NDK: SMS Developer Components

SMDF_FIELD_DATA

Syntax

typedef struct
{
UINT32 fid;
UINT64 dataSize;
void *data;
UINT32 bytesTransfered;
UINT64 dataOverflow;
} SMDF FIELD DATA;

Fields

fid
Specifies a FID value.

dataSize

Specifies the size of the data in bytes.

data
Specifies all of the field's data.

bytesTransferred

Specifies the number of bytes moved into buffer.

dataOverflow

Specifies the number of bytes that could not be transferred into buffer.

Remarks

The FID value of the first table field must be NWSM_BEGIN. The FID value of the field that marks
the end of the section must be NWSM_END.

dataSize is used only for data sizes over and including 128 bytes (size format 2) and is invalid if
there are less than 128 bytes of data. For data sizes under 128 bytes, see dataSizeMap of
NWSM_FIELD TABLE DATA (page 318).

bytesTransferred does not need to be initialized to any value.

Utility Library Structures 335

UINT64

Contains an 8-byte unsigned integer value.

Syntax

typedef struct

{
UINT16 v[id];
} UINT64;

336 NDK: SMS Developer Components

Return Values

This chapter lists the return values used with Target Services and Utility Library.

¢ Section 9.1, “Target Services Values,” on page 33

7

¢ Section 9.4, “Utility Library Values,” on page 347

¢ Section 9.5, “ExtensionTag Values,” on page 350
+ Section 9.6, “TagVersion Values,” on page 350

9.1 Target Services Values

This section lists the values that Target Services can re

turn.

¢ Section 9.2, “Target Services Generic Open Mode Values,” on page 337

+ “TSA-Specific Open Mode Values” on page 338

9.2 Target Services Generic Open Mode Values

The two types of generic open mode values are:

¢ “Generic Backup Open Mode Values” on page 337

¢ “Generic Restore Open Mode Values” on page 33

9.2.1 Generic Backup Open Mode

7

Values

The generic backup open mode strings are built by the engine from the values given in the following

table.

Value Modes

Description

Numeric Modes:

0x0001 NWSM_USE_LOCK_MODE_IF_DW_FAILS

0x0002 NWSM_NO_LOCK_NO_PROTECTION

0x0003 NWSM_OPEN_READ_ONLY

Open the data set using lock mode if a
deny write open mode fails.

Circumvents lock and write protection. The
engine should only use this mode when
data integrity is not required.

The dataset is opened in Read only mode
and the data is of the last saved state. This
mode circumvents lock and write
protection and the engine should only use
it when data integrity is not required.

9.2.2 Generic Restore Open Mode

Values

The generic restore open mode strings are built by the engine from the values given in the following

table.

Return Values 337

Value

Modes

Description

Numeric Modes:

0x0000
0x0001

0x0002

0x0003

0x0004

Invalid

NWSM_OVERWRITE_DATA_SET

NWSM_DO_NOT_OVERWRITE_DATA_SE
T

NWSM_CREATE_PARENT_HANDLE

NWSM_UPDATE_DATA_SET

Bitmap Modes:

0x0040

0x0080

NWSM_CLEAR_MODIFY_FLAG_RESTOR
E

NWSM_RESTORE_MODIFY_FLAG

Invalid

Open the data set and allow it to be
overwritten.

Do not open the data set if it exists on the
Target Service.

NWSM_DO_NOT _OVERWRITE_DATA S
ET has lower precedence than excluding
orincluding a data set. That is, if a data set
is marked as do not overwrite and is also
marked as included in the selection list, the
data set will be overwritten. To avoid
overwriting an included data set, it must be
excluded.

Create a parent handle. If the parent does
not exist on the Target Service, it is
created. If the parent exists, it is not
overwritten.

If the data set on the media is newer than
the Target Service's copy, update the
Target Service's copy. This mode is
applicable only for files.

Clear the modify flag after the data set is
restored.

Set the data set's modify flag to what it was
before the backup session began.

9.2.3 TSA-Specific Open Mode Values

For the NetWare TSAs, the returned strings represent the following TSA-specific open modes

values:

The following table lists the TSA-specific open modes values.

Value Modes Description

0x0100 NWSM_NO_DATA_STREAMS Do not read or write the data set's data
streams

0x0200 NWSM_NO_EXTENDED_ATTRIBUTES Do not read or write the data set's
extended attribute

0x0400 NWSM_NO_PARENT_TRUSTEES If the data set is a parent, do not read or

write its trustee information

338 NDK: SMS Developer Components

Value

Modes

Description

0x0800

0x1000

0x2000

0x8000

0x10000

0x20000
0x4000

0x40000

0x80000

NWSM_NO_CHILD_TRUSTEES

NWSM_NO_VOLUME_RESTRICTIONS

NWSM_NO_DISK_SPACE_RESTRICTIONS

NWSM_DELETE_EXISTING_TRUSTEES

NWSM_EXPAND_COMPRESSED_DATA_SE
T

NWSM_EXCLUDE_MIGRATED_DATA
NWSM_INCLUDE_MIGRATED_DATA

NWSM_PRESERVE_ACCESS_TIME

NWSM_NO_HARDLINK_DATA

If the data set is a child, do not read or
write its trustee information.

Do not read or write the data set's
resource restriction information.

Do not read or write the data set's
space restrictions.

Delete the existing trustees during a
restore from a data set before restoring
the backed up trustees.

Expand data sets that are currently
compressed on the host. This option is
used only during backup.

Do not backup migrated data sets.

Restore migrated streams for a data set
on the primary storage medium. The
default behavior is to skip migrated
streams during a restore.

Preserves the access time of the data
set after a backup session.

Do not backup the data of consecutive
hard link nodes of a particular hardlink
network, except for the first
encountered node.

9.3 Target Service Return Values

This section lists the return values returned by the TSAPI and SMDR, and TSANDS return values
that directly map to the NDS return values, see “TSANDS Return Values” on page 347.

9.3.1 TSAPI and SMDR Return Values

The following table lists completion codes for the TS API and SMDR. (completion codes beginning
with OxFFFD, OxFFFE, and OxFFFF).

Value Error String Description
OxFFFDFFAD NWSMTS_UNSUPPORTED_OPTION One of the selected options is not
supported by the target service
OxFFFDFFAE NWSMTS_CLUSTER_TARGET_HAS _NO_VOL The cluster pool does not contain any
UMES resources
OxFFFDFFAF NWSMTS_CLUSTER_TARGET_DOES_NOT_E Cluster target does not exist
XIST
OxFFFDFFBO NWSMTS_INVALID_MESSAGE_NUMBER Message number is invalid

Return Values

339

Value

Error String

Description

OxFFFDFFB1

OxFFFDFFB2

OxFFFDFFB3

OXFFFDFFB4
OXxFFFDFFBS5

OxFFFDFFB6

OxFFFDFFB7

OxFFFDFFB8
OxFFFDFFB9

OxFFFDFFBA
OxFFFDFFBB
OxFFFDFFBC
OxFFFDFFBD
OxFFFDFFBE
OxFFFDFFBF
OxFFFDFFCO

OxFFFDFFC1

OxFFFDFFC2

OXFFFDFFC4

OxFFFDFFC3
OxFFFDFFC5

OxFFFDFFC6
OxFFFDFFC7

OxFFFDFFC8

NWSMTS_INTERNAL_ERROR

NWSMTS_COMPRESSION_CONFLICT

NWSMTS_MAX_CONNECTIONS

NWSMTS_REDIRECT_TRANSPORT
NWSMTS_WRITE_ERROR

NWSMTS_WRITE_ERROR_SHORT

NWSMTS_WRITE_EA_ERR

NWSMTS_VALID_PARENT_HANDLE
NWSMTS_UNSUPPORTED_FUNCTION

NWSMTS_TSA_NOT_FOUND
NWSMTS_TRANSPORT PACKET SIZE_ER
NWSMTS_TRANSPORT_FAILURE
NWSMTS_SET_FILE_INFO_ERR
NWSMTS_SELECTION_TYPE_NOT_USED
NWSMTS_SCAN_TYPE_NOT USED
NWSMTS_SCAN_TRUSTEE_ERR

NWSMTS_SCAN_NAME_SPACE_ERR

NWSMTS_SCAN_IN_PROGRESS

NWSMTS_SCAN_ERROR

NWSMTS_SCAN_FILE_ENTRY_ERR
NWSMTS_RESOURCE_NAME_NOT_FOUND

NWSMTS_READ_ERROR
NWSMTS_READ_EA_ERR

NWSMTS_OVERFLOW

An internal TSA error occurred, see
the error log for more details

Attempted to put compressed data on
a noncompressed resource

All available connections to the TSA
are in use

Indicates reconnection requirement

An error occurred while writing to a
file

An error occurred while writing to a
file. Could not write all of the data of
current request

Unable to write the extended attribute
information

A valid parent handle was created

The requested function is not
supported by this TSA

Invalid or inactive TSA specified

The read/write request exceeds 128K
The transport mechanism failed
Unable to set file information
Selection type is not used

Scan type is not used

Unable to scan for the trustees
information. Running DSRepair may
resolve the issue

Unable to scan name-space specific
information

Cannot alter the resource list while a
scans is in progress

The scan failed; the probable cause
is an invalid path

Unable to scan file entry information

No resource name is found or all
resource names have been found

Cannot read the file

Unable to read the extended
attributes

A UINT64 value overflowed

340 NDK: SMS Developer Components

Value

Error String

Description

OxFFFDFFC9

OxFFFDFFCA

OxFFFDFFCB
OxFFFDFFCC
OxFFFDFFCD

OXxFFFDFFCE
OxFFFDFFCF

OxFFFDFFDO

OxFFFDFFD1
OxFFFDFFD2
OxFFFDFFD3

OXxFFFDFFD4

OxFFFDFFD5

OxFFFDFFD6
OxFFFDFFD7
OxFFFDFFD8
OxFFFDFFD9

NWSMTS_OUT_OF _MEMORY

NWSMTS_OUT_OF _DISK_SPACE

NWSMTS_OPEN_MODE_TYPE_NOT_USED
NWSMTS_OPEN_ERROR
NWSMTS_OPEN_DATA_STREAM_ERR

NWSMTS_NO_SUCH_PROPERTY
NWSMTS_NO_SEARCH_PRIVILEGES

NWSMTS_NO_MORE_NAMES

NWSMTS_NO_MORE_DATA_SETS
NWSMTS_NO_MORE_DATA
NWSMTS_NO_CONNECTION

NWSMTS_NOT_READY

NWSMTS_NAME_SP_PATH_NOT_UPDATED

NWSMTS_LOGOUT_ERROR
NWSMTS_LOGIN_DENIED
NWSMTS_INVALID_SEQUENCE_NUMBER
NWSMTS_INVALID_SELECTION_TYPE

The file server is out of memory or
the memory allocation failed

Cannot restore the data, because the
target service is out of disk space

The open mode option is not used
Cannot open a file

The possible instances when
TSAS500 can encounter this error are:

Returning the meta data information
for the file object.

