
Form Builder as a Service
Administrator’s Guide to the Form Builder

24.3 (v1.5.2)



Legal Notice
The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are set forth in the 
express warranty statements accompanying such products and services. Nothing herein should be construed as 
constituting an additional warranty. Open Text shall not be liable for technical or editorial errors or omissions contained 
herein. The information contained herein is subject to change without notice.

Copyright 2024 Open Text.
2



Contents
About this Book 5

1 Introduction 7
About Form Builder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
How does the Form Builder Work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Launching the Form Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Exploring the Form Builder User Interface 9
Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Form Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Basic Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Custom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
General Settings for Selected Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Display Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Data Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Validation Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
API Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Conditional Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Logic Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Layout Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Creating and Editing Forms 17
Creating Custom Request and Approval Forms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Creating a Custom Request Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Creating a Custom Approval Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Customizing the Default Request and Approval Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Editing a Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Editing a Form Using the Form Builder User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Editing a Form in the JSON Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Editing a Form in the JS Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Rendering the Forms 25

5 Localization of a Form 27
Providing Translations of Form Field Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Troubleshooting 29
Using setFieldValue function in Logic is Not Supported on Radio Component . . . . . . . . . . . . . . . . . . . . . . . 29
Contents 3



JavaScript Code Defined in Custom Default Value Not Executed When the Component is Redrawn . . . . . 29
Unable to Overwrite the Calculated Value on Date/Time Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A Appendix 31
Example of Creating a Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4



About this Book

The Administrator’s Guide provides conceptual information about the Form Builder product. This 
book describes how to work with the Form Builder product. It also provides step-by-step guidance 
for creating forms using simple examples.

Intended Audience
This book provides information for individuals responsible for understanding the form building 
concepts and using the Form Builder to create forms for their application.

Contacting Micro Focus
For specific product issues, contact Micro Focus Support at https://www.microfocus.com/support-
and-services/.

Additional technical information or advice is available from several sources:

 Product documentation, Knowledge Base articles, and videos: https://www.microfocus.com/
support-and-services/

 The Micro Focus Community pages: https://www.microfocus.com/communities/
About this Book 5

https://www.microfocus.com/support-and-services/
https://www.microfocus.com/support-and-services/
https://www.microfocus.com/support-and-services/
https://www.microfocus.com/support-and-services/
https://www.microfocus.com/communities/


6 About this Book



1 1Introduction

Forms are an integral part of any application that involves workflow process and data management. 
Forms can range from simple surveys to complex resource management forms. Typically, forms are 
embedded in workflows and connect to an API platform at the back end of an application, which can 
make the overall form creation process complex and difficult. Moreover, integrating forms with 
third-party servers and legacy systems increases the complexity. Form Builder simplifies the process 
by making it a hassle-free experience for the application administrators.

The Form Builder allows you to design responsive forms that can be accessed by any application. It 
provides all the basic and modern form building features, including the drag-and-drop interface, and 
supports a rich set of user interface elements. Using the Form Builder, you can build, customize, test, 
and deploy forms to an application. The application uses the Form Renderer component to render 
these forms and generate corresponding APIs.

The application use forms at different stages of workflow process to collect the required information 
and to execute relevant action for the fulfillment of the process. For example, roles and permissions 
workflows often need a formal approval before they are provisioned to the users. The user requests 
the role or permission by providing the required information through a request form. Once the 
request is submitted, the approvers can approve or deny the request by providing the required 
information through approval forms.

About Form Builder
The Form Builder is a web-based service used for designing forms. It provides a platform for 
application developers and administrators to build their own complex forms. It combines JavaScript 
forms with REST API Data Management platforms to set up form-based progressive web 
applications.

Form Builder provides the following features and benefits:

 Drag and drop feature that enables you to quickly create modern and responsive forms.
 Multiple components (widgets) with modern look and feel.
 Simplify connections between the forms and the REST APIs.
 Integrated with the JavaScript Editor to provide a consolidated view of all the JavaScript 

methods in the form.
 Integrated with the JSON Editor to edit JSON forms directly.
 Support for inbuilt localization for forms.
 Allows you to search and read the REST API description and invoke the REST API in JS methods 

with a single click. Automatically populates the code in JavaScript Editor to call the API.
 Uses One SSO Provider service (OSP) to provide single sign-on (SSO) across the application and 

the Form Builder.
Introduction 7



How does the Form Builder Work?
Form Builder works as a service that provides form building capabilities to your application. For 
example, the Form Builder service integrates with the Identity Governance to provide an ability to 
customize the default forms or to create custom forms. You must be an authorized administrator to 
build and design forms in Form Builder.

When the form is saved in Form Builder, a JSON schema is generated and stored on the Identity 
Governance database server. The Form Renderer uses this JSON schema to render the form 
dynamically within the application. The schema automatically generates the corresponding APIs to 
pass the user and approver submissions to Identity Governance request and fulfillment workflows.

Launching the Form Builder
Perform the following steps to launch Form Builder:

1 Log in to Identity Governance as a Customer, Global, or Request Administrator, or as Application 
Owner.

2 (Conditional) Perform the following actions to launch the default request or approval form on 
Form Builder:
2a Select Policy > Access Request Polices.
2b Select Application Default Forms or Permission Default Forms.
2c Choose an application or permission as required.
2d Click the default request or default approval form to launch the Form Builder in a new 

browser tab.
3 (Conditional) Perform the following actions to launch the custom request or approval form on 

Form Builder:
3a Select Catalog > Applications > Application Name, or select Catalog > Permissions > 

Permission Name.
3b Select Actions > Add form set.
3c Click Create Form Set.
3d Click the request or approval form to launch the Form Builder in a new browser tab.
8 Introduction



2 2Exploring the Form Builder User Interface

The Form Builder interface is simple, intuitive, and easy to use. The interface displays the required 
form components, form component organization, and form component control type. You can simply 
drag and drop the required form components into the workspace to design new forms. Every 
component includes validation checks that are executed on both the front end and back end to 
create a seamless user experience.

