
Host Access for the Cloud Web Client
3.1.1

Table of contents

4Welcome to Host Access for the Cloud Web Client

5Connection Settings

5Connection Settings

5Common Connection Settings

113270 and 5250 connection settings

12VT connection settings

15UTS connection settings

17T27 connection settings

18ALC connection settings

20Working with Sessions

20Using Quick Keys

21Editing the Screen

22Logging Out

23Macros

23Creating Macros

28Macro API Objects

60Sample Macros

0Run Macro on Event

0Display Settings

0Color Mapping

0Configure Hotspots

0Configure screen dimensions for VT, UTS and T27 hosts

0Set Cursor Options

0Set Font Options

0Set VT Scrollback Buffer Options

0Set Keyboard Options

0Terminal Settings

Table of contents

- 2/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

0Set Other Display Options

0Map Keys

0Map Keys

0Host Keyboard Mapping

0Transfer Files

0IND$FILE

0AS/400

0FTP

0Batch transfers

0Specify Edit Options

0Import and Export Settings

0Exporting session settings

0Importing session settings

0Printing

0Capture a screen

0Print a screen

0Host printing

0Customizing Host Sessions

0Managing User Preferences

0Legal Notice

Table of contents

- 3/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Welcome to Host Access for the Cloud Web
Client

The Rocket® Host Access for the Cloud web client provides browser-based HTML5 access to 3270, 5250,
VT, UTS, ALC, and T27 host applications. The Host Access for the Cloud product eliminates the need to
touch the desktop; no software to deploy, patches to apply, or configurations to make. You can provide
platform-independent user access to all your host applications.

Welcome to Host Access for the Cloud Web Client

- 4/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Connection Settings

Connection Settings
There are common connection settings that are applicable to all host types.

Common Connection Settings

There are additional settings which are specific to your type of host.

3270 and 5250 settings

T27

UTS

VT

ALC

Common Connection Settings
These options are common to all supported host types.

Connect at startup

By default, sessions are configured to connect to the host automatically when you create or open
a session. However, you can set up a session so that it doesn't automatically connect to the host.
Choose NO to manually connect to the host.

Reconnect when host terminates connection

When set to Yes, Host Access for the Cloud attempts to reconnect as soon as the host connection
terminates.

Protocol

From the drop down list, select the protocol you want to use to communicate with the host. To
establish a host connection, both the web client and the host computer must use the same
network protocol. The available values are dependent on the host to which you are connecting.
They are:

•

•

•

•

•

•

• •

• •

• •

Protocol Description

Connection Settings

- 5/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

TN3270 TN3270 is a form of the Telnet protocol, which is a set of specifications for
general communication between desktop and host systems. It uses TCP/IP as
the transport between desktop computers and IBM mainframes.

TN3270E TN3270E or Telnet Extended is for users of TCP/IP who connect to their IBM
mainframe through a Telnet gateway that implements RFC 1647. The TN3270E
protocol allows you to specify the connection device name (also known as LU
name), and provides support for the ATTN key, the SYSREQ key, and SNA
response handling. If you try to use Telnet Extended to connect to a gateway
that doesn’t support this protocol, standard TN3270 will be used instead.

TN5250 TN5250 is a form of the Telnet protocol, which is a set of specifications for
general communication between desktop and host systems. It uses TCP/IP as
the transport between desktop computers and AS/400 computers.

Secure Shell
(VT)

You can configure SSH connections when you need secure, encrypted
communications between a trusted VT host and your computer over an
insecure network. SSH connections ensure that both the client user and the
host computer are authenticated; and that all data is encrypted. Two
authentication options are available:

Keyboard Interactive - You can use this authentication method to implement
different types of authentication mechanisms. Any currently supported
authentication method that requires only the user's input can be performed
with Keyboard Interactive.

Password - This option prompts the client for a password to the host after a
host connection is made. The password is sent to the host through the
encrypted channel.

Telnet (VT) Telnet is a protocol in the TCP/IP suite of open protocols. As a character stream
protocol, Telnet transmits user input from character mode applications over the
network to the host one character at a time, where it is processed and echoed
back over the network.

INT1 (UTS) Provides access to Unisys 1100/1200 hosts using the TCP/IP network protocol.

TCPA (T27) Use this protocol to connect to Unisys ClearPath NX/LX series or A Series hosts.
TCPA Authentication is the process of verifying user login information. When
properly configured, you can request a security credential from your
application's credential server and send the credential back to the server. If the
credential is valid, your application will be logged in; you do not have to enter a
user ID or password. If the credential is not valid however, you will be prompted
for a user ID and a password.

•

•

Common Connection Settings

- 6/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

TLS Security

TLS protocols allow a client and server to establish a secure, encrypted connection over a public
network. When you connect using TLS, Host Access for the Cloud authenticates the server before
opening a session, and all data passed between and the host is encrypted using the selected
encryption level.

When TLS security is set to TLS 1.3 or TLS 1.2, you have the option to verify the host name
against the name on the server certificate. It is highly recommended that you enable host name
verification for all sessions.

The following options are available:

Enable emulation tracing

You can choose to generate host traces for a session. No is the default. Select Yes to create a new
emulation host trace each time the session is launched.

MATIP (ALC) Mapping of Airline Traffic Over Internet Protocol (MATIP) uses TCP/IP for airline
reservation, ticketing, and messaging traffic.

• •

tip

Security
Options

Description

None No secure connection is required.

TLS 1.3 Connect using TLS 1.3. When Verify server identity is set to Yes, the client
checks the server or host name against the name on the server certificate.
It is highly recommended that you enable host name verification for all
sessions.

TLS 1.2 Connect using TLS 1.2. When Verify server identity is set to Yes, the client
checks the server or host name against the name on the server certificate.
It is highly recommended that you enable host name verification for all
sessions.

• •

Common Connection Settings

- 7/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Using Terminal ID Manager
 To use Terminal ID Manager, you must have a Terminal ID Manager server configured. See

Terminal ID Manager Guide.

Terminal ID Manager provides IDs to client applications at runtime and manages pooled IDs for
different host types. An ID is connection data that is unique for an individual host session.

If you decide to use Terminal ID Manager and have configured the Terminal ID Manager server, then
you can select from the options below to configure the criteria for acquiring an ID. All criteria must be
met in order for an ID to be returned.

Keep in mind that by specifying a criterion, you are indicating that the ID should be allocated only
when an ID with that specific value is found. The set of criteria selected here must be an exact match
of the set of criteria specified on at least one Pool of IDs in Terminal ID Manager before the ID
request can succeed.

Terminal ID Manager Criteria

note

Criterion Description

Pool name Include this attribute and enter the name of the pool to limit the ID search to
a specified pool.

Client IP
address

The IP address of the client machine will be included as part of the request for
an ID.

Host address The address of the host configured for this session will be included as part of
the request for an ID.

Host port The port for the host configured for this session will be included as part of the
request for an ID.

Session name When selected, requires that the ID is configured to be used by this session
exclusively.

Session type The session type (for example, IBM 3270, IBM 5250, UTS, ALC or T27) is always
included as part of any request for an ID.

Using Terminal ID Manager

- 8/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

https://www.microfocus.com/documentation/mss/14-1-1/tidm

To determine the connection attempt behavior if Terminal ID Manager does not successfully allocate an
ID to this session, use If ID is not allocated:

Fail connection attempt - When selected, the session does not attempt to connect when an ID is
not allocated.

Allow connection attempt - When selected, the session attempts to connect when an ID is not
allocated. The attempt may be rejected by the host. There are some host types that permit a user
to connect without an ID.

To confirm that Terminal ID Manager can provide an ID using the criterion and value selections
you have made, click Test Terminal ID Manager Criteria.

Send keep alive packets - Use this setting to provide a constant check between your session and
the host so that you become aware of connection problems as they occur. Choose from the
following types of keep alive packets:

User name Use this criterion to ensure that only IDs created for exclusive use by specific
users will be allocated. The current user’s name, which must be found on an
ID before it can be allocated, is the name of the user that the session is
allocated to at runtime.
To configure a session based on user names, a default place holder user
name is available: tidm-setup.

For the administrator to configure sessions using tidm-setup, the Terminal ID
Manager must have IDs provisioned for tidm-setup. You can override the
default name with one of your own by modifying the <install-dir>/
sessionserver/conf/container.properties file as follows:

id.manager.user.name=custom-username where custom-username is
replaced by the name you want to use.

Application
name (UTS)

The name of the host application will be used as part of the request for an ID.

• •

• •

• •

This option Does this ...

None The default. No packets are sent.

System The TCP/IP stack keeps track of the host connection and sends keep alive
packets infrequently. This option uses fewer system resources than the
Send NOP Packets or Send Timing Mark Packets options.

Terminal ID Manager Criteria

- 9/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Keep alive timeout (seconds) - If you choose to use either the Send NOP packets or the Send
timing mark packets option, select the interval between the keep alive requests set. The values
range from 1 to 36000 seconds (1 hour); the default is 600 seconds.

Test Terminal ID Manager Criteria
The Terminal ID Manager provides IDs to client applications at runtime. To confirm that Terminal ID
Manager can provide an ID using the criteria and value selections you selected use this test option.

Criteria for the current session are specified on the Connection panel after selecting Use Terminal ID
Manager from either the Device Name (3270, 5250 host types), the Terminal ID (UTS) field, or the
Station ID (T27) field. By default, the selected criteria for the current session are displayed.

Click Test to confirm that Terminal ID Manager can provide an ID matching the configured criterion and
value selections. The test returns the name of an available ID that satisfies the selected attribute values.

Testing for other criteria and values

You can also use this panel to test criteria different from those associated with the current session.

Select any of the session types from the Session type list, and select the criteria you want to test. You
can test alternate values that you want to use in a sample Terminal ID Manager request.

Click Test to confirm that Terminal ID Manager can provide an ID matching the criterion and value
selections. The test returns the name of an available ID that satisfies the selected values.

This option Does this ...

Send NOP
packets

Periodically, a No Operation (NOP) command is sent to the host. The host
is not required to respond to these commands, but the TCP/IP stack can
detect if there is a problem delivering the packet.

Send timing
mark packets

Periodically, a Timing Mark Command is sent to the host to determine if
the connection is still active. The host should respond to these
commands. If a response is not received or there is an error sending the
packet, the connection shuts down.

• •

1. 1.

2. 2.

Test Terminal ID Manager Criteria

- 10/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

3270 and 5250 connection settings
In addition to the Common connection settings, 3270 and 5250 host types require these specific
settings.