Returning the directory base
information for a specified file path.

Opening a file.

In either case, the engine should
continue with the next data set that it
can backup.

The possible instance when TSA600
can encounter this error is from the
file system open call while opening a
file system object. In this case, the
engine should continue with the next
data set that it can backup.

No such property.

No search privilege on the client
service

No more entries in the list or name
space does not exist

There are no more data sets to scan
No more data exists

The specified connection is invalid or
does not exist

The specified server is unable to
service the request at this time

The name space path has not been
updated

Unable to logout
Login denied
The sequence number is invalid

Invalid selection type. The selection
type was either less than zero or
greater than thirty one

Return Values

341

Value

Error String

Description

OxFFFDFFDA

OxFFFDFFDB

OxFFFDFFDC

OxFFFDFFDD

OxFFFDFFDE

OxFFFDFFDF

OxFFFDFFEO

OXFFFDFFE1
OXFFFDFFE2

OxFFFDFFE3
OxFFFDFFE4
OxFFFDFFE5
OxFFFDFFEG
OxFFFDFFE7

OxFFFDFFES8

OxFFFDFFE9

OxFFFDFFEA

OxFFFDFFEB

OxFFFDFFEC
OxFFFDFFED
OxFFFDFFEE

NWSMTS_INVALID_SEL_LIST_ENTRY

NWSMTS_INVALID_SCAN_TYPE

NWSMTS_INVALID_PATH

NWSMTS_INVALID_PARAMETER

NWSMTS_INVALID_OPEN_MODE_TYPE

NWSMTS_INVALID_OBJECT_ID

NWSMTS_INVALID_NAME_SPACE_TYPE

NWSMTS_INVALID_MESSAGE_NUMBER
NWSMTS_INVALID_HANDLE

NWSMTS_INVALID_DATA_SET TYPE
NWSMTS_INVALID_DATA_SET NAME
NWSMTS_INVALID DATA_SET HANDLE
NWSMTS_INVALID_DATA
NWSMTS_INVALID_CONNECTION_HANDL

NWSMTS_GET_VOL_NAME_SPACE_ERR

NWSMTS_GET_SERVER_INFO_ERR

NWSMTS_GET_NAME_SPACE_SIZE_ERR

NWSMTS_GET_NAME_SPACE_ENTRY_ERR

NWSMTS_GET_ENTRY_INDEX_ERR

NWSMTS_GET_DATA_STREAM_NAME_ERR

NWSMTS_GET_BIND_OBJ_NAME_ERR

An invalid selection list entry was
passed

Invalid scan type was used. The scan
type was either less than zero or
greater than thirty one

An invalid path was used

One or more of the parameters are
NULL or invalid

Invalid open mode option type. The
option type is less than zero or
greater than 23

The object’s backed up id and name
does not match the current object’s id
and name

The name space type does not exist
or is invalid

The message number is invalid

The handle is tagged invalid or is set
to zero

Data set type is invalid

The data set name is invalid
The data set handle is invalid
The data set is invalid

Invalid connection handle was
passed

Unable to get the name space
information that is supported by the
resource

Unable to get the file server’s
information

Unable to get name space size
information

Unable to get the name space entry
name

Unable to get the entry index
Unable to get the data stream’s name

Unable to get the name of a bindery
object

342 NDK: SMS Developer Components

Value Error String Description

OxFFFDFFEF NWSMTS_EXPECTING_TRAILER Received a Record or Subrecord
Trailer, but could not locate the trailer
field

OxFFFDFFFO NWSMTS_EXPECTING_HEADER Received a Record or Subrecord
Header, but could not locate the
header field

OxFFFDFFF1 NWSMTS_DELETE_ERR Cannot delete a data set

OxFFFDFFF2 NWSMTS_DATA _SET_NOT_FOUND No data set was found or the
resource is not available.

OxFFFDFFF3 NWSMTS_DATA_SET IS _OPEN Attempted to open an already data
set or attempted to alter a scan while
a data set is open

OxFFFDFFF4 NWSMTS_DATA_SET_IS_OLDER The existing data set on the target
data set is newer the one on the
media, the data set will not be
restored

OXFFFDFFF5 NWSMTS_DATA_SET_IN_USE Data set is currently in use and
cannot be accessed

OxFFFDFFF6 NWSMTS_DATA_SET_EXECUTE_ONLY Can only execute the file

OxFFFDFFF7 NWSMTS_DATA_SET_EXCLUDED The data set is excluded by the
selection list

OxFFFDFFF8 NWSMTS_DATA_SET_ALREADY_EXISTS The data set name already exists

OxFFFDFFF9 NWSMTS_CREATE_ERROR Cannot create a file

OxFFFDFFFA NWSMTS_CREATE_DIR_ENTRY_ERR Cannot create directory entry

OxFFFDFFFB NWSMTS_CLOSE_BINDERY_ERROR Cannot close the bindery

OxFFFDFFFC NWSMTS_CANT_ALLOC DIR HANDLE Cannot allocate a directory handle

OxFFFDFFFD NWSMTS_BUFFER_UNDERFLOW Buffer underflow, unable to get entire
field

OxFFFDFFFE NWSMTS_BINDERY_OBJECT_NAME_ERR Unable to get bindery object name

OxFFFDFFFF NWSMTS_ACCESS_DENIED Invalid user name or authentication

OXFFFEFFFF NWSMDR_INVALID_CONNECTION Invalid connection handle was
passed to the SMDR

OxFFFEFFFE NWSMDR_INVALID_PARAMETER One or more of the parameters is
NULL or invalid

OXFFFEFFFD NWSMDR_OUT_OF_MEMORY SMDR memory allocation failed

OxFFFEFFFC NWSMDR_TRANSPORT_FAILURE The transport mechanism has failed

OXxFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION The requested function is not
supported by SMDR

OxFFFEFFFA NWSMDR_MODULE_ALREADY_EXPORTED The module is already exported by

SMDR

Return Values

343

Value Error String Description

OxFFFEFFF9 NWSMDR_DECRYPTION_FAILURE The decryption mechanism of the
SMDR failed

OxFFFEFFF8 NWSMDR_ENCRYPTION_FAILURE The encryption mechanism of the
SMDR failed

OxFFFEFFF7 NWSMDR_TSA_NOT_LOADED The requested TSA is not loaded

OxFFFEFFF6 NWSMDR_NO_SUCH_SMDR The specified SMDR does not exist

OxFFFEFFF5 NWSMDR_SMDR_CONNECT_FAILURE SMDR connection failure. Load the
SMDR on the remote server and try
again

OxFFFEFFF4 NWSMDR_NO_MORE_DATA No more data to process

OXFFFEFFF3 NWSMDR_NO_SOCKETS No more sockets available

OXFFFEFFF2 NWSMDR_INVALID_PROTOCOL The specified protocol does not exist

OXFFFEFFF1 NWSMDR_NO_MORE_CONNECTIONS Unable to create another connection
handle. Maximum number of
connections is reached. Try to close
some existing connections