Form Builder user interface consists of the following elements:

 Toolbar
 Form Components
 Workspace

Toolbar
You can locate the toolbar on the left pane of the Form Builder user interface. For a better view, click 
the  button to expand the toolbar and display the available options along with their labels. 

The following options are available in the toolbar:

Table 2-1   Toolbar: Tools and its description

Tool Description

 Form Builder Click to return to the Home screen. It is the default 
view when the Form Builder is launched.

 JS Editor Click to edit the form in the JS editor. The editor 
enables you to write your logic to change the custom 
default value and to calculate the value. For more 
information, see “Editing a Form in the JS Editor” on 
page 21.

 Form JSON Click to edit the form in the JSON editor. The editor 
provides a JSON representation describing a fully-
featured form. You can also use the editor to 
duplicate and edit an existing form. For more 
information, see “Editing a Form in the JSON Editor” 
on page 20.

 Preview Click to preview the designed form.

 Localization Select the language in which you want the fields in 
the form to appear in the form renderer. For more 
information, see Chapter 5, “Localization of a Form,” 
on page 27.
Exploring the Form Builder User Interface 9



Form Components
Form components are used as building blocks to create forms. A form component collects user data 
and serves as the display or user interface within the system. Form components help you to define 
the type of widget that is required to enter data and automatically adds a property to the resource 
endpoint to interact with the form component. Each component includes functionality that enables 
you to design form fields according to your requirements.

Form Builder provides a wide range of components for creating forms. You can use these 
components to create a variety of forms, ranging from simple survey forms with basic form fields to 
complex resource management forms with dynamic form fields, where scripts can be executed for 
validation checks, and actions can be triggered when a form is submitted.

Form components are grouped into the following five broad categories:

 Basic: Includes a set of common components that can be used to design simple widgets in a 
form.

 Advanced: Includes a set of components that can be used to design widgets with advanced 
fields in a form.

 Custom: Includes a set of components that allows you to design labels and titles in a form.
 Layout: Includes a set of components that can be used to change the general layout of a form.
 Data: Includes a set of components that allows you to customize the data layout in a form.

Basic Components
When you select Basic, the Form Builder displays the following components:

 Text Field (https://help.form.io/userguide/form-building/form-components#text-field)
 Text Area (https://help.form.io/userguide/form-building/form-components#text-area)

NOTE: The custom editor selector in the Text Area component has been removed to prevent 
third-party integration issues. However, you can continue to edit text using the default text area 
component. 

 Save Click to save the form.

 Settings Select from the following options:

 Preview Settings: By default, Preview Settings is 
disabled. Set the toggle button to ON to enable 
the buttons in Preview mode. This will allow you 
to test the buttons such as Add To Request and 
Submit in the form. It is recommended to 
perform this action (Add To Request or Submit) 
only through the application.

 About: Displays the version details of the Form 
Builder.

Tool Description
10 Exploring the Form Builder User Interface

https://help.form.io/userguide/form-building/form-components#text-field
https://help.form.io/userguide/form-building/form-components#text-area


 Number (https://help.form.io/userguide/form-building/form-components/#number)
 Password (https://help.form.io/userguide/form-building/form-components#password)
 Checkbox (https://help.form.io/userguide/form-building/form-components#check-box)
 Select Boxes (https://help.form.io/userguide/form-building/form-components#select-box)
 Select (https://help.form.io/userguide/form-building/form-components#select)
 Radio (https://help.form.io/userguide/form-building/form-components#radio)
 Button (https://help.form.io/userguide/form-building/form-components#button)

Advanced
When you select Advanced, the Form Builder displays the following components:

 Email (https://help.form.io/userguide/form-building/advanced-components#email)
 URL (https://help.form.io/userguide/form-building/advanced-components#url)
 Phone Number (https://help.form.io/userguide/form-building/advanced-components#phone-

number)
 Tags (https://help.form.io/userguide/form-building/advanced-components#tags)
 Date/Time (https://help.form.io/userguide/form-building/advanced-components#date-and-

time)
 Day (https://help.form.io/userguide/form-building/advanced-components#day)
 Time (https://help.form.io/userguide/form-building/advanced-components#time-1)
 Currency (https://help.form.io/userguide/form-building/advanced-components#currency)
 Survey (https://help.form.io/userguide/form-building/advanced-components#survey)
 Signature (https://help.form.io/developers/integrations/esign-integrations)

Custom
When you select Custom, the Form Builder displays the following components:

 Label Element
 Title Element

Layout
When you select Layout, the Form Builder displays the following components:

 HTML Element (https://help.form.io/userguide/form-building/layout-components#html-
element)

NOTE: While creating a form with an HTML Element Component, if you write any JSON script in 
the Content section, the Preview section shows you the converted data. In the Form Builder 
view, however, the JSON data is displayed instead of the converted data. This issue does not 
impact the functionality of how Form Builder works.

 Content (https://help.form.io/userguide/form-building/layout-components#content)
Exploring the Form Builder User Interface 11

https://help.form.io/userguide/form-building/form-components/#number
https://help.form.io/userguide/form-building/form-components#password
https://help.form.io/userguide/form-building/form-components#check-box
https://help.form.io/userguide/form-building/form-components#select-box
https://help.form.io/userguide/form-building/form-components#select
https://help.form.io/userguide/form-building/form-components#radio
https://help.form.io/userguide/form-building/form-components#button
https://help.form.io/userguide/form-building/advanced-components#email
https://help.form.io/userguide/form-building/advanced-components#phone-number
https://help.form.io/userguide/form-building/advanced-components#survey
https://help.form.io/userguide/form-building/advanced-components#date-and-time
https://help.form.io/userguide/form-building/advanced-components#currency
https://help.form.io/userguide/form-building/advanced-components#url
https://help.form.io/userguide/form-building/advanced-components#tags
https://www.netiq.com/documentation/iga-help-formio/help_formio/label-component.html
https://www.netiq.com/documentation/iga-help-formio/help_formio/title-component.html
https://help.form.io/userguide/form-building/layout-components#html-element
https://help.form.io/userguide/form-building/layout-components#content
https://help.form.io/userguide/form-building/advanced-components#day
https://help.form.io/userguide/form-building/advanced-components#time-1
https://help.form.io/developers/integrations/esign-integrations