Terminal model

Specify the terminal model (also known as a display station) you want Host Access for the Cloud to
emulate. There are different terminal models available depending on the host type.

If you choose Custom Model, you can set the number of columns and rows to customize the
terminal model.

Use Kerberos automatic sign-on (5250 only)

When set to Yes the user does not have to enter sign-on credentials. Kerberos automatic sign-on
is configured in the MSS Administrative Console > Host Access for the Cloud. In configuring
HACloud to use the Kerberos authentication protocol there are terms that you should understand
and prerequisites to adhere to in advance of configuring this option. These options are explained
in detail in the MSS Administrative Console > Host Access for the Cloud panel documentation,
available from the Help button. See the Deployment Guide for more information.

Terminal ID (3270 only)

When Host Access for the Cloud connects to a Telnet host, the Telnet protocol and the host
negotiate a terminal ID to use during the initial Telnet connection. In general, this negotiation will
result in the use of the correct terminal ID, and so you should leave this box empty.

TLS Security

TLS protocols allow a client and server to establish a secure, encrypted connection over a public
network. When you connect using TLS, Host Access for the Cloud authenticates the server before
opening a session, and all data passed between and the host is encrypted using the selected
encryption level. See Common Connection Settings for detailed information on this common
setting.

Device name

If you selected TN3270, TN3270E, or TN5250 as the protocol, specify the device name to use when
the session connects to the host. The device name is also known as the host LU or pool. You can
also choose to:

Generate a unique device name - Automatically generates a unique device name.

Use Terminal ID Manager - Displays additional settings to complete. See Using Terminal ID
Manager

Always Prompt the User for ID - The end user is prompted for the device ID each time a
connection is attempted.

• •

• •

• •

• •

• •

• •

• •

• •

3270 and 5250 connection settings

- 11/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Prompt the User if ID not Specified - The end user is prompted the first time a connection is
attempted after which the value is saved. The saved value will continue to be used without
additional prompting.

If you do not specify a device name for the session, the host dynamically assigns one to the session. A
device name that is set within a macro will override this setting.

VT connection settings
In addition to the Common connection settings, VT hosts require additional settings. These settings
vary depending on the protocol you are using; Telnet or SSH. The settings are applicable to both
protocols unless noted.

VT session configuration options

• •

VT Settings Description

Terminal ID This setting determines the response that Host Access for the Cloud sends to
the host after a primary device attributes (DA) request. This response lets the
host know what terminal functions it can perform. The Host Access for the
Cloud response for each Terminal ID is exactly the same as the VT terminal's
response; some applications may require a specific DA response. This
terminal ID setting is independent of the Terminal type setting. The options
are: VT220, VT420, VT100, DEC-VT100, and VT52.

Allow
unknown
hosts (SSH)

This setting provides the administrator with the ability to decide whether the
web client will allow unknown hosts. Options are:

Yes - Unknown hosts and all SSH connections are permitted. Web client
users are not prompted about whether hosts should be trusted.

Ask - The web client user is prompted whether the host should be trusted
when they connect to an unknown host they haven't encountered before. If
they choose to trust the host, then its public key is stored in their user
preferences and subsequent connections will not elicit a prompt unless the
host key changes.

No - No unknown hosts are permitted. Only those hosts the administrator
chooses to trust when configuring the session are permitted. End users are
never prompted and the session will either connect or not connect
depending on the administrator’s choices.

•

•

•

VT connection settings

- 12/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Suppress
banner
messages
(SSH)

When enabled, the SSH banner is not displayed. This option is useful when
recording SSH login macros.

Local Echo
(Telnet)

Automatic (default). How Host Access for the Cloud responds to remote echo
from a Telnet host: Automatic attempts to negotiate remote echo, but does
what the host commands. Yes means Host Access for the Cloud negotiates
local echo with the host, but always echoes, while No means Host Access for
the Cloud negotiates remote echo with the host, but does not echo.

Renegotiate
Echo (Telnet)

No (default). When set to Yes, passwords are not displayed on the local
screen, but all other typed text is visible. Host Access for the Cloud supports
the Telnet Suppress Local Echo (SLE) option when connected to a host in half-
duplex mode. This means that Host Access for the Cloud will suppress
character echo to the host computer, and with SLE support Host Access for
the Cloud can be instructed to suppress echo locally.

Set Host
Window Size

Yes (default). This setting sends the number of rows and columns to the
Telnet host whenever they change. This enables the Telnet host to properly
control the cursor if the window size is changed.

Host Key
Algorithms
(SSH)

Sets which host key algorithms to use when connecting to an SSH server.
Options are:

EC, RSA, DSS (default) - This is the more secure option. Use it during an
upgrade to provide more security.

RSA, DSS - Select RSA, DSS to continue using an existing key for new SSH
sessions.

Request
Binary (Telnet)

No (default). Telnet defines a 7-bit data path between the host and the
terminal. This type of data path is not compatible with certain national
character sets. Fortunately, many hosts allow for 8-bit data without zeroing
the 8th bit, which resolves this problem. In some cases, however, it may be
necessary to force the host to use an 8-bit data path by selecting this check
box.

Send LF after
CR (Telnet)

No (default). A "true" Telnet host expects to see a CrNu (carriage return/null)
character sequence to indicate the end of a line sent from a terminal. There
are some hosts on the Internet that are not true Telnet hosts, and they
expect to see a Lf (linefeed) character following the Cr at the end of a line. If
you're connecting to this type of Telnet host, select Yes.

•

•

VT session configuration options

- 13/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

More information

TLS descriptions

Ctrl-break
sends (Telnet)

Choose what sequence Ctrl-break sends to the host when pressed. Options
are: Telnet break sequence (the default), Interrupt process, or Nothing.

Host
Character Set

The default value for the Host character set depends on the type of terminal
you are emulating. This setting reflects the current terminal state of VT Host
Character Set, which can be changed by the host. The associated default
setting, saved with the model is DEC Supplemental.

Auto
Answerback

No (default). This setting specifies whether the answerback message (set
with the Answerback property) is automatically sent to the host after a
communications line connection.

Answerback
String

This setting allows you to enter an answerback message if the host expects
an answer in response to an ENQ character.

The answerback string supports characters with codes less than or equal to
0xFFFF via Unicode escape sequences. The escape sequence begins with \u
followed by exactly four hexadecimal digits. You can embed Unicode escape
sequences in any string. For example, this embedded \u0045 will be
interpreted as this embedded E, since 45 is the hexadecimal code for the
character E.

To pass Unicode escape sequences to the host, escape the sequence with a
leading backslash. For example, to send the string literal \u001C to the host,
map a key to \\u001C. Host Access for the Cloud will convert this to the string
\u001C when that key is pressed and send the 6 characters of the resulting
string to the host.

•

VT session configuration options

- 14/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

UTS connection settings
In addition to the Common connection settings, UTS hosts require these additional settings:

UTS INT1 session configuration options

UTS INT1
options

Description

Application The name of the host application or host operating mode to be accessed.
This is the word or phrase that the local machine sends to the host when you
first establish communication with the host. If you were using a host terminal,
this would be the $$OPEN name of the application.The application name is
typically the same as the environment name. However, they can be different.
For example, the environment name might be MAPPER, and the application
might be UDSSRC. During a terminal emulation session, you would type $
$OPEN MAPPER at the prompt, and INT1 would send UDSSRC to the host once
the connection is established.

TSAP The desired Transport Service Access Point (TSAP), up to 32 characters (such as
TIPCSU for TIP connections, RSDCSU for Demand connections).A TSAP is
required only if you are connecting to a Host LAN Controller (HLC) or to a
Distributed Communications Processor (DCP) in IP router mode. If you're not
sure which value to use, contact your host administrator.

Initial
transaction

The character, word, or phrase that the local machine will send to the host
when communication with the host is first established (up to 15
characters).This parameter is optional and is primarily used with TIP. For
example, you might type ^ to run MAPPER. This parameter can also be used to
transmit passwords.

Start
transaction

When you configure an initial transaction, by default, the data is sent as soon
as the session connection is established. You can decide when to send an initial
transaction by using a particular string to trigger the initial transaction.
For example, to wait for a successful login before sending initial transaction
data, type in a string to be used to identify a successful login.
You can use this setting in combination with Send initial transaction.

UTS connection settings

- 15/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

More information

Terminal ID Manager Attributes

TLS Descriptions

Send initial
transaction

You can determine when the initial transaction is sent:
Immediately - Default.

When start of entry (SOE) character is received - Useful when multi-line
transactions must be completed before sending the string.

After specified milliseconds

Terminal ID Choose options to specify a terminal ID or to use the Terminal ID Manager. To
specify a terminal ID, type it in the Specify Terminal ID field.

Specify Terminal ID
The Terminal ID, a terminal identifier (typically up to 8 alphanumeric
characters) to use for the communication session associated with this path.
Also known as a TID or PID, each terminal ID should be unique to the host.

Prompt the User if ID not Specified
The end user will be prompted the first time a connection is attempted after
which the value is saved. The saved value will continue to be used without
additional prompting.

Always prompt the user for ID
When you select this option the end user will be prompted for the terminal
ID each time a connection is attempted.

Use Terminal ID Manager
If you choose Use Terminal ID Manager, you are prompted to select the
Terminal ID attributes you want to use to obtain an ID. See Terminal ID
Manager Attributes.

To test the attributes, click Test.

•

•

•

•

•

•

•

•

•

UTS INT1 session configuration options

- 16/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

T27 connection settings
Along with the Common connection settings, you can configure these additional T27 connection
options:

T27 Connection Settings

T27
options

Description

Terminal
type

Select the type of terminal to emulate during the session. T27 emulation
supports Unisys TD830, TD830 ASCII, TD830 INTL, and TD830 NDL terminal
types.

Request
binary

You must enable the Request binary option when you require pass through
printing. The default is No.
TCPA defines a 7-bit data path between the host and the terminal emulator. This
type of data path is not compatible with certain national character sets.
However, many hosts allow for 8-bit data without zeroing the 8th bit, which
resolves this problem. However, it may be necessary to force the host to use an
8-bit data path; you can do so by selecting this option.

Line width Select the number of characters the host will send to the client. The default is
80 characters.

TLS security See TLS Descriptions for a description of the various options.