OXFFFEFFFO NWSMDR_NO_SUCH_TSA Requested TSA does not exist

OxFFFEFFEF NWSMDR_INVALID_MESSAGE_NUMBER Invalid message number

OxFFFEFFEE NWSMDR_OUT_OF_SHMEM SMDR out of shared memory

OxFFFEFFED NWSMDR_INVALID_PATHNAME Invalid path name

OxFFFEFFEC NWSMDR_INVALID_BUFFER_SIZE Invalid buffer size

OxFFFEFFEB NWSMDR_INVALID_ADDRESS Invalid address

OxFFFEFFEA NWSMDR_INVALID_HANDLE Invalid Handle passed to SMDR

OxFFFEFFE9 NWSMDR_INVALID_CONTEXT The specified context is invalid

OXFFFEFFE8 NWSMDR_INVALID_NAME The specified name does not exist or
is invalid

OxFFFEFFE7 NWSMDR_INVALID_INSTANCE Invalid SMDR instance

OxFFFEFFE6 NWSMDR_INVALID_TARGET Invalid target

OxFFFEFFE5 NWSMDR_INVALID_SERVICE Requested RPC call is invalid

OxFFFEFFE4 NWSMDR_INVALID_STREAM Invalid transport stream

OxFFFEFFE3 NWSMDR_INVALID_TYPE Invalid Registry type

OxFFFEFFE2 NWSMDR_INVALID_SYNTAX Invalid syntax

OxFFFEFFE1 NWSMDR_NAME_TOO_LONG Specified name is too long

OxFFFEFFEO NWSMDR_CORRUPTED_STATE The TSA information is corrupted

OxFFFEFFDF NWSMDR_UNKNOWN_ADDRESS The specified address does not exist

OxFFFEFFDE NWSMDR_UNKNOWN_SERVICE_TYPE Unknown RPC Service Type

344 NDK: SMS Developer Components

Value Error String Description
OxFFFEFFDD NWSMDR_UNKNOWN_ERROR Unknown error occurred in SMDR
OxFFFEFFDC NWSMDR_UNKNOWN_COMMAND Unknown command for listener
OXFFFEFFDB NWSMDR_UNKNOWN_ENCRYPTION Unknown encryption mechanism
OxFFFEFFDA NWSMDR_REGISTRY_INVALID Invalid registry
OxFFFEFFD9 NWSMDR_REGISTRY_EMPTY Registry is empty
OxFFFEFFD8 NWSMDR_REGISTRY_FULL Registry is full
OxFFFEFFD7 NWSMDR_RESOURCE_LOCKED Resource is locked by another thread
OxFFFEFFD6 NWSMDR_INSTANCE_BUSY Service instance is busy
OxFFFEFFD5 NWSMDR_SHUTDOWN_FAILURE SMDR shutdown failed
OxFFFEFFD4 NWSMDR_TIMEOUT SMDR timed out
OxFFFEFFD3 NWSMDR_NO_PROTOCOLS No protocols specified
OxFFFEFFD2 NWSMDR_NO_SERVICES No services available
OxFFFEFFD1 NWSMDR_NO_DSAPI DS APl interface not initialized
OxFFFEFFDO NWSMDR_FILE_NOT_FOUND The specified file was not found
OxFFFEFFCF NWSMDR_CREATE_FAILURE Failed to create Object Instance
OxFFFEFFCE NWSMDR_OPEN_FAILURE Unable to open the configuration file
for reading
OxFFFEFFCD NWSMDR_READ_FAILURE Unable to read from source
OxFFFEFFCC NWSMDR_WRITE_FAILURE Unable to write to the destination
OxFFFEFFCB NWSMDR_SEEK_FAILURE Unable to seek the position
OXxFFFEFFCA NWSMDR_CLOSE_FAILURE Unable to close the resource
OxFFFEFFC9 NWSMDR_ACCESS_DENIED Access to resource denied
OxFFFEFFC8 NWSMDR_DELETE_FAILURE Unable to delete
OxFFFEFFC7 NWSMDR_BAD_CONFIGURATION Invalid SMDR configuration
OxFFFEFFC6 NWSMDR_BAD_FILE_HANDLE Invalid file handle passed
OxFFFEFFC5 NWSMDR_BAD_COMMAND_LINE Invalid command line
OxFFFEFFC4 NWSMDR_BAD_OPTION Invalid option passed
OxFFFEFFC3 NWSMDR_BAD_OPTION_VALUE Invalid option value passed
OxFFFEFFC2 NWSMDR_NO_MECHANISM No mechanism passed
OxFFFEFFC1 NWSMDR_HELP_OPTION No Help option
OxFFFEFFCO NWSMDR_BUFFER_OVERFLOW Buffer overflow occurred
OxFFFEFFBF NWSMDR_BUFFER_UNDERFLOW Buffer underflow occurred
OxFFFEFFBE NWSMDR_BUFFER_LOCKED Buffer is locked

Return Values

345

Value Error String Description

OxFFFEFFBD NWSMDR_ENTRY_NOT_FOUND The specified entry was not found

OxFFFEFFBC NWSMDR_ENTRY_EXISTS Duplicate entry exists

OxFFFEFFBB NWSMDR_REMOVING_ENTRY Removing the entry

OxFFFEFFBA NWSMDR_TABLE_OVERFLOW Table overflow occurred

OxFFFEFFB9 NWSMDR_INVALID_INDEX Invalid index

OxFFFEFFB8 NWSMDR_PROTOCOL_NOT_FOUND The specified protocol was not found

OxFFFEFFB7 NWSMDR_SVCTYPE_NOT_FOUND Unknown service type

OxFFFEFFB6 NWSMDR_SERVICE_NOT_FOUND Unknown service

OxFFFEFFB5 NWSMDR_NOT_AUTHENTICATED Authentication necessary to access
resource

OxFFFEFFB4 NWSMDR_INSUFFICIENT_RIGHTS Insufficient rights to access resource

OxFFFEFFB3 NWSMDR_UNKNOWN_HOST Unknown host specified

OxFFFEFFB2 NWSMDR_CONNECT_FAILURE SMDR connection failed

OxFFFEFFB1 NWSMDR_DISCONNECTED Resource disconnected

OxFFFEFFBO NWSMDR_DISCONNECT_FAILURE Failed to disconnect resource

OxFFFEFFAF NWSMDR_LISTENER_FAILURE Socket Listener failed

OxFFFEFFAE NWSMDR_ACCEPT_FAILURE Socket could not accept connection

OxFFFEFFAD NWSMDR_TSP_BIND_FAILURE Cannot bind to the socket

OxFFFEFFAC NWSMDR_POLL_FAILURE Unable to poll

OxFFFEFFAB NWSMDR_LOGIN_FAILURE Unable to login

OxFFFEFFAA NWSMDR_AUTHENTICATION_FAILURE Unable to authenticate

OxFFFEFFA8 NWSMDR_SPAWN_FAILURE Unable to spawn child thread

OxFFFEFFA7 NWSMDR_MODULE_LOAD_FAILURE Dynamic loading of module failed

OxFFFEFFA6 NWSMDR_MODULE_UNLOAD_FAILURE Dynamic unloading of module failed

OxFFFEFFA5 NWSMDR_DYNAMIC_BIND_FAILURE Dynamic function binding failed

OxFFFEFFA4 NWSMDR_DYNAMIC_UNBIND_FAILURE Dynamic function unbinding failed

OxFFFEFFA3 NWSMDR_INVALID_DYNAMIC_SYMBOL Dynamic function is invalid

OxFFFEFFA2 NWSMDR_INVALID_CONSTRUCTOR Invalid constructor

OxFFFEFFA1 NWSMDR_NO_DATA_FOUND Unable to find data

OXFFFEFFAO NWSMDR_TARGET_NOT_REGISTERED Specified target not registered

OxFFFEFFOF NWSMDR_SAP_FAILED SAP mechanism failed

346 NDK: SMS Developer Components

9.3.2 TSANDS Return Values

The TSANDS return values directly map to the NDS return values.

The following table lists the TSANDS return values.

TSANDS Hexadecimal Number Constant Maps to...
FFFDFEFF NWSMTS_INSUFFICIENT_ME OxFFFF FF6A (http://
MORY developer.novell.com/ndk/doc/

ndslib/dsov_enu/data/
hcvwzt90.html) > NDS Return
Values from the Operating

System
FFFDFEFE NWSMTS_REQUEST_UNKNO OxFFFF FF05 (http://
WN developer.novell.com/ndk/doc/

ndslib/dsov_enu/data/
hcvwzt90.html) > NDS Return
Values from the Operating
System

FFFDFEFD NWSMTS_OF_SOME_SORT OxFFFF FFO1 (http:/
developer.novell.com/ndk/doc/
ndslib/dsov_enu/data/
hcvwzt90.html) > NDS Return
Values from the Operating
System

TSANDS return values from FFFDFEFC to FFFDFEC8 map to NDS return values: NDS Return
Values (http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/hcvwzt90.html) > NDS Client
Return Values - OxFFFF FED3 through OXFFFF FE9E.

TSANDS return values from FFFDFEC7 to FFFDFE1B map to NDS return values: NDS Return
Values (http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/hcvwzt90.html) > NDS Agent
return values OxFFFF FDA7 through OxFFFF FCFA.

9.4 Utility Library Values

This section lists the values associated with Utility Library.

+ “nameSpaceType Values” on page 347
+ “selectionType Values” on page 348

¢ “Time Zone Values” on page 349

* “Wildcard Values” on page 349

9.4.1 nameSpaceType Values

nameSpaceType can have the following values:

Value Description

0x000 DOSNameSpace: name contains a DOS path in MBCS format.

Return Values 347

http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/hcvwzt90.html
http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/hcvwzt90.html
http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/hcvwzt90.html
http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/hcvwzt90.html
http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/hcvwzt90.html
http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/hcvwzt90.html
http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/hcvwzt90.html

Value Description

0x001 MACNameSpace: name contains a Macintosh path in MBCS format.
0x002 NFSNameSpace: name contains an NFS path in MBCS format.

0x003 FTAMNameSpace: name contains an FTAM path in MBCS format.
0x004 OS2NameSpace: name contains an OS/2 path in MBCS format.

0x005 NT(Deprecated)

0x006 DOS Unicode (Deprecated)

0x007 MAC Unicode (Deprecated)

0x008 NFS Unicode (Deprecated)

0x100 DOSNameSpaceUtf8Type: name contains a DOS path in UTF-8 format.
0x101 MacNameSpaceUtf8Type: name contains a Macintosh path in UTF-8 format.
0x102 NFSNameSpaceUtf8Type: name contains an NFS path in UTF-8 format.
0x104 LONGNameSpaceUtf8 Type: name contains a DOS path in UTF-8 format.

9.4.2 selectionType Values

The values that be set for selectionType is listed in the following table.

Value Description

0x00 No selection type: If a data set name list is being built, selectionType must be “No
selection type.” If a selection list is being built, selectionType cannot be set to “No
selection type.”

0x02 NWSM_TSA_DEFINED_RESOURCE_EXC: Exclude name and all its subordinates
from the scan.

0x03 NWSM_TSA_DEFINED_RESOURCE_INC: Include name and all its subordinates in the
scan.

0x04 NWSM_PARENT_TO_BE_EXCLUDED: Exclude parent name and all its subordinates
from the scan.

0x05 NWSM_PARENT_TO_BE_INCLUDED: Include parent name and all its subordinates in
the scan.

0x08 NWSM_CHILD_TO_BE_EXCLUDED: Exclude child name from the scan.

0x09 NWSM_CHILD_TO_BE_INCLUDED: Include child name in the scan.

0x10 NWSM_EXCLUDE_CHILD_BY_FULL_NAME: Exclude child name from the scan. The

full path must be contained in name

0x11 NWSM_INCLUDE_CHILD_BY_FULL_NAME: Include child name in the scan. The full
path must be contained in name

All selection types, except the last two, can be applied globally to the target's data. Including or
excluding a child by its full name (full path) affects one location in the target. For example, to

348 NDK: SMS Developer Components

include all .c files in a specific directory, choose NWSM_INCLUDE CHILD BY FULL NAME
and specify the fully qualified path below:

SYS:SYSTEM*.c (for NetWare)
/home/user/dirl/*.c (for Linux)

To include all .c files on the target, choose NWSM_CHILD TO_ BE INCLUDED and set name to:

*.cC

To find out if a selection type is supported, call NWSMTSGetTargetSelectionTypeStr.

9.4.3 Time Zone Values

The most significant four bits represents the type of time zone, while the lower twelve bits represent
the time zone value.

The following table shows the specification for the upper 4 bits:

Value Description

0 ECMA_Type_CUT: Coordinated Universal Time. Ignore the lower 12 bits.

1 ECMA_Type_Local: Local Time. The lower 12 bits contain the local time value.

2 ECMA_Type_Determined: The interpretation of the date and time (the lower 12 bits) is

subject to agreement between the originator and recipient of the medium.
Under SMS, ECMA_Type_Determined is treated as ECMA_Type_CUT
3-15 Reserved.