 Columns (https://help.form.io/userguide/form-building/layout-components#columns)
 Field Set (https://help.form.io/userguide/form-building/layout-components#field-set)
 Panel (https://help.form.io/userguide/form-building/layout-components#panel)
 Table (https://help.form.io/userguide/form-building/layout-components#table)
 Tabs (https://help.form.io/userguide/form-building/layout-components#tabs)
 Well (https://help.form.io/userguide/form-building/layout-components#well)

Data
When you select Data, the Form Builder displays the following components:

 Hidden (https://help.form.io/userguide/form-building/data-components#hidden)
 Container (https://help.form.io/userguide/form-building/data-components#container)
 Data Map (https://help.form.io/userguide/form-building/data-components#data-map)
 Data Grid (https://help.form.io/userguide/form-building/data-components#data-grid)
 Edit Grid (https://help.form.io/userguide/form-building/data-components#edit-grid)
 Tree (https://help.form.io/userguide/form-building/data-components#tree)

Workspace
Workspace is the part of the Form Builder user interface where you drag and drop the components 
to add new fields into the form. When Form Builder is launched, the default view shows a set of 
predefined fields in the request or approval form in the workspace area.

General Settings for Selected Component
When you drag and drop a component on the Form Builder interface, a window appears in which 
you can configure the settings of that component. You can provide a description, select the input 
format, and enter the required values (which can be predefined as well). These settings, barring 
certain exceptions, are common for most of the components. For more information about settings, 
click  in the Form Builder. 

The following section describes the settings that are common for most of the components.

Display Tab
The settings available on the Display tab define how a given component appears on the form upon 
rendering.

The following elements are listed on the Display tab for a Text Field component:

 Label (https://help.form.io/userguide/form-building/component-settings#label)
 Label Position (https://help.form.io/userguide/form-building/component-settings#label-

position)
12 Exploring the Form Builder User Interface

https://help.form.io/userguide/form-building/layout-components#columns
https://help.form.io/userguide/form-building/layout-components#field-set
https://help.form.io/userguide/form-building/layout-components#panel
https://help.form.io/userguide/form-building/layout-components#table
https://help.form.io/userguide/form-building/layout-components#well
https://help.form.io/userguide/form-building/data-components#hidden
https://help.form.io/userguide/form-building/data-components#container
https://help.form.io/userguide/form-building/data-components#data-grid
https://help.form.io/userguide/form-building/data-components#edit-grid
https://help.form.io/userguide/form-building/component-settings#label
https://help.form.io/userguide/form-building/component-settings#label-position
https://help.form.io/userguide/form-building/layout-components#tabs
https://help.form.io/userguide/form-building/data-components#data-map
https://help.form.io/userguide/form-building/data-components#tree


 Label Width (https://help.form.io/userguide/form-building/component-settings#label-width-
and-margin)

 Label Margin (https://help.form.io/userguide/form-building/component-settings#label-width-
and-margin)

 Placeholder (https://help.form.io/userguide/form-building/component-settings#placeholder)
 Description (https://help.form.io/userguide/form-building/component-settings#description)
 Tooltip (https://help.form.io/userguide/form-building/component-settings#tooltip)
 Prefix (https://help.form.io/userguide/form-building/component-settings#prefix)
 Suffix (https://help.form.io/userguide/form-building/component-settings#suffix)
 Widget (https://help.form.io/userguide/form-building/form-components#text-field)
 Input Mask (https://help.form.io/userguide/form-building/form-components#text-field)
 Allow Multiple Masks
 Custom CSS Class (https://help.form.io/userguide/form-building/component-settings#custom-

css-class)
 Tab Index (https://help.form.io/userguide/form-building/component-settings#tab-index)
 Hidden (https://help.form.io/userguide/form-building/component-settings#hidden)
 Hide Label (https://help.form.io/userguide/form-building/component-settings#hide-label)
 Show Word Counter
 Show Character Counter
 Hide Input (https://help.form.io/userguide/form-building/component-settings#hide-input)
 Initial Focus (https://help.form.io/userguide/form-building/component-settings#initial-focus)
 Allow Spellcheck
 Disabled (https://help.form.io/userguide/form-building/component-settings#disabled)
 Table View (https://help.form.io/userguide/form-building/component-settings#table-view)
 Modal Edit (https://help.form.io/userguide/form-building/component-settings#modal-edit)

Data Tab
The settings available on the Data tab allow you to define the default value and how the component 
appears on the form.

The following elements are listed on the Data tab for the Number component:

 Multiple Values (https://help.form.io/userguide/form-building/component-settings#multiple-
value)

 Default Value (https://help.form.io/userguide/form-building/component-settings#default-
value)

 Use Thousands Separator
 Decimal Places
 Require Decimal
 Input Format
 Redraw On (https://help.form.io/userguide/form-building/component-settings#redraw-on)
Exploring the Form Builder User Interface 13

https://help.form.io/userguide/form-building/component-settings#label-width-and-margin
https://help.form.io/userguide/form-building/component-settings#label-width-and-margin
https://help.form.io/userguide/form-building/component-settings#placeholder
https://help.form.io/userguide/form-building/component-settings#description
https://help.form.io/userguide/form-building/component-settings#tooltip
https://help.form.io/userguide/form-building/component-settings#prefix
https://help.form.io/userguide/form-building/component-settings#suffix
https://help.form.io/userguide/form-building/form-components#text-field
https://help.form.io/userguide/form-building/component-settings#custom-css-class
https://help.form.io/userguide/form-building/component-settings#tab-index
https://help.form.io/userguide/form-building/component-settings#hidden
https://help.form.io/userguide/form-building/component-settings#hide-label
https://help.form.io/userguide/form-building/component-settings#hide-input
https://help.form.io/userguide/form-building/component-settings#initial-focus
https://help.form.io/userguide/form-building/component-settings#disabled
https://help.form.io/userguide/form-building/component-settings#table-view
https://help.form.io/userguide/form-building/component-settings#multiple-value
https://help.form.io/userguide/form-building/component-settings#default-value
https://help.form.io/userguide/form-building/form-components#text-field
https://help.form.io/userguide/form-building/component-settings#modal-edit
https://help.form.io/userguide/form-building/component-settings#redraw-on


 Clear Value When Hidden (https://help.form.io/userguide/form-building/component-
settings#clear-value-when-hidden)

 Custom Default Value (https://help.form.io/userguide/form-building/component-
settings#custom-default-value)

 Calculated Value (https://help.form.io/userguide/form-building/component-
settings#calculated-value)

 Allow the calculated value to be overridden manually (https://help.form.io/userguide/form-
building/component-settings#allow-manual-override-of-calculated-value)

Validation Tab
The settings available on the Validation tab allow you to add validation checks on the component. 
You can set the component as mandatory to ensure that the user fills it before submitting the form.