T27 connection settings

- 17/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

More information

TLS Descriptions

Terminal ID Manager Criteria

ALC connection settings
In addition to the Common connection settings, ALC hosts require these additional settings:

Station ID Choose an option to specify a station ID or use the Terminal ID Manager. To
specify a station ID, choose Specify Station ID and type the name in the Station
ID field.
Each station id should be unique to the host and typically consists of up to eight
alphanumeric characters.

Prompt the user if ID not specified
The end user will be prompted the first time a connection is attempted after
which the value is saved. The saved value will continue to be used without
additional prompting.

Always prompt the user for ID
When you select this option the end user will be prompted for the station ID
each time a connection is attempted.

Use Terminal ID Manager
If you select Use Terminal ID Manager, you will see a number of Terminal ID
criteria to configure. See Terminal ID Manager Criteria for descriptions of
the various options.

If you do not specify a station id for the session, the host dynamically assigns
one to the session.

•

•

•

• •

• •

ALC connection settings

- 18/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

ALC Connection Settings

More information

TLS Descriptions

Terminal ID Manager Criteria

ALC options Descriptions

TLS security See TLS Descriptions for a description of the various options.

Character
encoding

Choose ASCII, EBCDIC, or IPARS (default) as the code set.

Configuration
file

Enter the configuration (CNF) file that associates configuration information
appropriate for a specific host type.

Terminal
address

Select whether you want to specify the terminal address or use the Terminal
ID Manager.

Terminal address - Specify whether to use 2-byte or 4-byte addressing
mode.
Although a unique 5-byte address is required when you specify the terminal
ID instead of using ID Manager, this option specifies how many bytes of the
5-byte terminal ID address are sent with each message for the purposes of
multiplexing. If you specify 2-byte addressing mode, only the last 2 bytes of
the ASCU (Agent Set Control Unit) cluster address (A1, A2) are sent. If you
specify 4-byte addressing mode, the full ASCU cluster address (H1, H2, A1,
A2) is sent.
Specify the unique 5-byte terminal address for this session. The terminal
address is made up of five 2-hex-digit values in this order: H1, H2, A1, A2,
and TA (terminal address). This unique address is usually assigned by the
network administrator.

Terminal ID Manager- Provides IDs to client applications at runtime. If you
choose this option, there are additional configuration options to complete.
See Terminal ID Manager Criteria for descriptions of those options.

•

•

• •

• •

ALC Connection Settings

- 19/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Working with Sessions

All the sessions you have access to are available in the Available Sessions list. Sessions are initially
created and configured by your system administrator and accessed through a distributed URL (for
example, https://<clusterdns>/webclient .

To open a session

Select the session and click to open.

Interact with your host application using the open session.

You can create multiple instances of a configured session.

You can have multiple sessions open at a time and easily switch between them using the tabs arranged
across the top of the screen. The current session is always the left-most tab and is indicated by a white
background and bold text. Each session remains active for 30 minutes.

Use the toolbar to access the various options available to you as you interact with the session. You can
disconnect from a session, close the session, turn on Quick Keys, and access other settings. Some
options may be only available once your administrator has granted permission.

Using Quick Keys
The Quick Key terminal keyboard provides a graphical representation of the keys on a host keyboard
and gives you quick access to terminal keys.

Click a terminal key on the Quick Key keyboard to send the key to the host. Tool tips, which are available
by hovering over a key, provide a description of the mapping.

Quick keys are available for each supported host type and are accessed by clicking the tool bar icon

.

1. 1.

2. 2.

3. 3.

Working with Sessions

- 20/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Editing the Screen

Each browser handles copy, paste and cut functions differently and in some cases will not support
the use of the toolbar buttons or the right-click context menu. It is highly recommended that you
use keyboard commands for those functions. Although keyboard commands vary depending on
your operating system, in Windows they are: CTRL+C to copy, CTRL+V to paste, and CTRL+X to cut.

It is far more common to encounter problems with the paste function rather than either cut or copy.
If the Paste toolbar button is not visible, it is likely that browser security is preventing read access to
the system clipboard. Different browsers behave differently when it comes to providing access to the
clipboard. However, pasting is almost always available using the keyboard commands, (Control + V
on Windows and Command + V on Macs). This assumes you have not remapped those keys. You can
also use the browser’s built-in paste menu item or button.

To copy from the terminal

Highlight the area on the terminal screen that you want to copy.

Click Copy from the toolbar or select Copy from the right-click context menu available within the
terminal screen. You can alternatively use the keyboard command, CTRL+C.

To paste into the terminal screen

Position the cursor where you want to paste content.

If the browser supports the paste function, click Paste from the toolbar or select Paste from the
right-click context menu available within the terminal screen. If your browser does not support this
functionality, these options will not be available and you should use the keyboard command, CTRL+V.

To cut areas from the terminal screen

This function is available for all supported terminal types except for VT hosts.

Highlight the area on the terminal screen that you want to cut.

Click Cut from the toolbar or select Cut from the right-click context menu available within the
terminal screen. You can alternatively use the keyboard command, CTRL+X.

More information

note

1. 1.

2. 2.

1. 1.

2. 2.

note

1. 1.

2. 2.

Editing the Screen

- 21/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Specify Edit Options

Logging Out
In the upper right corner of the screen, open the drop-down list associated with your user name and
select Logout to stop working with the host application.

•

Logging Out

- 22/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Macros

Creating Macros
A macro is a series of keyboard actions that you record and then run. You can use these JavaScript
macro programs to automate user interactions with the terminal. You can access and run macros from
all supported devices.

Host Access for the Cloud records and saves advanced macros as JavaScript, making it easy to edit and
enhance your recorded macros. You can record macros to playback later, run macros at startup or when
the session connects or disconnects from the host. You can also write macros from scratch to perform
complex tasks that the recorder cannot capture.

Macros are made available to users in two ways; created by an administrator or recorded by users for
their own private use. All advanced macros are associated with a session and they all accomplish the
same goal, automating host interaction. The only difference between the two flavors is simply who can
access them and who manages their creation and availability:

Macros created by administrators

Administrators create macros when they create the session. They are specific to a session and are
available to all users who have access to the session from the Macro icon on the toolbar.
Administrators can designate macros to run at startup or when the session connects or
disconnects from the host.

Macros created by users

End-user macros are created by individuals for sessions they are authorized to access. The
administrator grants permission to create macros by setting a User Preference Rule. Users can
access the session under their own credentials or in a Guest role. Macros that Guest users create
are available to all Guest users. Users who are logged in using their own credentials can only see
macros that they have created.

Advanced macros are listed in alphabetical order in the drop down list available from the toolbar.
Macros created by the end-user are listed first and followed by an indicator of three vertical grey
dots, which when selected, displays the Edit and Delete options. Macros created by the
administrator are listed without the indicator as those macros cannot be modified by the end-
user.

• •

• •

Macros

- 23/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Working with Macros
Follow these steps to record, edit, and run macros.

Record

Click the Macro icon on the toolbar, and then click Record New Macro.

Navigate the host application to record the series of steps you want included in the macro.

Click on the toolbar to stop recording. The red dot pulses to indicate the recording is in process.

When prompted, type a name for the macro.

Edit

From the Macro drop-down list, select the macro you want to edit.

Click the three vertical dots to expand the field.

Click to open the Macro Editor (in the left panel).

Use JavaScript to make whatever changes are necessary. You can run and save the modified macro
using the toolbar icons in the upper panel of the editor.

Run

To run a macro, choose the macro from the drop-down list and click .

You can also map keys that will automatically trigger an already recorded macro. In the Key Map
settings dialog box, choose Run Macro from the Action drop down list. Choose a macro to associate
with the key mapping from the Value list.

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

4. 4.

Working with Macros

- 24/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Stop

You can stop a macro before it completes from either the Macro Editor or the toolbar. Click to stop
the macro. To rerun the macro, navigate back to the macro starting screen.

Delete

From the Macro drop down list, select the macro you want to delete.

Expand the field, by clicking the three vertical dot icon.

Click Delete.

View
The Macro drop down list is available from the toolbar to all users who have permission to record
macros or are accessing a session where macros have been pre-recorded by the administrator for use
with that session.

Macros are listed under either MY MACROS or MACROS depending on how they were recorded.

All users, whether they are logged in using their credentials or as Guest, can see the macros associated
with the session. Macros listed under the MY MACROS heading are listed in alphabetical order by name
and are visible to those users that recorded them. Macros recorded by the administrator and attached
to a session are listed alphabetically under MACROS.

Debugging Macros
Since macros are written in JavaScript and executed in the browser, the best way to debug and
troubleshoot them is by using your web browser’s built-in tools. Modern browsers come with a very
capable set of tools for debugging JavaScript code. You can place breakpoints, step through code, and
output debug information.

JavaScript is case sensitive. Keep that in mind when editing JavaScript code.

1. 1.

2. 2.

3. 3.

hint

Debugging Macros

- 25/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

To debug a macro:

Open the macro for editing. See Working with macros for instructions.

Open your browser’s development tools.

Use one of the these tools in your macro code, and run the code.

debugger

The most thorough approach to debugging is to use the ‘debugger;’ statement. When you insert
these statements into your macro code then run it, with the browser’s development tools open, the
execution will stop on those lines. You can step through your macro, view the value of local
variables and whatever else you need to check.

You are encouraged to place multiple debugger; statements in your code to help get to the correct
line. The asynchronous nature of JavaScript can make stepping through code challenging. This can
be offset by using multiple, carefully placed debugger; statements.

Example 1: debugger

console.log(), alert()

These two functions are commonly used for debugging JavaScript. While not as flexible as the
debugger statement they provide a quick way to output debug information. These functions output
the information to the JavaScript “Console” tab in the browser’s developer tools.

Example 2: console.log(), alert()

1. 1.

2. 2.

Browser Open debugger

Mozilla Firefox From the toolbar, open the Menu, and choose Developer.

From the Web Developer menu, choose Debugger. The debugger opens
in a lower panel.

Google
Chrome

From the toolbar, open the Menu, and choose More tools.

Choose Developer Tools to open the Debugger.

•

•

•

•

3. 3.

• •

var hostCommand = menuSelection + ‘[enter]';
debugger; // <— Browser's debugger will stop here
ps.sendKeys(hostCommand);

• •

Debugging Macros

- 26/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

ui.message()

The Host Access for the Cloud Macro API provides an ui.message() function that is very similar to
JavaScript’s alert() function. You can also use ui.message() to output debug information.

Example 3: ui.message()

Keep in mind:

Stepping and “yields”

While the yield statements in macros make them easier to understand, they can make the code
more challenging to step through with the debugger. Consider either using multiple debugger
statements or carefully placed debugger statements of console.log() calls to output the right
debug information.