The following table shows the specification for the lower 12 bits:

Value Description
-1140 through 1440 Coordinated Universal Time: Offset from CUT in 1 minute increment.
-2047 No time zone: No offset.

9.4.4 Wildcard Values

The following table contains the wildcard options.

Value Description

0x2A ASTERISK: Regular asterisk.

Ox3F QUESTION: Regular question mark

OxAE SPERIOD: Special Period with the most significant
bit set.

OxAA SASTERISK: Special Asterisk with the most

significant bit set.

Return Values

349

Value

Description

OxBF

SQUESTION: Special Question with the most
significant bit set.

9.5 ExtensionTag Values

extensionTag contains the following values.

Value Macro Description

0x00000001 NWSM_SCAN_INFO_EXTN_NFS_TAG NWSM_SCAN_INFORMATION
extension that holds NFS meta data
information.

0x00000002 NWSM_RESOURCE_INFO_EXTN_NETWARE_TA NWSMTSGetTargetResourcelnfoEx

G extension that holds NetWare file

system resource information.

0x00000003 NWSM_RESOURCE_INFO_EXTN_UNIX_TAG NWSMTSGetTargetResourcelnfoEx
extension that holds Linux file
system resource information.

0x00000004 NWSM_RESOURCE_INFO_EXTN_UNSUPPORT NWSMTSGetTargetResourcelnfoEx

ED_TAG

extension that holds information
regarding unsupported TSA options
by a resource.

9.6 TagVersion Values

TagVersion contains the following values.

Value

Macro

0x00000001

NWSM_EXTENSION_VERSION_1

350 NDK: SMS Developer Components

Performance and the File System
TSA

This chapter describes the performance model with TSAFS

¢ Section 10.1, “Introduction,” on page 351
¢ Section 10.2, “Performance Model with TSAFS,” on page 351
¢ Section 10.3, “Performance Enablers and Inhibitors,” on page 352

¢ Section 10.4, “Sample,” on page 353

*

Section 10.5, “Conclusion,” on page 354

10.1 Introduction

Backup has traditionally been serial in nature. While this approach was acceptable in the past, it is
certainly not effective as today’s backup involves several terabytes of data and tape devices are able
to service several megabytes of data per second. In addition to this, file systems are generally
optimized for servicing multiple client requests simultaneously. The serial nature of backup thus
limits the optimal usage of the file system characteristics.

The target service agent (TSA) functions as a library that provides any service the backup engine
demands. The TSA available on NetWare 6.0 or lower reads files based on engine requests and
blocks till the file system services the read request. Due to this, the backup engine is unable to keep
data streaming to the tape device that would allow the device to perform optimally. While the TSA
library model does not limit or prevent simultaneous access to multiple files, it has traditionally been
used in a serial manner that has effectively reduced the throughput of the backup system.

The Target Service Agent for NetWare 6.5 and Linux (TSAFS) have been designed to deliver
performance within the parameters of the current model of usage.

10.2 Performance Model with TSAFS

The nature of backup enables predictable access of files across the file system. TSAFS has been re-
designed to takes advantage of this property and incorporates read-ahead caching while maintaining
backward compatibility with the current serial model of usage.

The TSA library model has been modified to de-couple the serial usage of the interface from the file
system access. In this model, the TSA takes advantage of the predictable nature of requests and
caches data ahead of time, so that engine requests can be serviced from the memory instead of the
disk. The TSA achieves this using a multi-threading model.

The four primary tasks that constitute a backup operation and use a co-operative pre-fetching
mechanism are:

¢ Scan: The Scan (NWSMTSScanDataSetBegin) defines the scope of the backup operation. The
Scan thread uses this as a hint to predict and build the meta-data cache and the list of data sets

to be opened. Further scan requests (NWSMTSScanNextDataSet) are serviced from this cache.

Performance and the File System TSA

351

¢ Open: The Open thread works on the data set list built by the scan thread to open data sets in

parallel with other tasks. Open requests (NWSMTSOpenDataSetForBackup) are serviced from
this cache.

Read: The Read task is implemented by multiple threads that issue simultaneous read requests
to the file system and builds the data cache. This results in multiple pending I/O requests at the
disk hardware which enables the subsystem to minimize the seek and rotational latencies. The
read requests also enable building up a cache of data blocks ahead of engine requests
(NWSMTSReadDataSet) thereby reducing the service time to the engine.

Close: The Close thread implements a lazy close mechanism wherein data sets are closed
asynchronously with respect to the engine close requests (NWSMTSCloseDataSet).

In the TSAFS model, each of these tasks is executed in parallel.

From this new model, it maybe evident that appropriate usage of the API would help backup engines
exploit the performance benefits delivered by TSAFS.

10.3 Performance Enablers and Inhibitors

The basis for achieving performance is the ability of TSAFS to predict the backup job, and read-
ahead thereby reducing the average read service time.

*

To achieve higher performance, provide TSAFS with as large a set of data items as possible.
This can be in the form of specifying multiple resources or a container resource that is likely to
contain a large number of data sets.

The TSAs are capable of traversing the file system tree. In this new model, this is used
effectively to build the cache. It is recommended that backup engines provide the highest level
resource to be backed up and do not start a job at each intermediate level in the file system tree

Implementing selection lists in the backup engine reduces the effectiveness of the read-ahead
as a subset of the data sets read by TSAFS will be discarded by the engine. These unnecessary
read-aheads impact the average read service time for data sets that are actually backed up. This
can be mitigated by either providing the TSA with a filtered list of data sets to be backed up or
using the TSA selection list.

It is advisable not to change the open mode during the course of the backup, if possible. The
open mode provided to TSAFS is used to build a cache of open files. If the open mode is
changed, all open and read-ahead operations have to be stopped, the caches destroyed and
rebuilt. This will affect the average service time.

In the new model, the open operation triggers a chain of events such as open and read-aheads.
Given this, it is recommended that open is used only during the backup and not during a scan
for any reason.

It is recommended that NWSMTSScanDataSetEnd can be used to terminate the job
prematurely. This assumes more importance in the current model. If this API is not used, scan,
open and read-ahead continue impacting the overall system performance.

In this model, NWSMTSReturnToParent is likely to degrade system performance as all open
and read-ahead operations have to be stopped, and the caches should be destroyed and rebuilt.
While this is the case, the API is useful in certain circumstances. Hence, the benefits should be
understood before its usage.

It is recommended that Close is called immediately on all data sets that were successfully read.
This allows TSAFS to effectively use its resources and also prevent resource starvation in
extreme cases.

352 NDK: SMS Developer Components

10.4 Sample

The following flowchart illustrates a sample usage of the SMS API

NWSMT55canDataSetBegin

- Betum Ho
Zero?

¥es
¥es

Moo paore
NWS TS Ope nDataSetForBackup ’ data sets?

Done

Retum
Zero?

Yes
L HWS LTS FeadDataSet

FWSIITS CloseDataSe t

v

WS TS ScantlextDataS et

The Demonstration Engine is a sample backup engine available in source and binary form and backs
up data to the disk that uses the above sample calling sequence. This can be used to understand the
purpose and usage of the SMS API set.

TSATEST is a sample utility that emulates a virtual tape with infinite bandwidth that helps in
analyzing the TSA performance independent of other bottlenecks. In effect, TSATEST reads the
data to be backed up from SMS API and discards the data. This utility is also available in source and
binary form. This can be used to understand the calling sequence and can be used to compare
performance of actual backup engine implementation.

Performance and the File System TSA 353

10.5 Conclusion

The TSAFS has been re-designed to exploit file system characteristics to deliver better performance.
This has been done within the constraints of maintaining backward compatibility with the current
models of usage. However, to take advantage of these enhancements, it is important that the backup
engine appropriately use the API set as described in this chapter. It is also important to understand
that the TSA and the backup engine are only two of the many parameters that influence the
throughput of the backup system, disk and tape hardware being some of the other notable ones.

354 NDK: SMS Developer Components

Obsolete Functions

This section lists the obsolete functions and describes their purpose, syntax, parameters, and return
values.

+ “NWSMTSReadDataSets (Obsolete)” on page 356

+ “NWSMTSEndReadDataSets (Obsolete)” on page 362

+ “NWSMFixDirectoryPath (Obsolete)” on page 363

+ “NWSMFixGenericDirectoryPath (Obsolete)” on page 365

¢ “NWSMTSGetTargetServiceAddress (Obsolete)” on page 367

Obsolete Functions 355

NWSMTSReadDataSets (Obsolete)

Reads data sets on the Target Service, formats the data according to SIDF, and returns it in a buffer.

Syntax

#include <smstsapi.h>

CCODE NWSMTSReadDataSets (

UINT32 connection,
UINT32 scanSequence,
UINT32 openMode,
UINT32 bytesToRead,
BUFFERPTR Dbuffer,
UINT32 *bytesRead,
UINT32 *done,
UINT32 *readHandle) ;
Parameters
connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

scanSequence

(IN) Specifies the scanning sequence value returned by NWSMTSScanDataSetBegin.

openMode

(IN) Specifies the generic and TSA-specific open mode to apply to all the data sets that can fit
the buffer (see Open Modes for possible values).

bytesToRead
(IN) Specifies the amount of free space in the buffer.

buffer
(OUT) Points to the buffer to contain the data (must be at least bytesToRead bytes).

bytesRead
(OUT) Points to the number of bytes read into buffer.

done
(OUT) Points to a boolean value indicating if NWSMTSReadDataSets should be called again:

TRUE Finished; no need to call NWSMTSReadDataSets again
FALSE Call NWSMTSReadDataSets again

readHandle

(IN/OUT) Points to the iteration handle (should be zero the first time NWSMTSReadDataSets
is called).

356 NDK: SMS Developer Components

Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
OxFFFEFFFE NWSMDR_INVALID_PARAMETER

Engine Developer

ReadDataSets is an enhanced version of ReadDataSet which helps in backing up small files faster. It
is used during backup to collect all requested information about possibly more than one data set.
Eventually, the OUT buffer will contain the data in System Independent Data Format (SIDF).

In the cases when the data set data is larger than the size of the buffer, it behaves similar to the
ReadDataSet wherein it has to be called repeatedly as it returns portions of the data set at a time.

For instances when the data for more than one data set is able to fit within the buffer, it shall be
appended one after another. It formats the File Headers (or Record Headers) and File Continuation
Headers (or Sub-Record Headers) in the buffer. This facilitates reading more than one data set on a
single call to ReadDataSets.