The following elements are listed on the Validation tab for the Select component:

 Validate On (https://help.form.io/userguide/form-building/component-settings#validate-on)
 Required (https://help.form.io/userguide/form-building/component-settings#required)
 Error Label (https://help.form.io/userguide/form-building/component-settings#error-label)
 Custom Error Message (https://help.form.io/userguide/form-building/component-

settings#custom-error-message)
 Custom Validation (https://help.form.io/userguide/form-building/component-settings#custom-

validation)
 JSONLogic Validation

API Tab
The settings available on the API tab allow you to define the property name and configure any 
custom properties for the selected component.

The following elements are listed on the API tab for the Phone Number component:

 Property Name (https://help.form.io/userguide/form-building/component-settings#property-
name)

 Field Tags (https://help.form.io/userguide/form-building/component-settings#field-tag)
 Custom Properties (https://help.form.io/userguide/form-building/component-

settings#custom-properties)

NOTE: Each component must have a unique Property Name.

Conditional Tab
The settings available on the Conditional tab allow you to determine the conditions for displaying or 
hiding the selected component in a form. You can define a simple conditional logic based on the 
following rules to determine when to hide or display the component:

 Select True to display the component or False to hide the component.
14 Exploring the Form Builder User Interface

https://help.form.io/userguide/form-building/component-settings#custom-default-value
https://help.form.io/userguide/form-building/component-settings#calculated-value
https://help.form.io/userguide/form-building/component-settings#required
https://help.form.io/userguide/form-building/component-settings#error-label
https://help.form.io/userguide/form-building/component-settings#custom-validation
https://help.form.io/userguide/form-building/component-settings#property-name
https://help.form.io/userguide/form-building/component-settings#field-tag
https://help.form.io/userguide/form-building/component-settings#custom-properties
https://help.form.io/userguide/form-building/component-settings#clear-value-when-hidden
https://help.form.io/userguide/form-building/component-settings#allow-manual-override-of-calculated-value
https://help.form.io/userguide/form-building/component-settings#validate-on
https://help.form.io/userguide/form-building/component-settings#custom-error-message


 The visibility depends on another component within the same form.
 The logic is activated when the dependent component contains the defined plain text value.

In addition to simple conditional logic, you can also use advanced conditional logic, which allows you 
to enter custom JavaScript code or custom JSON logic for any combination of conditions.

Advanced conditional logic will override the results of the simple conditional logic.

Logic Tab
The settings available on the Logic tab allow you to define and configure multiple logic and actions 
for the selected component, which helps you design a form that can perform certain defined actions 
for the defined logic.

Layout Tab
The settings available on the Layout tab allow you to define the HTML attributes for the component 
and map those attributes with the component’s input element. You cannot edit the component type 
from the values you specify in this tab. For example, if you select a Text Field component, you cannot 
change the component type to a different value such as a Checkbox.
Exploring the Form Builder User Interface 15



16 Exploring the Form Builder User Interface



3 3Creating and Editing Forms

Using Form Builder, you can either create custom request and approval forms, or customize the 
default forms that comes with the application. Let us understand how to perform both these 
operations in the Form Builder through the Identity Governance application.

Creating Custom Request and Approval Forms
By default, the Identity Governance provides a default form set. This form set consists of request and 
approval forms with a set of predefined fields. You can use the default forms for requesting access to 
applications and permissions. However, when more complex forms are required, you can create a 
new form set and add custom fields in the request and approval forms using the Form Builder. For 
more information on creating a new form set, refer to the "Creating Custom Forms for One or More 
Permissions and Applications" section in the Identity Governance and Identity Governance as a 
Service User and Administration Guide on the Identity Governance and Administration 
Documentation (https://www.microfocus.com/documentation/identity-governance-and-
administration/) page.

Creating a Custom Request Form
1. From Identity Governance, launch the request form associated with a permission or application.
2. In Form Builder, drag and drop the required component into the workspace to add new fields on 

the form. For more information, see “Form Components” on page 10.
3. Define the properties of the component, then click Save.

4. Click  on the Home screen.

The following example provides step-by-step instructions for creating a request form that allows the 
user to request for a laptop. The options on the form include the laptop type, color, and the reason 
for placing the request.

1. From Basic Components, drag and drop the Select component into the workspace.
2. On the Display tab, type Laptop Type in the Label field.
3. On the Data tab, verify that the selected Data Source Type is Values.
4. In the Data Source Values, enter the following values in the Label field:

 Dell
 Lenovo
 HP
 Mac

TIP: Click Add Another button to add new label and value fields.

5. (Optional) Verify the Laptop Type drop-down list functions correctly in the Preview area.
Creating and Editing Forms 17

https://www.microfocus.com/documentation/identity-governance-and-administration/
https://www.microfocus.com/documentation/identity-governance-and-administration/


6. Click Save.
7. To add choices for laptop color, drag and drop the Select Boxes component into the workspace.
8. On the Display tab, type Choice of Color in the Label field.
9. On the Data tab, enter the following labels in the Values field:

 Grey
 White
 Black

10. Click Save.

11. (Optional) To modify the Reason component (present in request form by default), click  and 
configure the settings as required.