Using the Macro API
In Host Access for the Cloud, macros are recorded and written using JavaScript.

The Macro API consists of a set of objects which you can use to interact with the host, wait for screen
states, and interact with the user.

About promises and yields

Because JavaScript is single-threaded and uses 'callback functions’ and ‘promises’ to help manage the
flow of execution through code, often code can be difficult to follow. Host Access for the Cloud
combines the concept of ‘promises' with the ‘yield' keyword so macro code can be organized in a more
linear fashion.

Promises

var hostCommand = menuSelection + ‘[enter]';
console.log('Command:' + hostCommand); // <— Will output the string to
"Console" tab
alert('Command:' + hostCommand); // Will pop up a small window containing
the data
ps.sendKeys(hostCommand);

• •

var hostCommand = menuSelection + ‘[enter]';
ui.message('Command:' + hostCommand); // <— Will pop up a message window
ps.sendKeys(hostCommand);

• •

• •

Using the Macro API

- 27/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Promises are patterns to help simplify functions that return their result asynchronously, at some
point in the future. All ‘wait’ and ‘ui’ functions in the Macro API return promise objects.

Yield

Macros use the yield keyword to block the execution of the macro until a promise is resolved, or
done. So putting yield in front of any ‘wait’ or ‘ui’ function makes the macro execution pause until
that function has finished executing. You can place the yield keyword in front of any function that
returns a promise, even your own custom functions.

The ability to make macro execution block by combining yield with promises is enabled by the
createMacro() function.

Errors

Errors are handled in macros using a try / catch statement. Some API functions may throw errors if, for
example, conditions can’t be met or a timeout occurs. The thrown error is ‘caught’ in the catch
statement. You can wrap smaller blocks of code in a try / catch statement to handle errors at a more
granular level.

Macro developers can also throw errors by using 'throw new Error('Helpful error message');

More information

Macro API Objects

Sample Macros

Macro API Objects
You can create macros using the Macro API. By default for use in macros, there are four primary objects
available:

Session - the main entry point for access to the host. You use the Session object to connect,
disconnect and provide access to the PresentationSpace object.

PresentationSpace - represents the screen and provides many common capabilities such as
getting and setting the cursor location, sending data to the host and reading from the screen. It is
obtained by calling session.getPresentationSpace() .

Wait - provides a simple way to wait for various host states to occur before continuing to send
more data or read from the screen. For example, you can wait for the cursor to be located at a

• •

note

•

•

• •

• •

• •

Macro API Objects

- 28/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

certain position, text to be present in a position on the screen or simply wait for a fixed amount of
time. All ‘Wait' function calls require the yield keyword, which is explained below.

User Interface - automatically available in your macro as the “ui” variable. It provides basic user
interface capabilities. You can use this object to display data to the user or prompt them for
information. All ‘UI' function calls require the yield keyword.

All available objects

See the list of available objects in the right navigation, "On this page." (You may need to expand your
browser.)

Attribute
Use the Attribute, along with the AttributeSet, to decode the formatting information present on the
data cell.

• •

Attribute Indicates...

PROTECTED a protected data cell

MODIFIED a modified data cell

NUMERIC_ONLY the beginning of a numeric only data cell

ALPHA_NUMERIC an alpha numeric data cell.

HIGH_INTENSITY whether the data cell contains high intensity text

HIDDEN whether the data cell contains hidden text

PEN_DETECTABLE whether the data cell is pen detectable

ALPHA_ONLY an alpha only data cell

NUMERIC_SHIFT the beginning of a numeric shift field

NUMERIC_SPECIAL the data cell marks the beginning of a numeric special field

KATAKANA_SHIFT a section of Katakana text

MAGNETIC_STRIPE the data cell marks the beginning of a magnetic strip field

SIGNED_NUMERIC_ONLY the data cell is a signed numeric field

TRANSMIT_ONLY the data cell is a transmit only field

Attribute

- 29/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Attribute Indicates...

FIELD_END_MARKER the data cell marks the end of a modified field

FIELD_START_MARKER the data cell marks the start of a modified field

SPECIAL_EMPHASIS_PROTECTED a special emphasis protected field

TAB_STOP that the data cell contains a tab stop

REVERSE the data cell displays in reverse video mode

BLINKING the data cell contains blinking text

RIGHT_JUSTIFIED the data cell marks the beginning of a right justified field

LEFT_JUSTIFIED the data cell marks the beginning of a left justified field

LOW_INTENSITY the data cell contains low intensity text

UNDERLINE the data cell contains underlined text

DOUBLE_BYTE the data cell contains double byte text

COLUMN_SEPARATOR the data cell contains a column separator

BOLD the data cell contains bold text

DOUBLE_WIDTH the data cell marks a double width field

DOUBLE_HEIGHT_TOP a double height top data cell

DOUBLE_HEIGHT_BOTTOM a double height bottom data cell

CONTROL_PAGE_DATA the data cell contains control page data

RIGHT_COLUMN_SEPARATOR the data cell contains a right column separator

LEFT_COLUMN_SEPARATOR a data cell containing a left column separator

UPPERSCORE the data cell contains an upperscore

Attribute

- 30/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

AttributeSet
The AttributeSet object allows the user to decode the attributes that are present on the data cell. The
AttributeSet object returns values defined in the Attribute object and when used together, you can get
formatting information from the data cell.

Attribute Indicates...

STRIKE_THROUGH the data cell contains strike through text

Method Description

contains(attribute) Determines if the set contains the specified Attribute.
Parameters
{Number} attribute to check

Returns
{Boolean} True if the attribute is in the set

isEmpty() Determines if the attribute set is empty.
Returns
{Boolean} True if the set is empty.

size() Indicates the number of attributes in a set.
Returns
{Number} The attribute count.

toArray() Converts the internal attribute set to an array.
Returns
{Number[]} Array of values of attributes in the set.

toString() Converts the internal attribute set to a string.
Returns
{String} Space-delimited names of attributes in the
set.

forEach(callback,
thisArg)

Function to iterate over each element in the attribute set.
Parameters
{forEachCallback} Callback to perform the specific operation.

Called with the name of each attribute in the set.
{Object} thisArg optional pointer to a context object.

AttributeSet

- 31/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

AutoSignOn

forEachCallback(str
ing, object)

A user provided callback function where you provide the behavior,
to be used as the callback parameter to forEach.
Parameters
{String} String name of an attribute in the
attribute set.

{Object} thisArg optional pointer to a context
object.

Method Description

getPassTi
cket()

Obtains a pass ticket to be used for signing onto a mainframe application.
Multiple pass tickets may be requested using different application IDs.
Parameters
{String} application ID tells the host which application the sign on is for
Returns
{Promise} fulfilled with the pass ticket key or rejected if the operation fails.
The pass ticket obtained from DCAS only works with the current host session
and is valid for ten minutes.

sendUserN
ame()

Applies the user name contained in the pass ticket to the field at the current
cursor location on the current host screen. The user name must be sent
before the password. Sending the password first will invalidate the pass ticket,
and you will need to get another one.
Parameters
{String} passTicketKey opbtained from getPassTicket
Returns
{Promise} fulfilled if the user name is successfully sent. Rejected if the
operation fails.

AutoSignOn

- 32/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Color
Color constants to use for the DataCell object foreground and background colors.

sendPassw
ord()

Applies the password contained in the pass ticket to the field at the current
cursor location on the current host screen. The user name must be sent
before the password. Sending the password first will invalidate the pass ticket,
and you will need to get another one.
Parameters
{String} passTicketKey obtained from getPassTicket
Returns
{Promise} fulfilled if the password is successfully sent. Rejected if the
operation fails.

Color Description Numeric Value

BLANK_UNSPECIFIED No color specified 0

BLUE Blue 1

GREEN Green 2

CYAN Cyan 3

RED Red 4

MAGENTA Magenta 5

YELLOW Yellow 6

WHITE_NORMAL_INTENSITY Normal intensity white 7

GRAY Gray 8

LIGHT_BLUE Light blue 9

LIGHT_GREEN Light green 10

LIGHT_CYAN Light cyan 11

LIGHT_RED Light red 12

LIGHT_MAGENTA Light magenta 13

BLACK Black 14

Color

- 33/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

ControlKey
The ControlKey object defines constants for sending cursor control keys and host commands using the
sendKeys method. Constants are available for these host types:

IBM 3270

IBM 5250

VT

UTS

IBM 3270

Color Description Numeric Value

WHITE_HIGH_INTENSITY High intensity white 15

BROWN Brown 16

PINK Pink 17

TURQUOISE Turquoise 18

•

•

•

•

Key word Description

ALTVIEW Alternate view

ATTN Attention

BACKSPACE Back space

BACKTAB Back tab

CLEAR Clear or clear display

CURSOR_SELECT Cursor select

DELETE_CHAR Delete, delete character

DELETE_WORD Delete word

DEST_BACK Destructive backspace

DEV_CANCEL Device cancel

ControlKey

- 34/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Key word Description

DOWN Cursor down

DSPSOSI Display SO/SI

DUP Duplicate field

END_FILE End of field

ENTER Enter

ERASE_EOF Erase end of field

ERASE_FIELD Erase field

ERASE_INPUT Erase input

FIELD_MARK Field mark

HOME Cursor home

IDENT Ident

INSERT Insert

LEFT_ARROW Cursor left

LEFT2 Left two positions

NEW_LINE New line

PA1 - PA3 PA1 - PA3

PF1 - PF24 PF1 - PF24

PAGE_DOWN Page down

PAGE_UP Page up

RESET Reset, reset terminal

RIGHT2 Right 2 positions

RIGHT_ARROW Cursor right, right

SYSTEM_REQUEST System request

TAB Tab key

ControlKey

- 35/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

IBM 5250

Key word Description

UP Cursor up

Key word Description

ALTVIEW Alternate view

ATTN Attention

AU1 - AU16 AU1 - AU16

BACKSPACE Back space

BACKTAB Back tab

BEGIN_FIELD Begin field

CLEAR Clear or clear display

DELETE_CHAR Delete, delete character

DEST_BACK Destructive backspace

DOWN Cursor down

DSPSOSI Display SO/SI

DUP Duplicate field

END_FILE End of field

ENTER Enter

ERASE_EOF Erase end of field

ERASE_FIELD Erase field

ERASE_INPUT Erase input

FIELD_EXT Field exit

FIELD_MINUS Field minus

FIELD_PLUS Field plus

ControlKey

- 36/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

VT

Key word Description

FIELD_MARK Field mark

HELP Help request

HEXMODE Hex mode

HOME Cursor home

INSERT Insert

LEFT_ARROW Cursor left

NEW_LINE New line

PA1 - PA3 PA1 - PA3

PF1 - PF24 PF1 - PF24

PAGE_DOWN Page down

PAGE_UP Page up

[print] Print

RESET Reset, reset terminal

RIGHT_ARROW Cursor right, right

SYSTEM_REQUEST System request

TAB Tab key

UP Cursor up

Key word Description

BACKSPACE Back space

BREAK Break

CLEAR Clear or clear display

CURSOR_SELECT Cursor select

ControlKey

- 37/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Key word Description

DELETE_CHAR Delete, delete character

DOWN Cursor down

EK_FIND Edit keypad find

EK_INSERT Edit keypad insert

EK_NEXT Edit keypad next

EK_PREV Edit keypad previous

EK_REMOVE Edit keypad remove

EK_SELECT Edit keypad select

END_FILE End of field

ENTER Enter

F1 - F24 F1 - F24

HOLD Hold

HOME Home

INSERT Insert

KEYPAD_COMMA Keypad comma

KEYPAD_DOT Keypad decimal

KEYPAD_ENTER Keypad enter

KEYPAD_MINUS Keypad minus

KEYPAD0 - KEYPAD9 Keypad 0 - Keypad 9

LEFT_ARROW Cursor left

PF1 - PF20 PF1 - PF20

PAGE_DOWN Page down

PAGE_UP Page up

RESET Reset, reset terminal

ControlKey

- 38/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

UTS

Key word Description

RETURN Return, carriage return

RIGHT_ARROW Cursor right, right

TAB Tab key

UDK16 - UDK20 User defined key 6 - User defined key 20

UP Cursor up

Key word Description

BACKSPACE Back space

BACKTAB Back tab

CHAR_ERASE Erases character at the cursor and advances the cursor.

CLEAR_DISPLAY Clear display

CLEAR_EOD Clear to end of display

CLEAR_EOF Clear to end of field

CLEAR_EOL Clear to end of line

CLEAR_FCC Clear Field Control Character

CLEAR_HOME Clear display and cursor home

CONTROL_PAGE Toggles the control page

DELETE_LINE Deletes the line containing the cursor and shifts remaining lines up
one row

DELIN_LINE Deletes character under cursor and shifts remaining characters on
line to the left.

DELIN_PAGE Deletes character under cursor and shifts remaining characters on
page to the left.

DOWN Moves the cursor down one line. Wraps at bottom.

ControlKey

- 39/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Key word Description

DUP_LINE Creates a copy of the current line and overwrites the next line with
the duplicate.

END_FIELD Moves the cursor to the end of the current field.

END_PAGE Moves the cursor to the end of the current page.

EURO Inserts the Euro character

F1 - F22 Function keys F1-F22

HOME Moves the cursor to beginning of current page (row 1, col 1)

INSERT Toggles insert/overwrite mode.

INSERT_IN_LINE Inserts space at cursor position and shifts the remaining characters
on the line to the right. The character in the far right column on the
line is discarded.

INSERT_IN_PAGE Inserts space at cursor position and shifts the remaining characters
on the page to the right. The character in the far right column on
each line is discarded.

INSERT_LINE Inserts a new line at the cursor row and shifts the remaining lines
down. The last row on the page is discarded.

LEFT_ARROW Moves the cursor one position to the left wrapping if necessary.

LOCATE_FCC Finds the next field control character on the screen.

MSG_WAIT Retrieves messages queued to the terminal.

RETURN Carriage return

RIGHT_ARROW Moves the cursor one position to the right, wrapping if necessary.

SOE Inserts the Start of Entry character

START_OF_FIELD Moves the cursor to the beginning of the field.

START_OF_LINE Moves the cursor to column 1 of current line.

TAB Moves the cursor to the next tab position of the screen.

TOGGLE_COL_SEP Toggles the column separator attribute.

ControlKey

- 40/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

DataCell
The DataCell object provides information about a particular position on a terminal screen.

Key word Description

TOGGLE_STRIKE_THRU Toggles the strike-through attribute on the current data cell.

TOGGLE_UNDERLINE Toggles the underline attribute on the current data cell.

TRANSMIT Transmits changed field data to the host.

UNLOCK Sends the UNLOCK key to the host.

UP Moves the cursor up one row, wrapping if necessary.

Method Description

getPosition() Returns the position of this data cell on the screen.
Returns
{Position} the position of the data cell on the screen

getChar() Obtains the character associated with the cell.
Returns
{String} The character associated with the cell.

getAttributes() Returns the set of attributes specified for this data cell instance. See
AttributeSet.
Returns
{AttributeSet} The set of attributes for this data cell instance.

getForegroundColor
()

Returns the foreground color, as defined in the Color object, for this
data cell.
Returns
{Number} Foreground color for this data cell. The color is defined

in the Color object.

getBackgroundColor
()

Returns the background color, as defined in the Color object, for this
data cell.
Returns
{Number} Background color for this data cell. The color is defined

in the Color object.

DataCell

- 41/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Dimension
Represents the size of the screen or screen area.

Field
Use the Field object, along with FieldList, to obtain the information present in a field on the screen.

toString Converts the internal data cell to a string.
Returns
{String} The string representation of a data cell.

isFieldDelimiter(
)

Tests if this cell represents a field delimiter.
Returns
{Boolean} True if this cell is a field delimiter, false if otherwise.

Method Description

Dimension(rows,cols) Creates a new Dimension instance.
Parameters
{Number} rows screen rows dimension
{Number} cols screen columns dimension

Method Description

getAttribu
tes()

Returns the set of attributes specified for this field instance. See AttributeSet.
Returns
{AttributeSet} The set of attributes for this field.

getForegro
undColor()

Returns the foreground color for the field.
Returns
{Number} Foreground color for this field. These values are defined in the

Color object.

getBackgro
undColor()

Returns the background color of the field.
Returns
{Number} Background color for this field. These values are defined in the

Color object.

Dimension

- 42/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

getStart() Returns the starting position of the field. The starting position is the position
of the first character of the field. Some host types use a character position to
store field level attributes. In this case, the attribute position is not
considered the start position.
Returns
{Position} Starting position of the field.

Throws
{RangeError} For zero length fields.

getEnd() Returns the ending position of the field. The ending position is the position in
the presentation space containing the last character of the field.
Returns
{Position} Ending position of the field.

Throws
{RangeError} For zero length fields.

getLength(
)

Returns the length of the field. For host types that use a character position to
store the field attributes, the field length does not include the field attribute
position
Returns
{Number} Length of the field.

getDataCel
ls()

Obtains the data cells that comprise this field. See DataCell.
Returns
{DataCell[]} Data cells that comprise this field.

getText() Obtains the text from the field.
Returns
{String} field text.

setText() Sets the field text. For certain host types, like VT, the text is transmitted to the
host right away, but in other host types, the text is not transmitted to the
host until an Aid key is invoked. If the text is shorter than the field, the text is
placed in the host field, and the remainder of the field is cleared. If the text is
longer than the host field, then as much text as will fit is placed in the field.
Parameter
{String} Text to set on the field.

Throws
{Error} If the field is protected.

clearField(
)

Clears the current field in an emulation-specific manner.
Throws
{Error} If the field is protected or clear is not supported.

Field

- 43/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

FieldList
Use the FieldList object, along with Field object, to obtain field list information.

getPresent
ationSpace(
)

Obtains the PresentationSpace that created this field.
Returns
{PresentationSpace} Parent of this field instance.

toString() Creates a user-friendly description of the field.
Returns
{String} A user readable rendition of the field.

Method Description

getPresent
ationSpace(
)

Obtains the PresentationSpace that created this field.
Returns
{PresentationSpace} Parent of this field instance.

findField(
position,
text,
direction)

Returns the field containing the specified text. The search starts from the
specified position and proceeds either forward or backward. If the string
spans multiple fields, the field containing the starting position is returned.
When searching forward the search will not wrap to the top of the screen.
When searching backward the search will not wrap to the bottom of the
screen.
Parameters
{Position} Position from which to start the search. See Position object.
{String} The text to search for (optional). If not provided, returns the next

field to the right of or below the specified position.
{Number} direction of the search (optional). Use PresentationSpace.

SearchDirection constants for this parameter. For example,
PresentationSpace.SearchDirection.FORWARD or
PresentationSpace.SearchDirection.BACKWARD. If not provided, searches
forward.
Returns
{Field} containing the string or null if a field meeting the given criteria is

not found.
Throws
{RangeError} If the position is out of range.

FieldList

- 44/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

FileTransfer
Use the FileTransfer object to list and transfer files between the host system and the client.

The Host Access for the Cloud file transfer API abstracts the file path conventions used by different host
file implementations. Follow URL or Linux file system path formats when formatting file paths used by
the API. For example, /root/directory/file .

It is important to observe any rules specific to host systems, such as allowable characters or name
lengths.

Browsers place significant security restrictions around the ability of Javascript to interact with client
file systems.

get(index) Obtains the field at the given index.
Parameters
{Number} index into the field list.

Returns
{Field} located at the specified index.

Throws
{RangeError} If the index is out of range.

isEmpty() Determines if the field list is empty.
Returns
{Boolean} True if the list is empty.

size() Indicates the number of fields in the list.
Returns
{Number} The field count.

toString() Creates a user-friendly description of the field list.
Returns
{String} A user readable rendition of the field list.

note

Method Description

FileTransfer

- 45/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

getHostFileList
ing(remotePath)
()

Request a listing of host files. If RemotePath is omitted, a file listing
for the current remote working directory is shown.
Parameters
{String} (optional) If specified will get file listing for specified

remote path. If not specified, will get file listing for current remote
working directory.
Returns
{Promise} Resolves to an array of HostFile objects contained at

remoteName. Rejected if the remote path cannot be read.

sendFile(localF
ile,
remoteName)

Sends specified file to the host.
Parameters
{File} Javascript file object pointing to local file to send.
{String} (optional) Fully-qualified remote file name as allowed by

remote system (Unix, Windows, MVS, VAX).
Returns
{Promise} fulfilled with a HostFile object representing the sent

file on success. Rejected if an error occurred sending the file.

getDownloadURL(
remoteName)

Constructs a link to download a file from a host system.
Parameters
{String} Fully-qualified remote file name as allowed by remote

system (Unix, Windows, MVS, VAX).
Returns
{URL} that can be used to retrieve the file from the Host Access for

the Cloud session server.

setTransferOpti
ons(options)

Set transfer options for current FileTransfer session. The transfer
options are applied to all future transfers until the session is either
exited or overridden by another call to setTransferOptions .
Parameters
{JSON} see FileTransferOptions for allowed names and values.