This call takes care of open/reading/closing of data sets (OpenDataSetForBackup, ReadDataSet and
CloseDataSet as well as calling ScanNextDataSet).

The data returned in the buffer does not include unused bytes at the end. The unused value will be
bytesToRead - *bytesRead. The unused part of the buffer will not become zero by this call.
NWSMPadBlankSpace can be used to fill the unused space in buffer with zeroes.

Remarks

Before NWSMTSReadDataSets is called, NWSMTSScanDataSetBegin must be called to initiate the
scan.

done will be freed on the last successful read.

NWSMTSReadDataSets reads the data for a set of data sets into buffer (if SIDF is used). If the
buffer cannot contain all of the data set’s data, NWSMTSReadDataSets must be called repeatedly to
retrieve all data.

If buffer can accommodate data for more than one data set, all data for those data sets will be
returned. done indicates if data for all data sets have been read. Normally when done is FALSE,
bytesRead will be equal to bytesToRead except when some intermediate data sets were not read.

IMPORTANT: This API is not supported in NetWare 6.5.

Obsolete Functions

357

See Also

NWSMTSCloseDataSet (page 82), NWSMTSOpenDataSetForBackup (page 49),
NWSMTSReadDataSet (page 51), NWSMTSScanDataSetBegin (page 38),
NWSMTSScanDataSetEnd (page 58), NWSMTSScanNextDataSet (page 53)

Example

#include <smsutapi.h>
#include <smstsapi.h>

NWSM DATA SET NAME LIST *resourceName;

NWSM _DATA SET NAME name;

NWSM SCAN CONTROL scanControl;

NWSM SCAN INFORMATION *scanInformation=NULL;

NWSM SELECTION LIST *selectionList;

UINT32 sequence, openModes, bytesRead, transferBufferSpaceleft,
bytesWritten, transferBufferOffset, maxTransferBufferSize;

NWSM RECORD HEADER INFO recordHeaderInfo = {0};

BUFFERPTR transferBuffer;

/* Setup resource name - see NWSMListTSResources and
NWSMTSScanTargetServiceResource. */

/* Gather the TSA options and get the user’s input*/

/* Setup scanControl */

/* Setup selectionlList - see NWSMTSGetTargetSelectionTypeStr */
/* Begin the backup session. */

NWSMTSScanDataSetBegin (connection, resourceName, &scanControl,
selectionlist, &sequence, &scanInformation, &dataSetName) ;

/*Set the open modes from the user’s selection. The modes were
received when the TSA options were gathered. */

openModes = user selected modes;

/* Create Transfer Buffer. The larger the TB, the faster it backs up */

transferBuffer = (BUFFERPTR) calloc(l, maxTransferBufferSize);
/* Initialize the current transferBuffer space to maximum.*/
currentTBSpace = initialTBSpace =

session.transferBufferInfo.maxTransferBufferSize -
session.transferBufferInfo.transferBufferDataOffset;
/* It will be nice to start using NWSMTSReadDataSets now. */
do
{
/* Check for user intervention. Hopefully he won’t. */
if ((ccode = CheckForOperatorAbort()) != 0)
goto Return;
/* Read as many data sets as possible in one shot. Depends on
buffer size though. */
NWSMTSReadDataSets (connection, sequence, openModes,
currentTBSpace, transferBufferPtr, &bytesRead,
&done,
&readHandle) ;

358 NDK: SMS Developer Components

/* Display number of bytes written to TB. */
StatusTotalWritten (bytesRead) ;

myHeaderSize = transferBufferData ;

/* Update the TB data */

transferBufferData += bytesRead ;

myBufferSize = transferBufferData - myHeaderSize ;

myBufferPtr = transferBufferPtr ;

/* We are not sure which data sets got backed up with the call to
NWSMTSReadDataSets. So get and display all data set info for all
data sets contained in TB. User will again be happy to know. */

while (myBufferSize)
{
/* While there is data in the TB, get the record/subrecord header
from TB */
ccode = NWSMGetRecordHeaderOnly (&myBufferPtr, &myBufferSize,
&recordHeaderInfo) ;

if (!ccode)
{
/* If we have a record/subrecord, get the data from the
transfer buffer. */
if ((recordHeaderInfo.dataSetInfoRetrieved ==
DATA SET INFO NOT STARTED) | |
(recordHeaderInfo.dataSetInfoRetrieved ==
DATA SET INFO SPANNED))
NWSMGetDataSetInfo (&myBufferPtr, &myBufferSize,
&recordHeaderInfo) ;
/* If all data retrieved from current transfer buffer, break
and get the next transfer buffer. */
if (!myBufferSize)
break;
if (recordHeaderInfo.dataSetInfoRetrieved ==
DATA SET INFO COMPLETE)
{
/* Data in the recordHeaderInfo.dataSetName and
recordHeaderInfo.scanInformation can now be used. */
if ((_ccode = NWSMGetOneName ((recordHeaderInfo.dataSetName, &name))
1= 0)
{
if (NWSMConvertError (connection, ccode, errorMessage))
sprintf (errorMessage, GetMessage (EM UNDEFINED ERROR), ccode);
StatusDisplayError (TRUE, GET ONE NAME ERR, ccode);
}
else
{
/* Display the data set name to the user. */
if (recordHeaderInfo.scanInformation->parentFlagqg)
{
/* Display name.name as a parent (e.g., directory) */
StatusDirectoryName (name.nameSpaceType, name.name) ;
recordHeaderInfo.pathIsFullyQualified = TRUE;
}
else

{

Obsolete Functions

359

/* Display name.name as a child (e.g., file) */
StatusFileName (name.name);
if (withParentHandle)
recordHeaderInfo.pathIsFullyQualified = FALSE;
else
recordHeaderInfo.pathIsFullyQualified

}

TRUE;

/* Check again if all data retrieved from current transfer buffer,
break and get the next transfer buffer. */
if (!'myBufferSize)
break;
/* Update TB information. */
myBufferPtr += recordHeaderInfo.recordSize ;
myBufferSize -= recordHeaderInfo.recordSize ;
}
else
break;
}
transferBufferPtr += bytesRead ;
if (done)
{
NWSMPadBlankSpace (transferBufferPtr, currentTBSpace-bytesRead)):;
ccode = WriteTransferBufferToMedia (&bufferIndex, isFirstBuffer,
&transferBufferData, FALSE, &transferBufferPtr);
}
else
{
ccode = WriteTransferBufferToMedia (&bufferIndex, isFirstBuffer,
&transferBufferData, TRUE, &transferBufferPtr):;
}
if (ccode != 0)
{
#if defined (DEBUG CODE)
DEBUG_BEGIN
printf ("BkTgt: WTBToMedia = 0x%X (%s:%u)\n",
ccode, FILE , LINE);
DEBUG_END
#endif
goto Return;
}
break;
}
if (isFirstBuffer)
isFirstBuffer = FALSE;
currentTBSpace = initialTBSpace;

}while (!done) ;
/* We’ve reached the end and that was real fast. It will be nice

clean up. */
/* Cleaning up is normally a pain but its so easy here*/

360 NDK: SMS Developer Components

Returns NWSMTSEndReadDataSets (connection, &readHandle);

Obsolete Functions 361

NWSMTSEndReadDataSets (Obsolete)

Terminates the read session started by NWSMTSReadDataSets when all the data sets have not been
completed read.

Syntax

#include <smstsapi.h>

CCODE NWSMTSEndReadDataSets (
UINT32 connection,
UINT32 *readHandle);

Parameters

connection

(IN) Specifies the connection information returned by NWSMTSConnectToTargetService or
NWSMTSConnectToTargetServiceEx.

readHandle
(IN/OUT) Points to the handle freed when NWSMTSEndReadDataSets returns.
Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
Remarks

Before NWSMTSEndReadDataSets is called, NWSMTSScanDataSetBegin must be called to
initiate the scan and NWSMTSReadDataSets must be called to initiate the read.

NWSMTSEndReadDataSets frees all the memory allocated within readHandle. The readHandle
parameter internally maintains the sequence structure, the set handle, and the read state.

If NWSMTSReadDataSets is called until all data sets have been read, all memory allocated within
readHandle will be freed the last time NWSMTSReadDataSets is called so calling
NWSMTSEndReadDataSets is not required.

IMPORTANT: This API is not supported in NetWare 6.5.

See Also

NWSMTSReadDataSet (page 51), NWSMTSReadDataSets (Obsolete) (page 356),
NWSMTSScanDataSetEnd (page 58), NWSMTSScanNextDataSet (page 53)

362 NDK: SMS Developer Components

NWSMFixDirectoryPath (Obsolete)

Formats a fully qualified parent directory path according to the specified NetWare name space
specifications, but is obsolete. Call NWSMTSFixDataSetName (page 85) instead.

Syntax

#include <smsutapi.h>

STRING NWSMFixDirectoryPath (

STRING *path,
UINT32 nameSpaceType,
STRING BUFFER **newPath,
NWBOOLEAN wildAllowedOnTerminal) ;
Parameters
path
(IN/OUT) Points to the NetWare path to be fixed on input. Points to the formatted string on
output.
nameSpaceType

(IN) Specifies the name space type of path (see “nameSpaceType Values” on page 347).

newPath
(OUT) Points to the buffer to contain the fixed up directory path (optional).

wildAllowedOnTerminal

(IN) Specifies if the path contains wildcard in the last path node:

TRUE Last node contains wildcards
FALSE Last node does not contain wildcards

Return Values

The following table lists the return values associated with the function.

NULL An error occurred
Nonzero A pointer to the formatted path or newPath.string.
Remarks

NWSMFixDirectoryPath ensures that path has a primary separator and the proper case. If path does
not contain a primary separator (: or ::), it returns NULL.

Volume names on NetWare and DOS paths are always converted to upper case.

If wildAllowedOnTerminal is set and the path nodes (other than the terminal node) contain
wildcards, NWSMFixDirectoryPath returns NULL.

Obsolete Functions 363

NWSMFixDirectoryPath adds an end separator to the terminal path node if the terminal path node is
a parent. If an ending separator is added to the string, newPath will contain the formatted string.

The following statement determines where the formatted path will be returned:

if (newPath && newpath->string)

/* newPath contains the fixed up path. */
else

/* path contains the fixed up path. */

Usually, path and nameSpaceType are determined from NWSM_DATA SET NAME LIST.
The following fixes are applied to path for the specified name space (except Macintosh):

+ All backslashes (\) are converted to forward slashes (/).