12. Click  to preview the form.

13. Click  on the Home screen.

Creating a Custom Approval Form
When you customize a request form, you may also need to add the corresponding controls to the 
approval form to facilitate data flow. For example, if you have added Laptop Type and Choice of Color 
fields to the “Request for Laptop” request form, it requires that you add these fields in the approval 
form and configure the flowdata. Adding flowdata allows you to pass the user input from the 
request form to the approval form.

To add flowdata to the approval form:

1 Launch the approval form associated with the “Request for Laptop” permission in Form Builder.
2 To pass the user input for laptop type from the request form to the approval form, perform the 

following actions:
2a From Basic Components, drag and drop the Select component into the workspace.
2b On the Display tab, type Laptop Type in the Label field and select the Disabled check box 

to disable the user input in this field.
2c Click Save.
2d Open the JS Editor and look for the following function:

function laptopType_CustomDefaultValue () {}
function laptopType_CalculateValue () {}

2e Configure the custom default value as: 

function laptopType_CustomDefaultValue () {value = 
context.flowdata.laptopType;}

function laptopType_CalculateValue () {}

TIP: You can use the IG Request option to add the context.flowdata.laptopType; 
flowdata. Click IG Request > Flowdata, and select Laptop Type.

2f Click .
18 Creating and Editing Forms



3 To pass the user input for choice of color from the request form to the approval form, perform 
the following actions:
3a From Basic Components, drag and drop the Select Boxes component into the workspace.
3b On the Display tab, type Choice of Color in the Label field and select the Disabled 

check box to disable the user input in this field.
3c On the Data tab, add the following labels in the Values field:

 Grey
 White
 Black

3d Click Save.
3e Open the JS Editor and look for the following function:

function choiceOfColor_CustomDefaultValue () {}
function choiceOfColor_CalculateValue () {}

3f Configure the custom default value as: 

function choiceOfColor_CustomDefaultValue () {value = 
context.flowdata.choiceOfColor;}

function choiceOfColor_CalculateValue () {}

TIP: You can use the IG Request option to add the 
context.flowdata.choiceOfColor; flowdata. Click IG Request > Flowdata and select 
Choice of Color.

3g Click .

4 Click  to preview the form.

5 Click  on the Home screen.

NOTE: You can use the Simulate Request Workflow option to review the form fields by simulating 
the requester and approver action.

 In the Form Builder, you can create inline scripts that can be used as helper functions. Be aware, 
however, that since these inline scripts are published to the global javascript context, 
unexpected results may occur. One example of this is in the compare to draft to published area, 
where one has two forms up at the same time. In this case, both forms will end up sharing the 
same inline function, even if the definition of the function was different between the draft and 
published form.

Customizing the Default Request and Approval Forms
Identity Governance uses default request and approval forms for applications and permissions 
access. These forms are provided under the Application Default Forms and Permission Default Forms 
tabs in the Access Request Policies page. You can choose to customize the default forms using the 
Form Builder. For more information on how to launch the default application or permission form in 
Form Builder, refer to the “Customizing Default Application or Permission Forms section” in the 
Creating and Editing Forms 19



Identity Governance and Identity Governance as a Service User and Administration Guide on the 
Identity Governance and Administration Documentation (https://www.microfocus.com/
documentation/identity-governance-and-administration/) page.

After the default request or approval form is launched in the Form Builder, you can either modify the 
existing fields, or you can add new fields to the form. Drag and drop the required component into 
the workspace, define the properties of the component, then click Save. Refer to the “Form 
Components” on page 10 for more information about available components. After saving the form 
in Form Builder, you need to publish the form on Identity Governance to set it as the default request 
or approval form for applications or permissions.

Editing a Form
You can edit a form as follows:

 “Editing a Form Using the Form Builder User Interface” on page 20
 “Editing a Form in the JSON Editor” on page 20
 “Editing a Form in the JS Editor” on page 21

Editing a Form Using the Form Builder User Interface
Each component in Form Builder includes edit, copy, move, paste, and remove functionality. The 
supporting icons appear when the cursor is positioned over the selected component.

Perform the following actions to edit a component in the form:

1 Click  next to the component that you want to edit.
2 Make the necessary edits in the modal window. You can preview the changes in the Preview 

area on the right side of the window.
3 Click Save.

4 Click  on the Home screen.

NOTE: You can move the components across the workspace in a form. Select  next to the 
component you want to move, drag and drop it to the desired location.

Editing a Form in the JSON Editor
All forms rendered within Form Builder use a JSON schema. When you add new components to a 
form, you are defining a JSON schema in the background. Form Builder uses this schema to invoke 
the REST APIs needed to support the form. This section provides an explanation of the structure of 
the JSON schema and the components that can be rendered within a form.

TIP: Do not directly edit the form in the JSON editor unless you are very comfortable using the editor. 
You must make a backup of the form before editing it.

The example form described in the “Example of Creating a Form” on page 31 can be designed using 
the JSON editor as well.
20 Creating and Editing Forms

https://www.microfocus.com/documentation/identity-governance-and-administration/


Figure 3-1   JSON Editor - Sample form

You can use the same JSON schema to duplicate the form. You can make edits to the form using the 
JSON editor directly.

Editing a Form in the JS Editor
Form Builder provides a global JS Editor which enables you to add or modify the JavaScript methods 
for all the form fields in one place. From this page, you can add or modify (invoke the API) the 
required HTTP method (GET or POST) and apply the value to the required field.

The JS Editor automatically populates the method to set Custom Default Value and Calculated Values 
for all the configured fields in the form. You must use this editor to write your own JavaScript logic 
for these methods.

For example, while setting the value for a field, the value variable is used by default. However, if 
you use asynchronous JavaScript, you must use the instance.setFieldValue(data) value. The 
instance.setFieldValue(value)function and its parameters are described as follows:

instance.setFieldValue 
(response,valueProperty,labelProperty,defaultValueToSet), where:

 response {Array}: is an array of objects or strings to be set.
 valueProperty {String}: is the value for each option to be set. It is expected that each object 

in the response array has this property.
 labelProperty {String}: displays label for the options. It is expected that each object in 

response array has this property.
 defaultValueToSet {String}: when set as string, it selects the corresponding item in the 

response array that has same valueProperty as the <string>. This parameter is optional.