Returns
{Promise} fulfilled when the call completes. Rejected if an error

occurred setting the options.

FileTransfer

- 46/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

FileTransferFactory
A fileTransferFactory object is available to all macros. If file transfers are configured for the session, you
can use it to get a reference to a FileTransfer object.

FileTransferOptions
File transfer option object specification. Example:
`fileTransfer.setTransferOptions({ transferMethod : 'ascii' });```

cancel() Cancels the current transfer in progress.
Parameters
{String} Fully-qualified remote file name as allowed by remote

system (Unix, Windows, MVS, VAX).
Returns
{Promise} fulfilled when the call completes. Rejected if an error

occurred canceling the transfer.

Method Description

getIND$File(
)

Returns a FileTransfer object for interacting with the configured Ind$File
type for the session.
Returns
{FileTransfer}

Throws
{Error} If the session hasn’t been configured to allow IND$File transfers.

Method Description

FileTransferFactory

- 47/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

HostFile
A HostFile object represents a file on the host file system.

HostFileType
The HostFileType object defines constants for determining the type of a HostFile object.

transferMethod {String} Allowed values:

‘ascii’

‘binary’

•

•

Method Description

getName() Gets the file name.
Returns
{String} the file name.

getParent(
)

Gets the parent of this host file.
Returns
{String} the parent of this host file. This means different things on different

host types. For example on TSO this is the name of the catalog in which the file
resides.

getSize() The byte size of the file.
Returns
{Number} the size of the file in bytes.

getType() The type of file represented.
Returns

Value Description

FILE Represents a file on the host system.

DIR Represents a directory on the host system.

HostFile

- 48/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

OIA
Operator Information Area (OIA) interface. The OIA object returns values that are defined in the
OIAStatus object.

OIAStatus

Value Description

UNKNOWN Represents a host file of unknown origin.

Method Description

getStatus () Returns the set of enabled status flags. See StatusSet.
Returns
{StatusSet} Containing the status information.

getCommErrorCode(
)

Returns the current communication error code.
Returns
{Number} the current communication error code. If one doesn’t

exist, it will be 0.

getProgErrorCode(
)

Returns the current program error code.
Returns
{Number} the current program error code. If one doesn’t exist, it will

be 0.

OIAStatus Description

CONTROLLER_READY Controller ready

A_ONLINE Online with a non-SNA connection

MY_JOB Connected to a host application

OP_SYS Connected to a SSCP (SNA)

UNOWNED Not connected

TIME Keyboard inhibited

OIA

- 49/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Position

OIAStatus Description

SYS_LOCK System lock following AID key

COMM_CHECK Communication check

PROG_CHECK Program check

ELSEWHERE Keystroke invalid at cursor location

FN_MINUS Function not available

WHAT_KEY Keystroke invalid

MORE_THAN Too many characters entered in the field

SYM_MINUS Symbol entered not available

INPUT_ERROR Operator input error (5250 only)

DO_NOT_ENTER Do not enter

INSERT Cursor in insert mode

GR_CURSOR Cursor in graphics mode

COMM_ERR_REM Communications error reminder

MSG_WAITING Message waiting indicator

ENCRYPT Session is encrypted

NUM_FIELD Invalid character in numeric only field

Method Description

Position

- 50/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

PresentationSpace
Use the PresentationSpace object to interact with the terminal screen. Setting and getting the cursor
position, sending keys, and reading text are some of the interactions available.

Position(row,col) Creates a new Position instance.
Parameters
{Number} row screen row coordinate
{Number} col screen column coordinate

Method Description

getCursorPosi
tion()

Returns a Position instance representing the current cursor position. An
unconnected session has a cursor position of 0,0.
Returns
{Position} current cursor location

setCursorPosi
tion(position
)

Moves the host cursor to the specified row and column position. For
some hosts, such as VT, the host may constrain the movements of the
cursor.
Parameters
{Position} Position new cursor position.

Returns
None
Throws
{RangeError} If the position is not valid on the current screen.

isCursorVisib
le()

Tests that the cursor is currently visible in the presentation space. The
cursor is considered not visible if the session is not connected.
Returns
{Boolean} True if the cursor is visible. False if the cursor is not visible.

PresentationSpace

- 51/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

sendKeys(keys
)

Transmits a text string or ControlKey to the host at the current cursor
position in the presentation space. If the cursor is not in the desired
position, then use setCursorPosition function first.
The text string can contain any number of characters and ControlKey
objects.
For example: "myname" + ControlKey.TAB + "mypass" +
ControlKey.ENTER will transmit a user ID, tab to the next field,

transmit a password, and then transmit the Enter key.
If you need to transmit a square bracket, double the brackets ([[or]]).
Parameters
{String} keys text and/or control keys to transmit

getText(start,
length)

Returns a string representing a linear area of the presentation space. No
new line characters are inserted if row boundaries are encountered.
Parameters
{Position} start position from which to retrieve text
{Number} length the maximum number of characters to return. If the

length parameter causes the last position of the presentation space to be
exceeded then only those characters up to the last position will be
returned.
Returns
{String) representing a linear area of the presentation space which

may be empty if the session is not connected.
Throws
{RangeError} If the position or length are not valid on the current

screen.

getSize() Gets the dimensions of the screen as a Dimension object.
Returns
{Dimension} Containing the number of rows and columns. The screen

size is [row:0, col:0] if the session is not connected.

PresentationSpace

- 52/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Session
The session object is the main entry point for interacting with the host. It contains functions for
connecting, disconnecting, and obtaining the PresentationSpace object.

getDataCells(
start,
length)

Returns DataCell instances where the first member will be for the
position specified by the start parameter. The maximum number of
DataCell instances in the list is specified by the length parameter.
Parameters
{Position} start the first position on the host screen in which to

retrieve DataCell instances. See Position.
{Number} length of the maximum number of DataCell instance to be

retrieved. If not specified, returns DataCells from the start position to the
end of the screen.
Returns
{DataCell[]} Instances which may be empty if the session is not

connected. If position is not specified, returns all DataCells. If length is
not specified, returns DataCells from the start position to the end of the
screen.
Throws
{RangeError} if start or length are out of range.

getFields() Returns a list of the fields in the presentation space. If the host type does
not support fields or the current screen is not formatted then the return
value will always be an empty list. See FieldList.
Returns
{FieldList} of host defined fields in the presentation space.

Method Description

connect() Connects to the configured host. If needed, use , wait.forConnect()
to block macro execution until the session is connected.
Returns
None

disconnect() Disconnects from the configured host. If needed, use wait.forDisco
nnect() to block macro execution until the session is connected.

Returns
None

Session

- 53/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

SessionType
Constants used to identity the type of host to which the connection is being made. See Session object.

Available host types:

IBM_3270

IBM_5250

VT

ALC

UTS

T27

isConnected() Determines whether the connection to the host is connected.
Returns
{Boolean} true if host connection is established; false if not.

getPresentatio
nSpace()

Provides access to the PresentationSpace instance for this session.
Returns
{PresentationSpace} instance associated with this session.

getDeviceName(
)

Returns the device name for a connected session or an empty string if
the session is disconnected or doesn't have device name.
Returns
{String} The connected device name.

getType() Returns the type of host session. See SessionType.
Returns
{String} The type of host session.

setDeviceName(
)

Provides a means to modify the device name on a session instance.
Parameters
{String} name Device name to use when connecting to a host.

Throws
{Error} If an attempt is made to set the device name while the session

is connected.

getOIA() Provides access to the OIA instance for this session.
Returns
{OIA} Associated with this session

•

•

•

•

•

•

SessionType

- 54/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

StatusSet
You can use the StatusSet object to decode the OIA status. The StatusSet object returns values defined
in the OIAStatus object and when used together, you can get status information from the OIA.

Method Description

contains(statusFlag) Determines if the set contains the specified status flag from
OIAStatus constants.
Parameters
{Number} statusFlag status to check

Returns
{Boolean} True if the status flag is present in the set.

isEmpty() Determines if the status set is empty.
Returns
{Boolean} True if the set is empty.

size() Indicates the number of status flags in the set.
Returns
{Number} The status count

toArray() Converts the internal status set to an array.
Returns
{Object []} Array of status flags in the set.

toString() Converts the internal status set to a string.
Returns
{String} Space delimited names of status flags in the set.

forEach(callback,
thisArg)

Function to iterate over each element in the status set.
Parameters
{forEachCallback} Callback to perform the specific

operation. Called with the name of each status in the set.

StatusSet

- 55/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

User Interface
The user interface object provides functions for interacting with the user, prompting for and displaying
basic information. The UI object is made automatically available in your macro as the “ui” variable”.

Important: All UI functions require the ‘yield’ keyword in front of them. This allows the macro to
block execution until the conditions of the UI function have been met.
[parameter] denotes an optional parameter.

forEachCallback(stri
ng, thisArg)

A user-provided callback function where you provide the
behavior, to be used as the callback parameter to forEach.
Parameters
{String} String The name of a status in the status set.
{Object} thisArg Optional pointer to a context object.

note

Method Description

prompt(message,
[defaultAnswer],
[mask])

Prompts the user for information in the user interface.
Parameters
{String} message title to display to the user .

Default: blank String.
{String} defaultAnswer to use if user leaves it
blank . Default: blank String
{Boolean} mask indicates whether to hide the
prompt (as with a password)

Returns
{Promise} Fulfilled when the user closes the dialog

window. Returns the users input on “OK” or null on “Cancel”.

User Interface

- 56/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Wait
Use the wait object to wait for a particular session or screen state. For example, you can wait until the
cursor is found at a particular location or text is present at a certain location before continuing with the
macro execution.

Wait functions are often used in conjunction with asynchronous functions such as connect() and
sendKeys().

All functions take timeouts as an optional parameter and have a default time out value of 10 seconds
(10000ms).
Important: All wait functions require the ‘yield’ keyword in front of them. This allows the macro to
block execution until the conditions of the wait function are met.
[parameter] denotes an optional parameter.

message([message]) Display a message in the user interface.
Parameters
{String} message to display to the user.
Default: blank String.