¢ For all colon and slash combinations (:\ or :/), the slash is removed and all characters after the
slash are moved one space toward the colon.

If newPath is NULL, NWSMFixDirectoryPath allocates the needed buffer space.
Call NWSMFreeString to free the buffer memory.

If the name space requires it, a separator must follow a parent terminal node.

IMPORTANT: This API is not supported in NetWare 6.5.

NWSMFixDirectoryPath Example

unsigned char *p = “Woll:\system\temp”, *ptr;
STRING path = p;

UINT32 nameSpaceType = DOSNameSpace;

STRING BUFFER *newPath = NULL;

ptr = NWSMFixDirectoryPath (path, nameSpaceType, &newPath, FALSE);
if (newPath && newPath->string)
{
/* newPath contains the fixed up path. */
}

else
/* path contains the fixed up path. */

364 NDK: SMS Developer Components

NWSMFixGenericDirectoryPath (Obsolete)

Formats a fully qualified parent directory path according to the specified NetWare name space
specifications in both Byte and Unicode formats. Call NWSMTSFixDataSetName (page 85)
instead.

Syntax
#include <smsutapi.h>

STRING NWSMFixGenericDirectoryPath (

void *path,

UINT32 nameSpaceType,

GENERIC BUFFER **newPath,

NWBOOLEAN wildAllowedOnTerminal) ;
Parameters
path

(IN/OUT) Points to the NetWare path to be formatted in Byte or Unicode format.

nameSpaceType

(IN) Specifies the name space type of name (see “nameSpaceType Values” on page 347).

newPath
(OUT) Points to the buffer to contain the formatted directory path.

wildAllowedOnTerminal

(IN) Specifies if the path contains wildcard in the last path node:

TRUE Last node contains wildcards
FALSE Last node does not contain wildcards

Return Values

The following table lists the return values associated with the function.

NULL Error
Nonzero A pointer to the fixed up path in path or newPath.string.
Remarks

NWSMFixGenericDirectoryPath ensures that path has a primary separator and the proper case. If
path does not contain a primary separator (: or ::), it returns NULL.

Volume names on NetWare and DOS paths are always converted to upper case.

If wildAllowedOnTerminal is set and the path nodes (other than the terminal node) contain
wildcards, NWSMFixGenericDirectoryPath returns NULL.

Obsolete Functions 365

NWSMFixGenericDirectoryPath adds an end separator to the terminal path node if the terminal path
node is a parent. If an ending separator is added to the string, newPath will contain the formatted
string.

The following statement determines where the formatted path will be returned:

if (newPath && newpath->string)

/* newPath contains the fixed up path. */
else

/* path contains the fixed up path. */

Usually, path and nameSpaceType are determined from NWSM_DATA SET NAME LIST.
The following fixes are applied to path for the specified name space (except Macintosh):

+ All backslashes (\) are converted to forward slashes (/).

¢ For all colon and slash combinations (:\ or :/), the slash is removed and all characters after the
slash are moved one space toward the colon.

If newPath is NULL, NWSMFixGenericDirectoryPath allocates the needed buffer space.
Call NWSMFreeString to free the buffer memory.

If the name space requires it, a separator must follow a parent terminal node.

NWSMFixGenericDirectoryPath Example

unsigned char *p = “Woll:\system\temp”, *ptr;
STRING path = p;

UINT32 nameSpaceType = DOSNameSpace;

STRING BUFFER *newPath = NULL;

ptr = NWSMFixDirectoryPath (path, nameSpaceType, &newPath, FALSE);
if (newPath && newPath->string)
{
/* newPath contains the fixed up path. */
}

else
/* path contains the fixed up path. */

366 NDK: SMS Developer Components

NWSMTSGetTargetServiceAddress (Obsolete)

Returns the Target Service physical address.

Syntax

#include <smstsapi.h>

CCODE NWSMTSGetTargetServiceAddress (
UINT32 connection,
STRING targetServiceName,
UINT32 *addressType,
STRING address) ;

Parameters

connection

(IN) Specifies the connection information returned by NWSMConnectToTSA.

targetServiceName

(IN) Specifies the Target Service name returned by NWSMTSScanTargetServiceName or
NWSMTSListTargetServices.

addressType
(OUT) Points to the physical address type of address.

address
(OUT) Returns the Target Service’s physical address in binary form.
Return Values

See Section 9.3, “Target Service Return Values,” on page 339 for more information.

The following table lists the return values associated with the function.

0x00000000 Successful

OxFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION
OxFFFDFFD2 NWSMTS_NO_MORE_DATA
OxFFFEFFFF NWSMDR_INVALID_CONNECTION
OxFFFEFFFE NWSMDR_INVALID_PARAMETER
Remarks

Before NWSMTSGetTargetServiceAddress is called, the engine must be connected to the TSA that
has access to the specified Target Service.

The values that can be returned by addressType is listed in the following table

Obsolete Functions 367

Value Byte Information

SPX 0x1 (12 bytes)
TCPIP 0x2 (4 bytes)
ADSP 0x3 (4 bytes)

The engine must ensure that address is long enough to handle the protocol address.

See Also

NWSMTSListTargetServices (page 73), NWSMTSScanTargetServiceName (page 77)

Example

char buffer [NWSM MAX TARGET SRVC NAME LEN], addrBuffer[12];
STRING targetServiceName = buffer, address = addrBuffer;
UINT32 addressType;

/* Get target service name and copy it to targetServiceName. See the
example code of NWSMTSScanTargetServiceName or

NWSMTSListTargetServices. */

NWSMTSGetTargetServiceAddress (connection, targetServiceName,
&addressType, address);

368 NDK: SMS Developer Components

Revision History

The following table outlines the changes made to the Storage Management Services documentation
from July 2000 onwards.

February 2008 + Updated the definition of Section 6.2, “Data Set Name
Functions,” on page 198 with the maximum limit of 255 names
and paths.

¢ Added new error code NWSMUT_BUFFER_OVERFLOW to

the NWSMPut functions in Section 6.2, “Data Set Name
Functions,” on page 198.

August 2007 Corrected the following values in the Remarks section of the
NWSM_SCAN_CONTROL (page 162) function:

+ OxFFFFFFFB with OXFFFFFFFAL
+ OXFFFFFFFA with OXFFFFFFFOL
+ OxFFFFFFF9 with OXFFFFFFF8L

June 2007 + Updated the Remarks sections of the following APIs:

+ Added new flag NWSM_AUTH_CASA_Token to
NWSMTSConnectToTargetServiceEx (page 68)

+ Added new scan types
NWSM_OR_DATE_TIME_FILTER,
NWSM_EXCLUDE_SECONDARY_DATA_STREAMS,
and NWSM_INCLUDE_SOFTLINK_CHILD to
NWSM_SCAN_CONTROL (page 162)

+ Replaced the following datatypes in Section 6.2, “Data Set
Name Functions,” on page 198 and Section 6.3, “Extension
Functions,” on page 218:

¢ UINT32 with SMS_HANDLE
+ HUGE with SM_HUGE

+ Updated the description of the “OxFFFDFFF2” on page 343
value.

¢ Deleted error strings prefixed with SMERR in the
Section 9.3.1, “TSAPI and SMDR Return Values,” on
page 339 section.

April 2006 + Updated the Remarks sections of the following APlIs:
NWSMTSGetTargetServiceAPIVersion (page 47),
NWSMTSScanDataSetContinue (page 55),
NWSMTSGetTargetResourcelnfoEx (page 114),
NWSMTSConfigureTargetService (page 99) and
NWSMTSGetSupportedNameTypes (page 108).

* Replaced the error string
NWSMTS_INVALID_CONNECTION_HANDLE with
NWSMTS_INVALID_CONNECTION_HANDL

¢ Updated Sample code to resolve formatting errors.

+ Fixed broken links

Revision History

369

March 2006

June 2005

October 2004

Deleted NWSMTSGetTargetServiceAddress function from
Section 2.9, “Function Access Scope,” on page 32.

Deleted return value OxXFFFDFFBO in
NWSMTSScanDataSetContinue (page 55) function.

Added new definition for “OxFFFDFFBO” on page 339 value.

Replaced otherinfo to other_info in the NWSM_NAME_LIST
(page 161).

Changed NWSMFreeString to NWSMFreeNameList in the
Remarks section of NWSMListSMDRs (page 301).

Deleted error code NWSMSD in the Remarks section of
NWSMConvertError (page 297).

Replaced references of scanPattern to pattern wherever
applicable.

NWSMTSGetTargetServiceAddress (Obsolete) (page 367)
function is not supported since NetWare 6.0. It is marked as
obsolete in the documentation.

Added information about the new Extension Functions, that
are NWSMCloseExtension (page 219), NWSMGetExtension
(page 220), NWSMGetFirstExtension (page 222), and
NWSMGetNextExtension (page 224).

Added information on the extensions and their fields in
Section 5.7, “Extensions,” on page 182.

Added information about the newly added Utility Library
structures; these are NWSM_EXTENSION_INFORMATION
(page 317),
NWSM_RESOURCE_INFO_EXTN_NETWARE_DATA 1
(page 328),
NWSM_RESOURCE_INFO_EXTN_UNIX_DATA_1

(page 330),
NWSM_RESOURCE_INFO_EXTN_UNSUPPORTED_DATA
_1 (page 331), and
NWSM_SCAN_INFO_EXTN_NFS_DATA_1 (page 332).

Added new Utility Library values. See ExtensionTag Values
(page 350) and TagVersion Values (page 350).

Updates in the Remarks sections of Option Function
NWSMTSGetUnsupportedOptions (page 127) and
Miscellaneous Function NWSMTSSetArchiveStatus
(page 95).

Added information about the new API
NWSMTSGetTargetResourcelnfoEx (page 114) .

Updated open modes with additional option in the Remarks
section of NWSMTSGetOpenModeOptionString (page 104),
NWSMTSGetTargetScanTypeString (page 118), and
NWSM_SCAN_CONTROL (page 162). Updates are also in
Target Services Generic Open Mode Values (page 337).

370 NDK: SMS Developer Components

July 2004

June 2004

March 2004

October 2003

August 2003

+ Included information about the new API
NWSMTSGetSupportedNameTypes (page 108).

+ Added new action flag, NWSM_CACHING_MODE_TYPE to
NWSMTSConfigureTargetService (page 99) function.