The following example shows how to set options or values dynamically for Select component:
Creating and Editing Forms 21



function selectForApi_CustomDefaultValue () {
    utils.get('','/api/dcs/schema/GROUP', '', '',
function(response) {
    console.log(response);  
    
instance.setFieldValue(response.attributes,'attributeKey','displayName');
}, function(err) {
console.log(err);
});
}

Using IG Request Attributes
The JS Editor provides an option to include Identity Governance attributes in the form. These 
attributes are passed as RequestItems between Form Builder and Identity Governance. Click the 
IG Request option to display the list of supported Identity Governance attributes. You can select the 
required attribute to design the form accordingly.

A snippet of the supported attributes is shown in the following figure:

Figure 3-2   IG Request Attributes

The following section discusses different ways to use the IG Request attributes:

 “Using Flowdata Attribute to Pass Data from Request to Approval Form” on page 22
 “Requesting Resource from Identity Governance REST API” on page 23
 “Requesting a Resource From an External API” on page 24

Using Flowdata Attribute to Pass Data from Request to Approval Form
The flowdata attribute is used to map a field data in the request form to the corresponding field in 
the approval form. It facilitates the flow of information from the request to the approval form.

When you add a new field to the request form, you may also need to add the corresponding controls 
to the approval form to facilitate the data flow. For more information, see “Creating a Custom 
Approval Form” on page 18.
22 Creating and Editing Forms



Requesting Resource from Identity Governance REST API
The API Examples option in the JS Editor includes a sample Calling IGA API method that shows how to 
retrieve a resource from Identity Governance REST API. The sample method shows how to fetch 
information about the logged in user by requesting the /api/whoami endpoint. 

var url = '/api/whoami';
   // get(serviceId, APIUri, body, options, successCallback, errorCallback)
   // serviceId should be left as ''
utils.get('',url, '', {},

 function(response) {

 instance.setFieldValue(response.principal);

 },

 function(err) {

 console.log(err);

});
You can edit the endpoint and response in this sample method to retrieve the desired resource from 
the Identity Governance REST API. For example, if you want to create a drop-down list using the 
Select component in the Form Builder, the options in this list should be fetched dynamically from the 
Identity Governance REST API. To accomplish this requirement, perform the following actions:

1. In Form Builder, go to Basic Components, then drag and drop the Select component into the 
workspace.

2. On the Display tab, type Group Attributes in the Label field.
3. On the Data tab, select Asynchronous API as Data Source Type.
4. Click Save.
5. Open the JS Editor and look for the following function:

function laptop_CustomDefaultValue () {}
function laptop_CalculateValue () {}

6. Configure the custom default value as:

function laptop_CustomDefaultValue () {
utils.get('','/api/dcs/schema/GROUP', '', '',
function(response) {
console.log(response);
instance.setFieldValue(response.attributes,'attributeKey','displayName
');
}, function(err) {
console.log(err);
});
}

NOTE: The request made to the Identity Governance REST API server will add the OAuth header 
automatically.
Creating and Editing Forms 23



7. Click .

8. Click  and verify that the options are listed under the Group Attributes drop-down list.

Requesting a Resource From an External API
Form components automatically add OAuth headers while making API calls to the REST servers or 
while invoking the URL method to return a JSON array of data to a form field from an external 
source. Based on your requirement, you may want to create a drop-down list where the options are 
fetched from an external resource without adding the OAuth header. You can accomplish this 
requirement in the JS Editor. The Populating Select list via External API method available under the 
API Examples provides a sample on how to retrieve a resource from an external API.

You want to create a drop-down list using the Select component, where the options in the list are 
fetched from a file <filename>.json which is hosted on AWS. While requesting the file, you want 
to ensure that the component does not add an OAuth header in the URL. To accomplish this 
requirement, perform the following actions:

1. In Form Builder, go to Basic Components, then drag and drop the Select component into the 
workspace.

2. On the Display tab, type Laptop in the Label field.
3. On the Data tab, select Asynchronous API as Data Source Type.
4. Click Save.
5. Open the JS Editor and look for the following function:

function laptop_CustomDefaultValue () {}
function laptop_CalculateValue () {}

6. Configure the custom default value as:

function laptop_CustomDefaultValue () {

var url = 'https://iga-demo.s3.us-east-2.amazonaws.com/api/
laptops.json';

   $.get(url,
    function(response) {
        instance.setFieldValue(response.laptops, 'value', 'label');

        // let us assume this is on an approval form, and 
context.flowdata.laptop contains the value from the request screen
        if (context.flowdata && context.flowdata.laptop) {
           instance.setValue(context.flowdata.laptop);
        }
    });
}

function laptop_CalculateValue () {}

7. Click .

8. Click  and verify that the options are listed correctly under the Laptop drop-down list.
24 Creating and Editing Forms



4 4Rendering the Forms

Forms created in the Form Builder are rendered on the application through a Form Renderer. The 
Form Renderer uses the form JSON schema to render the forms dynamically on the front-end of the 
application. The schema automatically generates the corresponding APIs to receive the data when 
the form is submitted. Form Renderer uses custom CSS styles specific to the application to render 
the default look and feel of the form.
Rendering the Forms 25



26 Rendering the Forms



5 5Localization of a Form

The purpose and usage of forms created using the Form Builder varies with the audience and the 
application where it is embedded. Form Builder offers the capability of translating forms into the 
language of your choice. The built-in Localization option provides multiple language support for 
translating forms. You need to provide the translated values for the label key and value in the 
preferred language, and the resulting form will be rendered on your application in the language set 
on the browser.

The following languages are supported:

 Chinese (Taiwan)
 Chinese (China)
 Swedish
 Russian
 Portuguese
 Polish
 Dutch
 Norwegian
 Japanese
 Italian
 French
 Spanish
 German
 Danish
 English

Providing Translations of Form Field Labels
To set up the labels and values for different languages, perform the following actions:

1. After saving the final form, click  in Form Builder.
2. Select the language of your choice.
3. Specify the values for the label keys in the selected language.