Returns

{Promise} Fulfilled when the user closes the
message window.

note

Method Description

setDefaultTim
eout(timeout)

Sets the default timeout value for all functions.
Parameters
{Number} default timeout to use for all wait functions in milliseconds.

Returns
{None}

Throws
{RangeError} If the specified timeout is less than zero.

Wait

- 57/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

forConnect([t
imeout])

Waits for a connect request to complete.
Parameters
{Number} in milliseconds.

Returns
{Promise} Fulfilled if the session is already connected or when

connection occurs. Rejected if the wait times out.

forDisconnect(
[timeout])

Waits for a disconnect request to complete.
Parameters
{Number} timeout in milliseconds.

Returns
{Promise} Fulfilled if the session is already disconnected or when it

finally disconnects. Rejected if the wait times out.

forFixedTime([
timeout])

Waits unconditionally for fixed time. Time is in milliseconds (ms).
Parameters
{Number} timeout in milliseconds.

Returns
{Promise} Fulfilled after time elapses.

forScreenChan
ge([timeout])

Waits for the host screen to change. This function returns when a screen
update is detected. It makes no guarantees about the number of
subsequent updates that may arrive before the screen is complete.
Waiting repeatedly until the screen contents match some known
stopping criteria is advisable.)
Parameters
{Number} timeout in milliseconds.

Returns
{Promise} Resolved if the screen change. Rejected if the wait times

out.

forCursor(pos
ition,
[timeout])

Waits for the cursor to arrive at the specified position.
Parameters
{Position} The position specifying the row and column

Returns
{Promise} Fulfilled if the cursor is already located or when it is finally

located. Rejected if the wait times out.

Wait

- 58/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

forText(text,
position,
[timeout])

Wait for text located at a specific position on the screen
Parameters
{String} text to expect
{Position} position specifying the row and column
{Number} timeout in milliseconds

Returns
{Promise} Fulfilled if the text is already at the specified position or

whenever it is located. Rejected if the wait times out.
Throws
{RangeError} if the position is not valid.

forHostPrompt(
text, column,
[timeout])

Waits for a command prompt located at a particular column on the
screen.
Parameters
{String} text prompt to expect
{Number} column where cursor is expected
{Number} timeout in milliseconds.

Returns
{Promise} Fulfilled if the conditions are already met or when the

conditions are finally met. Rejected if the wait times out.
Throws
{RangeError} if the column is out of range.

Wait

- 59/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Sample Macros
To help you create successful macros that take advantage of all the capabilities of the Macro Editor,
these samples are available as a starting point.

Basic Host Interaction
This sample illustrates basic host interaction, including:

Sending data to the host

Waiting for screens to display

Using the yield keyword to wait for asynchronous functions

Reading text from the screen

Displaying basic information to the user

Handling error basics

All macros have the following objects available by default:

session - main entry point for access to the host. Can connect, disconnect and provides access to the
PresentationSpace.

The PresentationSpace object obtained from the session represents the screen and provides many
common capabilities, such as getting and setting the cursor location, sending data to the host, and
reading from the screen.

forHostSettle(
[settleTime],
[timeout])

NOTE: wait.forHostSettle should only be used when other more
targeted wait functions are insufficient.
Monitors incoming screen data and resolves settleTime ms after the last
update and the keyboard is unlocked. This function is useful when data
arrives in multiple packets and you want to be sure the whole screen has
been received before carrying on.
Parameters
{Number} time to wait after the last update to make sure more data

doesn’t arrive unexpectedly. The default is 200 milliseconds.
{Number} timeout in milliseconds.

Returns
{Promise} Fulfilled when the settle time has elapsed after receipt of

the last screen update and the keyboard is unlocked.

•

•

•

•

•

•

1. 1.

Sample Macros

- 60/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

wait - provides a simple way to wait for various host states before continuing to send more data or
read from the screen.

UI - provides basic user interface capabilities. Display data to the user or prompt them for
information.

2. 2.

3. 3.

Basic Host Interaction

- 61/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

// Create a new macro function
var macro = createMacro(function*(){
'use strict';

// All macros have the following objects available by default:
// 1. session - Main entry point for access to the host. Can connect,
disconnect and provides access to the PresentationSpace.
// The PresentationSpace object obtained from the session represents the
screen and provides many common capabilities such as getting and setting the
// cursor location, sending data to the host and reading from the screen.
// 2. wait - Provides a simple way to wait for various host states before
continuing to send more data or read from the screen.
// 3. ui - Provides basic User Interaction capabilities. Display data to the
user or prompt them for information.

// Declare a variable for reading and displaying some screen data.
// As a best practice all variables should be declared near the top of a
function.
var numberOfAccounts = 0;

// Start by obtaining the PresentationSpace object, which provides many
common screen operations.
var ps = session.getPresentationSpace();

try {
 // Can set and get the cursor location
 ps.setCursorPosition(new Position(24, 2));

 // Use the sendKeys function to send characters to the host
 ps.sendKeys('cics');

 // SendKeys is also used to send host keys such as PA and PF keys.
 // See "Control Keys" in the documentation for all available options
 ps.sendKeys(ControlKey.ENTER);

 // Wait for the cursor to be at the correct position.
 // The wait object provides various functions for waiting for certain
states to occur
 // so that you can proceed to either send more keys or read data from the
screen.
 yield wait.forCursor(new Position(24, 2));

 // You can mix characters and control keys in one sendKeys call.
 ps.sendKeys('data' + ControlKey.TAB + ControlKey.TAB + 'more data' +
ControlKey.ENTER);

Basic Host Interaction

- 62/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

 // The "yield" keyword must be used in front of all "wait" and "ui"
function calls.
 // It tells the browser to pause execution of the macro until the
 // (asynchronous) wait function returns. Consult the documentation for
which functions
 // require the yield keyword.
 yield wait.forCursor(new Position(10, 26));
 ps.sendKeys('accounts' + ControlKey.ENTER);

 // Can also wait for text to appear at certain areas on the screen
 yield wait.forText('ACCOUNTS', new Position(3, 36)) ;
 ps.sendKeys('1' + ControlKey.ENTER);

 // All wait functions will timeout if the criteria is not met within a
time limit.
 // Can increase timeouts with an optional parameter in the wait functions
(in milliseconds)
 // All timeouts are specified in milliseconds and the default value is 10
seconds (10000ms).
 yield wait.forCursor(new Position(1, 1), 15000);
 ps.sendKeys('A' + ControlKey.ENTER);

 // PS provides the getText function for reading text from the screen
 numberOfAccounts = ps.getText(new Position(12, 3), 5);

 // Use the ui object to display some data from the screen
 ui.message('Number of active accounts: ' + numberOfAccounts);

 // The try / catch allows all errors to be caught and reported in a
central location
} catch (error) {
 // Again we use the ui object to display a message that an error occurred
 yield ui.message('Error: ' + error.message);
}
//End Generated Macro
});

// Run the macro and return the results to the Macro Runner
// The return statement is required as the application leverages
// this to know if the macro succeeded and when it is finished
return macro();

Basic Host Interaction

- 63/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

User Interaction
This sample illustrates how to use the provided API methods to prompt the user for input or alert them
with a message.

User Interaction

- 64/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

var macro = createMacro(function*(){
 'use strict';

 // The "ui" object provides functions for prompting the user for
information and displaying information

 // Declare variables for later use
 var username;
 var password;
 var flavor;
 var scoops;

 //Begin Generated Macro
 var ps = session.getPresentationSpace();

 try {
 // Prompt the user to enter their name and store it in a variable.
 // Note that 'yield' keyword is needed to block execution while waiting
for the user input.
 username = yield ui.prompt('Please enter your username');

 // Prompt the user to enter a value with a default provided to them.
 flavor = yield ui.prompt('What is your favorite flavor of ice cream?',
'Chocolate');

 // Prompt the user to enter private information by using the 'mask'
option and the input field will be masked as they type.
 // If a parameter is not used, 'null' can be used to specify that it
isn't to be used.
 // Here we illustrate that by specifying that we don't need to show a
default value .
 password = yield ui.prompt('Please enter your password', null,
true);

 // The prompt function returns null if the user clicks the 'Cancel'
button instead of the 'OK' button.
 // One way to handle that case is to wrap the call in a try/catch block.
 scoops = yield ui.prompt('How many scoops would you like?');
 if (scoops === null) {
 // This will exit the macro.
 return;
 // Alternatively could throw an Error and have it be caught in the
"catch" below
 }
 // Use the collected values to order our ice cream
 ps.sendKeys(username + ControlKey.TAB + password + ControlKey.ENTER);

User Interaction

- 65/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Paging Through Data
This sample illustrates how to page through a variable number of screens and process the data on each
screen.

 yield wait.forCursor(new Position(5, 1));
 ps.sendKeys(flavor + ControlKey.TAB + scoops + ControlKey.ENTER);

 // Display a message to the user. Using the 'yield' keyword in front of
the call will block
 // further execution of the macro until the user clicks the 'OK' button.
 yield ui.message('Order successful. Enjoy your ' + scoops + ' scoops of
' + flavor + ' ice cream ' + username + '!');
 } catch (error) {
 // Here we use the ui object to display a message that an error occurred
 yield ui.message(error.message);
 }
 //End Generated Macro

});

return macro();

Paging Through Data

- 66/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

 // Create a new macro function.
var macro = createMacro(function*(){
 'use strict';

 // Create variable(s) for later use
 var password;
 var accountNumber;
 var transactionCount = 0;
 var row = 0;

 // Obtain a reference to the PresentationSpace object.
 var ps = session.getPresentationSpace();

 try {
 // Enter Username and Password to log on to the application.
 yield wait.forCursor(new Position(19, 48));
 ps.sendKeys('bjones' + ControlKey.TAB);

 yield wait.forCursor(new Position(20, 48));
 password = yield ui.prompt('Password:', null, true);
 ps.sendKeys(password);
 ps.sendKeys(ControlKey.ENTER);

 // Enter an application command.
 yield wait.forCursor(new Position(20, 38));
 ps.sendKeys('4');
 ps.sendKeys(ControlKey.ENTER);

 // Going to list transactions for an account.
 yield wait.forCursor(new Position(13, 25));
 ps.sendKeys('2');
 // Input an account number. Hard coded here for simplicity.
 yield wait.forCursor(new Position(15, 25));
 accountNumber = yield ui.prompt('Account Number:', '167439459');
 ps.sendKeys(accountNumber);
 ps.sendKeys(ControlKey.ENTER);

 // Wait until on account profile screen
 yield wait.forText('ACCOUNT PROFILE', new Position(3, 33));

 // Search for text that indicates the last page of record has been
reached
 while (ps.getText(new Position(22, 12), 9) !== 'LAST PAGE') {

 // While the last page of record has not been reached, go to the next
page of records.