+ Added new return values for nameSpaceType in Data Set
Name List (page 158) function.

+ Added new defnitions for returnNameSpaceType in
NWSM_SCAN_CONTROL (page 162) function.

+ Added new return value for
NWSMTSConnectToTargetServiceEx (page 68) and
NWSMTSConfigureTargetService (page 99) functions.

+ Added new error code to the TSAPI and SMDR Return Values
(page 339).

* Added new error code to NWSMTSConnectToTargetService
(page 65) function.

+ Added new error code to TSAPI and SMDR Return Values
(page 339) .

+ Added new error codes to NWSMTSScanDataSetContinue
(page 55) function.

+ Added new error codes to
NWSMTSGetTargetServiceAPIVersion (page 47) function

+ Added new return values and error codes to
NWSMTSConfigureTargetService (page 99) function

+ Added new return values and error codes to
NWSMTSConnectToTargetServiceEx (page 68) function

¢ Added details related to NWSM_AUTH_RAW_DATA option in
NWSMTSConnectToTargetServiceEx (page 68) function and
removed references to NWSM_AUTH_LOCAL_DATA option.

+ Modified the description in NWSMMatchName (page 253)
Included information about the following new APls: .

* NWSMTSGetTargetServiceAPIVersion (page 47).
+ NWSMTSConnectToTargetServiceEx (page 68).

Modified and enhanced “Performance and the File System TSA” on
page 351.

Included information about the new API
NWSMTSConfigureTargetService (page 99).

Included information about support for larger files (file size more
than 4 GB) in NWSM_SCAN_INFORMATION (page 168).

Updated return value for NWSM_SCAN_CONTROL (page 162).

Included a section on “Performance and the File System TSA” on
page 351.

Revision History

371

March 2003

May 2002

July 2000

NWSMTSReadDataSets (Obsolete) (page 356) and
NWSMTSEndReadDataSets (Obsolete) (page 362) functions are
no longer supported. They are marked as obsolete in the
documentation.

Added a new TSA return value,
NWSMTS_CLUSTER_TARGET_DOES_NOT_EXIST
(OxFFFDFFAF)

Rearranged the SMDR return values in “TSAPI| and SMDR Return
Values” on page 339 section.

Updated the “Recovering Backup Session on Cluster Failover or
Failback” on page 29 section.

Updated the remarks section of NWSMTSConnectToTargetService
(page 65) function.

Updated the “Backing Up Data” on page 15 section.

Added Section 2.5, “Backup and Restore of Cluster Resources,” on
page 29 section

Added new function, NWSMTSScanDataSetContinue (page 55)

Added two new error codes to NWSMConnectToTSA (page 60)
function

Removed 0S/2, Macintosh, and NetWare 3.x references wherever
applicable

Updated sample deployment illustrations in Section 3.2,
“Connection Functions,” on page 59 section

Updated the Section 1.1.4, “Backing Up and Restoring Data,” on
page 15 and Section 2.8, “Resources,” on page 31 sections

Updated NWSMListSMDRs (page 301), NWSMLIistTSAs
(page 62), NWSMTSListTSResources (page 134), and
NWSMTSScanTargetServiceResource (page 141) with cluster
support details

Updated the sample code for NWSMTSListTargetServices
(page 73)

Modified the buffer parameter description for
NWSMTSWriteDataSet (page 154)

Following SMDR and TSA error codes have updated information.
See “TSAPI and SMDR Return Values” on page 339.

OXFFFEFFF1

OxFFFEFFCE
OXxFFFDFFCD
OxFFFDFFCO

Corrected the name of the NWSMTSReleaseTSA function to
NWSMReleaseTSA (page 76)

Updated the “TSAPI and SMDR Return Values” on page 339
section with additional completion codes.

372 NDK: SMS Developer Components

	NDK: SMS Developer Components
	About This Guide
	1 Target Services Tasks
	1.1 Backing Up and Restoring
	1.1.1 Connecting to a TSA
	1.1.2 Connecting to Target Services
	1.1.3 Defining Data Sets
	1.1.4 Backing Up and Restoring Data
	1.1.5 Terminating a Process

	1.2 Building Log Files
	1.2.1 Reading Log Files
	1.2.2 Engine Log File

	1.3 Scanning
	1.3.1 Modifying the Scan Order

	2 Target Services Concepts
	2.1 Options
	2.1.1 Types of TSA Options

	2.2 Backup and Restore Options
	2.2.1 Open Mode Options
	2.2.2 Restore Options
	2.2.3 Backup Options

	2.3 Name Type Option
	2.4 Open Files During a Back Up
	2.5 Backup and Restore of Cluster Resources
	2.5.1 Recovering Backup Session on Cluster Failover or Failback

	2.6 Option Precedence
	2.7 Path Information
	2.7.1 Constructing a Path

	2.8 Resources
	2.8.1 Resource Names

	2.9 Function Access Scope
	2.10 SIDF
	2.10.1 Transfer Buffers

	2.11 TSA Address
	2.12 Log Files
	2.13 Scan Order
	2.14 Other Documents

	3 Target Services Functions
	3.1 Backup Functions
	NWSMTSScanDataSetBeginBegins a data set scan for the specified data set and returns information about the first data set found.
	NWSMTSGetTargetServiceAPIVersion Returns the API version of the target service.
	NWSMTSOpenDataSetForBackupOpens the data set referenced by the sequence value that returned the scanning functions.
	NWSMTSReadDataSetReads a data set on the Target Service, formats the data according to SIDF, and returns it in a buffer.
	NWSMTSScanNextDataSetContinues the scan started by NWSMTSScanDataSetBegin and returns the next data set that meets the scanning criteria.
	NWSMTSScanDataSetContinueContinues the scan from the specified data set and returns information about the next data set.
	NWSMTSScanDataSetEndStops the scan started by NWSMTSScanDataSetBegin.

	3.2 Connection Functions
	NWSMConnectToTSAConnects the backup engine to a TSA.
	NWSMListTSAsBuilds a list of TSAs as specified by a scan pattern.
	NWSMTSConnectToTargetServiceConnects an engine to a specified Target Service.
	NWSMTSConnectToTargetServiceExConnects an engine to a specified Target Service and also supports passwords with international and extended characters.
	NWSMTSGetTargetServiceTypeReturns the Target Service type and version information.
	NWSMTSListTargetServicesReturns a list of all Target Services accessible through the connected TSA.
	NWSMTSReleaseTargetServiceCloses the connection between an engine and a Target Service.
	NWSMReleaseTSACloses the connection between a TSA and an engine.
	NWSMTSScanTargetServiceNameRetrieve a Target Service name from a connected TSA.

	3.3 Miscellaneous Functions
	NWSMTSCatDataSetNameJoins two paths together.
	NWSMTSCloseDataSetCloses a data set opened by NWSMTSOpenDataSetForBackup or NWSMTSOpenDataSetForRestore.
	NWSMTSDeleteDataSetDeletes a specified data set.
	NWSMTSFixDataSetNameFormats a fully qualified parent directory path according to the specified name space specifications.
	NWSMTSParseDataSetNameReturns the number of path nodes and separators, and the beginning position of each path node and separator for a specified path.
	NWSMTSRenameDataSetRenames an existing child data set on the Target Service.
	NWSMTSReturnToParentStops the current scan and continues the scan on the next qualified parent.
	NWSMTSSeparateDataSetNameSeparates the terminal path node from the rest of the path.
	NWSMTSSetArchiveStatusSets or restores the data set's archived status and other attributes.

	3.4 Option Functions
	NWSMTSBuildResourceListUpdates the TSA's internal list of primary resources.
	NWSMTSConfigureTargetServiceConfigures the target service for a variety of tasks.
	NWSMTSGetNameSpaceTypeInfoReturns the path node order and separators for the specified name space.
	NWSMTSGetOpenModeOptionStringReturns TSA-specific open mode option strings.
	NWSMTSGetSupportedNameTypesReturns the name types supported by the target service
	NWSMTSGetTargetResourceInfoReturns information about a primary resource.
	NWSMTSGetTargetResourceInfoExReturns information about a primary resource.
	NWSMTSGetTargetScanTypeStringReturns the strings that describe a supported scan type.
	NWSMTSGetTargetSelectionTypeStrReturns the SMS-defined selection type strings.
	NWSMTSGetUnsupportedOptionsReturns a list of options not supported by the TSA.
	NWSMTSListSupportedNameSpacesReturns the name space supported by a primary resource.
	NWSMTSListTSResourcesReturns a list of primary resources.
	NWSMTSScanSupportedNameSpacesReturns information about one name space that is supported by a primary resource.
	NWSMTSScanTargetServiceResourceReturns the name of one primary resource.

	3.5 Restore Functions
	NWSMTSIsDataSetExcludedCompares a data set name against its internal selection list (set up by NWSMTSSetRestoreOptions) and indicates if the data set is included or not.
	NWSMTSOpenDataSetForRestoreCreates a data set handle for the data set that is to be restored.
	NWSMTSSetRestoreOptionsSets the restore options and defines the data sets to restore.
	NWSMTSWriteDataSetWrites a data set to the Target Service.

	4 Target Services Structures
	Data Set Name ListLists the data sets to scan for or the data set just scanned in conjunction with NWSM_DATA_SET_NAME_LIST.
	NWSM_DATA_SET_NAME_LISTContains the data set's path as it appears under one of more of the name spaces supported by the Target Service.
	NWSM_NAME_LISTBuilds a linked list of names that can be freed by calling NWSMFreeNameList.
	NWSM_SCAN_CONTROLDefines the characteristics and attributes of the data sets to scan for as well as the path information to return in conjunction with NWSM_SELECTION_LIST.
	NWSM_SCAN_INFORMATIONContains information about one data set.
	NWSM_SELECTION_LISTContains a list of data set names, encryption key information, and search patterns to scan for in conjunction with NWSM_SCAN_CONTROL.
	Selection ListContains user-specified data set names to perform a scan against in conjunction with NWSM_SELECTION_LIST.
	STRING_BUFFER
	UINT16_BUFFERIs used by NWSMTSParseDataSetName.