4. Click . The form fields appear with the relevant changes in the  option.
Localization of a Form 27



NOTE: When creating or editing a form in Form Builder, some field and button labels in the Editing 
pane appear in English, rather than language selected for localization. The completed form will be 
correctly localized, however. You can click  on the left navigation to verify that the form is correctly 
localized.
28 Localization of a Form



6 6Troubleshooting

The following section contains information about troubleshooting the issues when the Form Builder 
or its component may not function as intended.

Using setFieldValue function in Logic is Not Supported on 
Radio Component

Issue: If you set logic on the Radio component using the setFieldValue function to fetch values 
dynamically when triggered by an event, the radio field might not work as expected.

Workaround: You can use the setFieldValue function in either CustomDefaultValue or 
CalculateValue method in the JS Editor to fetch values dynamically on a radio field. For example, 
you can configure the following function on the Radio component and set the default value as 1:

function radio_CustomDefaultValue () {
    setTimeout(()=>{
        instance.setFieldValue(fetchValuesForRadio(),null,null,1); 
        
    },1000)
}

function radio_CalculateValue () {}

function fetchValuesForRadio(){
    return ['1','2''3','4'];
}

JavaScript Code Defined in Custom Default Value Not 
Executed When the Component is Redrawn

Issue: In Form Builder, if you configure two components, for example, a Number and a Text Field, 
where you define a JavaScript code to set the values on the Number component dynamically and 
select to Redraw On whenever there is change in the Text Field, then the Number component will not 
reset when you enter a value in the Text Field component. This issue occurs because the JavaScript 
code defined in the Custom Default Value is not executed when the Number component is redrawn.

Workaround: There is no workaround at this time.
Troubleshooting 29



Unable to Overwrite the Calculated Value on Date/Time 
Component

Issue: On Date/Time component, when you define a JavaScript code using moment() function to 
calculate the date and time based on user input in the Number component, the value is calculated as 
expected. However, if you select the Allow the calculated value to be overridden manually check box, 
you will not be able to change the calculated value in form preview mode. This issue occurs because 
the time is updated continuously on the Date/Time component, which does not allow the calculated 
value to be overwritten manually.

Workaround: You can resolve this issue by using the startOf('day') or endOf('day') function 
in the code to ensure that the set time does not change when the value is calculated on the Date/
Time component. Perform the following actions:

1 From the Basic Components, drag and drop the Number component into the workspace, then 
provide a label in the Label field and click Save.

2 From the Advanced components, drag and drop the Date/Time component into the workspace.
3 (Conditional) To set the time to 12:00 AM (start of day), click the Data tab and provide the 

following JavaScript code in the Calculated Value field:

value = moment().startOf('day').add(data.number, 'days')
4 (Conditional) To set the time to 11:59 PM (end of day), click the Data tab and provide the 

following JavaScript code in the Calculated Value field:

value = moment().endOf('day').add(data.number, 'days')
5 Select the Allow the calculated value to be overridden manually check box.
6 Click Save.
30 Troubleshooting



A AAppendix

The following section provide additional reference information and advanced topics for the Form 
Builder.

Example of Creating a Form
This section provides details about creating a form using an example. The following example explains 
the process of creating a hospital registration form that patients use for requesting an appointment 
with a Doctor.

The approval form can be created using the instructions mentioned in “Creating a Custom Approval 
Form” on page 18.

Let us discuss the widgets required to design the following hospital registration form.

Select the required widgets, drag and drop them into the workspace, and configure the settings. The 
following table lists the components and settings used to create the registration form:

Field Name Component/Widget 
Used

Settings Reference

Enter the patient 
details below

Label Element (Custom)

Used to add a non-
editable, information-
only field in the form.

 On the Display tab, type 
Enter the patient 
details below: in the 
Label field.

 Select the Hide Colon check 
box to hide the colon symbol 
next to the label.

For more 
information, see 
Label Element.
Appendix 31

https://www.netiq.com/documentation/iga-help-formio/help_formio/label-component.html


Patient Name Text Field (Basic)

Used to provide a text 
input field in the form.

 On the Display tab, type 
Patient Name in the Label 
field.

 To mark this component as 
mandatory in the form, go to 
the Validation tab and select 
the Required check box.

For more 
information, see Text 
Field.

- Columns (Layout)

Used to split an area in 
the form into columns. 
Define the properties for 
each column, as required. 
Drag and drop 
components into each 
column to add fields in 
the form.

By default, the Columns 
component splits an area into two 
columns.

On the Display tab, click Add 
Column twice to add a third and 
fourth column. Change the Width 
of the columns depending on the 
fields to be added.

Each of these four columns will be 
used to add the following fields in 
the form:

 Gender
 Age
 Type of patient
 Registration Number

For more 
information, see 
Columns.

Gender Radio (Basic)

Used to provide a list of 
two or more options that 
are mutually exclusive. 
The user will be allowed 
to select only one option 
from the list.

 On the Display tab, type 
Gender in the Label field.

 On the Data tab, add the first 
Label as Male and the second 
as Female. 

For more 
information, see 
Radio.

Age Day (Advanced)

Used to allow the user to 
input their date of birth in 
month, day, and year 
format.

On the Display tab, type Age in the 
Label field.

For more 
information, see Day.

Type of patient Radio (Basic)

Used to provide a list of 
two or more options that 
are mutually exclusive. 
The user will be allowed 
to select only one option 
from the list.

 On the Display tab, type Type 
of patient in the Label 
field.

 On the Data tab, add the first 
Label as New and the second 
as Existing. 

For more 
information, see 
Radio.

Field Name Component/Widget 
Used

Settings Reference
32 Appendix

https://help.form.io/userguide/form-components/#textfield
https://help.form.io/userguide/form-components/#textfield
https://help.form.io/userguide/layout-components/#columns
https://help.form.io/userguide/form-components/#radio
https://help.form.io/userguide/#day
https://help.form.io/userguide/form-components/#radio


Registration Number Number (Basic)

Used to restrict the user 
to input a numerical 
value.

 On the Display tab, type 
Registration Number in 
the Label field.