	5 Utility Library Concepts
	5.1 DOS Date and Time Format
	5.2 Unix Time Format
	5.3 Path String Formats
	5.4 Records
	5.5 Data Types
	5.6 Other Documents
	5.7 Extensions

	6 Utility Library Functions
	6.1 Date and Time Functions
	NWSMCheckDateAndTimeRangeCompares a date and time value against a date and time range.
	NWSMDOSTimeToECMAConverts a DOS format date and time value to ECMA's local date and time format.
	NWSMECMATimeCompareCompares two ECMA time values and indicates if they are the same, less than, or greater than one another.
	NWSMECMAToDOSTimeConverts an ECMA time value to a DOS packed date and time value.
	NWSMECMAToUnixTimeConverts an ECMA date and time value to a Unix time value.
	NWSMGetCurrentDateAndTimeReturns the current date and time information into a DOS packed date and time value.
	NWSMPackDatePacks separate date values into a DOS packed date value.
	NWSMPackDateTimePacks the date and time information into a DOS packed date and time value.
	NWSMPackTimePacks time information into a DOS packed time value.
	NWSMUnixTimeToECMAConverts a Unix local or Coordinated Universal Time (CUT) time value to ECMA date and time format.
	NWSMUnpackDateUnpacks a DOS packed date value into its separate year, month, and day values.
	NWSMUnPackDateTimeUnpacks a DOS packed date and time value into separate date and time values.
	NWSMUnpackTimeUnpacks a DOS packed time value into its separate hour, minute, and second values.

	6.2 Data Set Name Functions
	NWSMCloseNamePrematurely ends the parsing started by calling NWSMGetFirstName , or ends the name insertion process started by calling NWSMPutFirstName or NWSMPutFirstLName .
	NWSMGetDataSetNameReturns the data set name in the specified name space type.
	NWSMGetFirstNameReturns the first data set name contained in NWSM_DATA_SET_NAME_LIST or NWSM_SELECTION_LIST.
	NWSMGetNextNameContinues the data set name parsing process started by calling NWSMGetFirstName .
	NWSMGetOneNameReturns the first data set name from a buffer.
	NWSMPutFirstLNameClears the name list and places one data set name into a date set name list or a selection list.
	NWSMPutFirstNamePlaces the first data set name into a NWSM_DATA_NAME_LIST or NWSM_SELECTION_LIST structure.
	NWSMPutNextLNameContinues the data set name insertion process started by calling NWSMPutFirstLName and places the next data set name into a date set name list or a selection list.
	NWSMPutNextNameContinues the data set name insertion process started by calling NWSMPutFirstName and places the next data set name into a date set name list or a selection list.
	NWSMPutOneLNamePlaces one data set name into a data set name list or a selection list.
	NWSMPutOneNamePlaces one data set name into a data set name list or a selection list.

	6.3 Extension Functions
	NWSMCloseExtensionPrematurely ends the parsing started by NWSMGetFirstExtension. Also, used to free resources allocated when processing extension information using NWSMGetExtension.
	NWSMGetExtensionReturns the extension as specified by the extension tag.
	NWSMGetFirstExtensionReturns the first extension contained in buffer.
	NWSMGetNextExtensionContinues the extension parsing process started by NWSMGetFirstExtension.

	6.4 List Functions
	NWSMAppendToListAppends an element to NWSM_LIST list.
	NWSMDestroyListReleases the memory associated with NWSM_LIST.
	NWSMGetListHeadReturns the first element in a list.
	NWSMInitListInitializes a list head for an NWSM_LIST list, and sets the functions to use in the list.

	6.5 Path Functions
	NWSMAllocGenericStringAllocates or reallocates memory for a STRING_BUFFER structure.
	NWSMAllocStringAllocates or reallocates memory for a STRING_BUFFER structure.
	NWSMCatGenericStringAppends a specified number of bytes from the source string to the destination string.
	NWSMCatGenericStringsConcatenates a specified number of strings into a STRING_BUFFER structure.
	NWSMCatStringAppends a specified number of characters to a string.
	NWSMCatStringsConcatenates a specified number of strings into a STRING_BUFFER structure.
	NWSMCopyGenericStringCopies the source string to the destination string.
	NWSMCopyStringCopies a specified number of characters to a buffer.
	NWSMFreeGenericStringReleases the memory held by a STRING_BUFFER structure.
	NWSMFreeStringReleases the memory held by a STRING_BUFFER structure.
	NWSMGenericIsWildIndicates if a path contains wildcard characters.
	NWSMGenericStrConcatenates the specified number of strings together.
	NWSMGenericWildMatchIndicates if a string matches a search pattern.
	NWSMIsWildIndicates if a path contains a wildcard.
	NWSMMatchNamePerforms a case-sensitive search for long spaces and case-insensitive search for all the other namespaces for a pattern in a string.
	NWSMStrConcatenates a specified number of strings together.
	NWSMWildMatchIndicates if a string matches a search pattern.

	6.6 Miscellaneous Functions
	NWSMFreeNameListFrees the memory held by an NWSM_NAME_LIST object.
	NWSMGenerateCRCGenerates a CRC value for the given data or continues the CRC calculation from previous data to the current data.

	6.7 SIDF Functions
	NWSMGetDataSetInfoReturns the data set information.
	NWSMGetMediaHeaderInfoSeparates an SIDF media header into its various components.
	NWSMGetRecordHeaderOnlyReturns only the record/subrecord header information.
	NWSMGetSessionHeaderInfoSeparates an SIDF session header into it various components.
	NWSMPadBlankSpaceInserts a blank space section if there is room in the buffer, or fills the unused area of a buffer with zeros.
	NWSMSetMediaHeaderInfoFormats media header information into an SIDF compliant media header.
	NWSMSetNewRecordHeaderCreates a record or a subrecord header.
	NWSMSetSessionHeaderInfoFormats the session header information into an SIDF compliant session header.
	NWSMUpdateRecordHeaderUpdates a record/subrecord's size and CRC information.

	6.8 SMDF Functions
	SMDFAddUINT64Adds two UINT64 values together.
	SMDFDecrementUINT64Subtracts a UINT32 value from a UINT64 value.
	SMDFGetFieldsSeparates an SIDF section into its various components.
	SMDFGetNextFieldSeparates an SIDF compliant field into its various components.
	SMDFGetUINT64Returns the lower four bytes from a UINT64 value.
	SMDFIncrementUINT64Adds a UINT32 value to a UINT64 value.
	SMDFPutFieldsFormats data into an SIDF section.
	SMDFPutNextFieldFormats data into an SIDF compliant field.
	SMDFPutUINT64Converts a UINT32 data type to a UINT64 data type.
	SMDFSetUINT32DataCopies four or less bytes from a buffer to a UINT32 variable.
	SMDFSetUINT64Copies eight or less bytes from a buffer to a UINT64 variable.
	SMDFSubUINT64Subtracts two UINT64 values.

	6.9 SMDR Functions
	NWSMConvertErrorReturns the string that represents the specified completion code.
	NWSMGetRequestorVersionInfoQueries the local SMDR for its version information.
	NWSMGetSMSModuleVersionInfoQueries the connected SMS module for its version information.
	NWSMGetResponderVersionInfoQueries the responder used by the specified connection for its version information.
	NWSMListSMDRsReturns the names of all active SMDRs.

	7 Utility Field Macros
	SIDF_GetFixedSizeIndicates if a FID has a fixed or variable data size.
	SMDFSizeOfFIDDetermines the size of a FID.
	SMDFSizeOfFieldDataReturns the size information in data size format 2 for a given data size.
	SMDFBitNIsSetChecks if a bit is set.
	SMDFSetBitNSets bit N.
	SMDFSizeOfUINT32DataDetermines the number of bytes the data occupies.
	SMDFSizeOfUINT32Data0Determines the number of bytes the FID's data size descriptor occupies.
	SMDFSizeOfUINT64DataDetermines the number of bytes used by a UINT64 value.
	SMDFZeroUINT64Sets a UINT64 variable to zero.

	8 Utility Library Structures
	ECMATimeContains the date and time information that conforms to the ISO/IEC-13346 (section 7.3) standard for date and time.
	NWSM_DATA_SET_NAMEDescribes the path to a data set.
	NWSM_EXTENSION_INFORMATIONDescribes an extension information.
	NWSM_FIELD_TABLE_DATA
	NWSM_GET_FIELDS_TABLEContains information about each table entry.
	NWSM_LISTContains list information.
	NWSM_LIST_PTRSpecifies the beginning and ending list elements containing list information.
	NWSM_MEDIA_INFO
	NWSM_MODULE_VERSION_INFOContains information about the module.
	NWSM_RECORD_HEADER_INFO
	NWSM_RESOURCE_INFO_EXTN_NETWARE_DA TA_1Describes the NetWare file systems primary resource meta data.
	NWSM_RESOURCE_INFO_EXTN_UNIX_DATA_1Describes the Linux file system primary resource meta data.
	NWSM_RESOURCE_INFO_EXTN_UNSUPPORTE D_DATA_1Describes the unsupported TSA options.
	NWSM_SCAN_INFO_EXTN_NFS_DATA_1Describes the NFS file system meta data.
	NWSM_SESSION_INFO
	SMDF_FIELD_DATA
	UINT64Contains an 8-byte unsigned integer value.

	9 Return Values
	9.1 Target Services Values
	9.2 Target Services Generic Open Mode Values
	9.2.1 Generic Backup Open Mode Values
	9.2.2 Generic Restore Open Mode Values
	9.2.3 TSA-Specific Open Mode Values

	9.3 Target Service Return Values
	9.3.1 TSAPI and SMDR Return Values
	9.3.2 TSANDS Return Values

	9.4 Utility Library Values
	9.4.1 nameSpaceType Values
	9.4.2 selectionType Values
	9.4.3 Time Zone Values
	9.4.4 Wildcard Values

	9.5 ExtensionTag Values
	9.6 TagVersion Values

	10 Performance and the File System TSA
	10.1 Introduction
	10.2 Performance Model with TSAFS
	10.3 Performance Enablers and Inhibitors
	10.4 Sample
	10.5 Conclusion

	A Obsolete Functions
	NWSMTSReadDataSets (Obsolete)Reads data sets on the Target Service, formats the data according to SIDF, and returns it in a buffer.
	NWSMTSEndReadDataSets (Obsolete)Terminates the read session started by NWSMTSReadDataSets when all the data sets have not been completed read.
	NWSMFixDirectoryPath (Obsolete)
	NWSMFixGenericDirectoryPath (Obsolete)
	NWSMTSGetTargetServiceAddress (Obsolete)Returns the Target Service physical address.

	B Revision History