 To add an instruction which 
will appear when the field is 
empty, type (Applicable 
for patient who has 
an existing 
registration number.) 
in the Placeholder field.

For more 
information, see 
Number.

Select the 
Department

Select (Basic)

Used to provide values 
that will display as 
options in a drop-down 
list for selection.

 On the Display tab, type 
Select the Department 
in the Label field.

 On the Data tab, select the 
Data Source Type as Values. 
Add the following labels in the 
Data Source Values field:

1. Cardiology
2. Neurology
3. Oncology
4. Obstetrics
5. Gynecology

For more 
information, see 
Select.

Choose a Doctor for 
Consultation

Select (Basic)

Used to provide values 
that will display as 
options in a drop-down 
list for selection.

 On the Display tab, type 
Choose a Doctor for 
Consultation in the Label 
field.

 On the Data tab, select the 
Data Source Type as Custom 
and provide the following 
logic in the Custom Values 
field:

let dept = 
data.selectTheDepartme
nt;
let choices = 
getDoctors();
let optionsToSet = [];
for(let i=0; i < 
choices.length; i++){
  
if(choices[i].departme
nt == dept) {
    optionsToSet = 
choices[i].doctors;
    break;
  }
}
values = optionsToSet;

For more 
information, see 
Select.

Values populated in 
Choose a Doctor for 
Consultation field 
depend on the user 
selection in the 
Select the 
Department field. 
Use the JS Editor to 
define the logic to 
calculate the value in 
this field. For more 
information, see 
“Editing the Hospital 
Registration Form 
Using JS Editor” on 
page 34.

Field Name Component/Widget 
Used

Settings Reference
Appendix 33

https://help.form.io/userguide/form-components/#number
https://help.form.io/userguide/form-components/#select
https://help.form.io/userguide/form-components/#select


You can create or make edits to an existing form using the JSON or JS editor. For more information 
about using the JSON Editor, see “Editing a Form in the JSON Editor” on page 20.

Editing the Hospital Registration Form Using JS Editor
In the hospital registration form, the Select the Department and Choose a Doctor for Consultation 
fields have to be designed in such a way that the options listed in the Choose a Doctor for 
Consultation field depends on what the user selects in the Select the Department field. This 
operation can be achieved using the JS Editor, which enables you to write logic to change the custom 
default value and to calculate the value of the component.

To define the logic for the Choose a Doctor for Consultation field:

1 Click  in the Form Builder.
2 Define the values to return for the getDoctors object as follows:

Appointment Date Date/Time (Advanced)

Used to allow the user to 
input either a date or a 
time or both, as desired.

On the Display tab, type 
Appointment Date in the Label 
field.

For more 
information, see 
Date/Time.

Mobile Number Phone Number 
(Advanced)

Used to allow the user to 
enter a phone number in 
the form.

On the Display tab, type Mobile 
Number in the Label field.

For more 
information, see 
Phone Number.

Enter patient’s 
complaint/problems 
here

Text Area (Basic)

Used to provide a multi-
line input field in the 
form that enables the 
user to enter longer text.

 On the Display tab, type 
Enter patient's 
complaint/problems 
here in the Label field.

 On the Validation tab, add the 
Maximum Word Length as 
200.

For more 
information, see Text 
Area.

Submit Button (Basic)

Used to perform actions 
within the form.

On the Display tab, type Submit in 
the Label field and select the 
Action as Submit.

For more 
information, see 
Button.

Reset Button (Basic)

Used to perform actions 
within the form.

On the Display tab, type Reset in 
the Label field and select the 
Action as Reset.

For more 
information, see 
Button.

TIP: Each component has a Preview area on the right hand side that displays how the form would render 
when you make the changes or edits to any field.

Field Name Component/Widget 
Used

Settings Reference
34 Appendix

https://help.form.io/userguide/form-components/#datetime
https://help.form.io/userguide/form-components/#phonenumber
https://help.form.io/userguide/form-components/#textarea
https://help.form.io/userguide/form-components/#textarea
https://help.form.io/userguide/form-components/#button
https://help.form.io/userguide/form-components/#button


function getDoctors() {
    return [
        {department: 'cardiology', doctors : ['Dr. Adam Hasting','Dr. 
Raymond Chase']},
        {department: 'neurology', doctors : ['Dr. Robert Calling','Dr. 
Homes']},
        {department: 'oncology', doctors : ['Dr. Steve Lambart','Dr. 
Shyama Mukerjee']},
        {department: 'obstetrics', doctors : ['Dr. Daniel Cruise','Dr. 
Angelika Sun']},
        {department: 'gynecology', doctors : ['Dr. Katie Homes','Dr. 
Ludwig Cunnings']}
    ]
}

3 Click  to verify the behavior of the two form fields and preview how the final form would 
appear after rendering.

4 Click  on the Home screen.
Appendix 35



36 Appendix


	Administrator’s Guide to Form Builder
	About this Book
	Intended Audience
	Contacting Micro Focus

	1 Introduction
	About Form Builder
	How does the Form Builder Work?
	Launching the Form Builder

	2 Exploring the Form Builder User Interface
	Toolbar
	Form Components
	Basic Components
	Advanced
	Custom
	Layout
	Data

	Workspace
	General Settings for Selected Component
	Display Tab
	Data Tab
	Validation Tab
	API Tab
	Conditional Tab
	Logic Tab
	Layout Tab


	3 Creating and Editing Forms
	Creating Custom Request and Approval Forms
	Creating a Custom Request Form
	Creating a Custom Approval Form

	Customizing the Default Request and Approval Forms
	Editing a Form
	Editing a Form Using the Form Builder User Interface
	Editing a Form in the JSON Editor
	Editing a Form in the JS Editor


	4 Rendering the Forms
	5 Localization of a Form
	Providing Translations of Form Field Labels

	6 Troubleshooting
	Using setFieldValue function in Logic is Not Supported on Radio Component
	JavaScript Code Defined in Custom Default Value Not Executed When the Component is Redrawn
	Unable to Overwrite the Calculated Value on Date/Time Component

	A Appendix
	Example of Creating a Form