Paging Through Data

- 67/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

 ps.sendKeys(ControlKey.PF2);
 yield wait.forCursor(new Position(1, 1));

 // If the cursor position does not change between record screens, and
there is no text
 // on the screen you can check to confirm a screen is updated, you may
wait for a
 // fixed time period after an aid key is sent for the screen to settle.
 // For example:
 // yield wait.forFixedTime(1000);

 // For each of the rows, increment the count variable if it contains
data.
 for (row = 5; row <= 21; row++) {

 // There are 2 columns on the screen. Check data on column 1.
 // In this example we know that if there is a space at a particular
 // position then there is a transaction.
 if (ps.getText(new Position(row, 8), 1) !== ' ') {
 transactionCount++;
 }
 // Check data on column 2.
 if (ps.getText(new Position(row, 49), 1) !== ' ') {
 transactionCount++;
 }
 }
 }

 // After going through all record pages, display the number of records in
a message box.
 yield ui.message('There are ' + transactionCount + ' records found for
account ' + accountNumber + '.');

 // Log out of the application
 ps.sendKeys(ControlKey.PF13);
 ps.sendKeys(ControlKey.PF12);

 // The try / catch allows all errors to be caught and reported in a
central location
 } catch (error) {
 // Here we use the ui object to display a message that an error occurred
 yield ui.message(error.message);
 }
});

// Here we run the macro and return the results to the Macro Runner
// The return statement is required as the application leverages

Paging Through Data

- 68/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Invoking a Web Service
This sample illustrates how to make an AJAX / REST call directly from a macro to a web service. You can
integrate data from your host application into the web service call or from the web service into your
host application.

In this example, we are calling the Verastream Host Integrator (VHI) CICSAcctsDemo REST service.
However, you can easily adapt the code to call any web service. You are not limited to VHI.

In the example, the call goes through a proxy configured in the session server (shown below) to avoid a
“Same Origin Policy” complication. If you are using a web service that supports Cross-origin Resource
Sharing (CORS) and are using a modern browser, the proxy is unnecessary.

Since the jQuery library is available in macros, you may use the $.post() function directly to invoke REST
services.

This example also demonstrates how to wrap a jQuery REST call in a new Promise. The promise
returned from the custom function below allows "yield" to be used in the main macro code. This allows
the main macro execution to wait until the service call is complete before continuing.

// this to know if the macro succeeded
return macro();

Invoking a Web Service

- 69/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

 var macro = createMacro(function*() {
 'use strict';

 // Create a few variables for later user
 var username;
 var password;
 var accountNumber;
 var accountDetails;

 // Create a function that will make an AJAX / REST call to a VHI Web
Service.
 // Could be adjusted to call any web service, not just VHI.
 // If not using CORS, the request will likely need to pass through a
 // proxy on the session server. See sample notes for more information.
 /**
 * Hand-coded helper function to encapsulate AJAX / REST parameters, invoke
the
 * REST service and return the results inside a Promise.
 * @param {Number} acctNum to send to the REST query.
 * @param {String} username to access the REST service.
 * @param {String} password to access the REST service.
 * @return {Promise} containing $.post() results that are compatible with
yield.
 */
 var getAccountDetails = function (acctNum, username, password) {
 var url = "proxy1/model/CICSAcctsDemo/GetAccountDetail";
 var args = {"filters": {"AcctNum": acctNum}, "envVars": {"Username":
username, "Password": password}};

 // Wrap a jQuery AJAX / HTTP POST call in a new Promise.
 // The promise being returned here allows the macro to yield / wait
 // for its completion.
 return Promise.resolve($.post(url, JSON.stringify(args)))
 .catch(function (error) {
 // Map errors that happen in the jQuery call to our Promise.
 throw new Error('REST API Error: ' + error.statusText);
 });
 };

 // Begin Generated Macro
 var ps = session.getPresentationSpace();
 try {
 // Could interact with the host here, log into a host app, etc...
 // Gather username and password
 username = yield ui.prompt('Username:');
 password = yield ui.prompt('Password:', null, true);

Invoking a Web Service

- 70/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Cross Origin Scripting Proxy Support
If you have web services that do not support CORS, any AJAX/REST calls will fail if they attempt to access
a server other than the one where the Host Access for the Cloud application originated. This is a
browser security feature.

The Host Access for the Cloud server provides a way to explicitly proxy to trusted remote servers.

Open ..\<install_dir>\sessionserver\microservice\sessionserver\service.yml for editing.

In the env section add:

 accountNumber = yield ui.prompt('Account Number:');
 if (!username || !password || !accountNumber) {
 throw new Error('Username or password not specified');
 }

 // Invoke external REST service, and yields / waits for the call to
complete.
 accountDetails = yield getAccountDetails(accountNumber, username,
password);

 // We now have the data from our external service.
 // Can integrate the data into our local host app or simply display it to
the user.
 // For this sample we simply display the resulting account details.
 if (accountDetails.result && accountDetails.result.length > 0) {
 yield ui.message(accountDetails.result[0].FirstName + ' $' +
accountDetails.result[0].AcctBalance);
 } else {
 yield ui.message('No records found for account: ' + accountNumber);
 }
 } catch (error) {
 // If an error occurred during the AJAX / REST call
 // or username / password gathering we will end up here.
 yield ui.message(error.message);
 }
});

// Run our macro
return macro();

• •

• •

Invoking a Web Service

- 71/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Where proxy-path refers to the desired url-mapping and proxy-to-address refers to the URL where
the call will be proxied.

In this example:

Calls made to <server:port>/proxy1 will be proxied to http://remote-vhi-server:9680/vhi-rs/

Multiple proxy mappings can be specified using a comma to separate the individual proxy
mappings

Keep in mind that even when a REST server supports CORS headers, some older browsers may
not, so this example may still be relevant.

Your service.yml file may be replaced whenever you redeploy Host Access for the Cloud. Always back
up your files.

Working with Data Cells and Attributes
This macro illustrates how to use DataCells and AttributeSet to inspect a given row/column on the
screen for text and attributes. In this sample you can see:

How to get a collection of DataCells for a given position and length.

How to iterate through DataCells to build up a text string

How, for comparison, you can also do a similar thing using getText().

And finally, how to work with attributes, get a string listing, or determine whether specific ones
are set at a given screen location.

name: zfe.proxy.mappings
value: proxy-path=proxy-to-address

• •

name: zfe.proxy.mappings
value: proxy1=http://remote-vhi-server:9680/vhi-rs/

• •

• •

hint

• •

• •

• •

• •

Working with Data Cells and Attributes

- 72/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

var macro = createMacro(function*() {
 'use strict';

 // Obtain the PresentationSpace for interacting with the host
 var ps = session.getPresentationSpace();

 // Declare variables for later use
 var cells;
 var text;
 var attrs;

 // Set the default timeout for "wait" functions
 wait.setDefaultTimeout(10000);

 // Sample macro for working with DataCells and Attributes
 try {
 yield wait.forCursor(new Position(24, 2));

 // Get DataCells from the presentation space.
 // Row 19, col 3 is the prompt, 35 characters long
 // "Choose from the following commands:"
 cells = ps.getDataCells({row:19, col:3}, 35);
 text = '';

 // You can display text using getText
 yield ui.message("Screen text: " + ps.getText({row:19, col:3}, 35));

 // Or you can assemble the text from the DataCells at each position
 for(var index = 0; index < cells.length; index++) {
 text = text.concat(cells[index].getChar());
 }
 // And display the text
 yield ui.message("Cells text: " + text);

 // Get the attributes for the first DataCell (cell[0])
 attrs = cells[0].getAttributes();

 // Display whether we have any attributes on the data cell
 yield ui.message("Attribute set is empty: " + attrs.isEmpty());

 // Display how many attributes are set
 yield ui.message("Number of attributes: " + attrs.size());

 // Display which attributes are set
 yield ui.message("Attributes: " + attrs.toString());

Working with Data Cells and Attributes

- 73/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Using Fields and Field Lists
This macro sample illustrates how to use common functions to interact with the fields in the Macro API.
For example, how to get field text, view field information, and use field.setText as an alternative to
sendKeys to interact with the host.

Due to browser considerations, ui.message collapses strings of spaces down to a single space. The
spaces are preserved in the actual JavaScript.

 // Now display whether the high intensity attribute is set
 yield ui.message("Is high intensity: " +
 attrs.contains(Attribute.HIGH_INTENSITY));

 // Now display whether the underline attribute is set
 yield ui.message("Is underline: " +
 attrs.contains(Attribute.UNDERLINE));

 // Now display whether alphanumeric, intensified and pen-detectable
attributes are set
 yield ui.message("Is alphanumeric, intensified and pen-detectable: "
+
 attrs.containsAll([Attribute.ALPHA_NUMERIC,
Attribute.HIGH_INTENSITY, Attribute.PEN_DETECTABLE]));

 // Now display whether underline, intensified and pen-detectable
attributes are set
 yield ui.message("Is underline, intensified and pen-detectable: " +
 attrs.containsAll([Attribute.UNDERLINE,
Attribute.HIGH_INTENSITY, Attribute.PEN_DETECTABLE]));
 } catch (error) {
 yield ui.message(error);
 }
 //End Generated Macro
});

// Run the macro
return macro();

note

Using Fields and Field Lists

- 74/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

var macro = createMacro(function*() {
 'use strict';

 // Obtain the PresentationSpace for interacting with the host
 var ps = session.getPresentationSpace();

 // Declare variables for later use
 var fields;
 var field;
 var searchString = 'z/VM';

 // Set the default timeout for "wait" functions
 wait.setDefaultTimeout(10000);

 // Sample macro for working with FieldList and Fields
 try {
 yield wait.forCursor(new Position(24, 2));

 // Get the field list.
 fields = ps.getFields();

 // Run through the entire list of fields and display the field info.
 for(var index = 0; index < fields.size(); index++) {
 field = fields.get(index);

 yield ui.message("Field " + index + " info: " +
field.toString());
 }

 yield ui.message("Now, find a field containing the text '" +
searchString + "'");
 field = fields.findField(new Position(1, 1),
searchString);

 if(field !== null) {
 yield ui.message("Found field info: " + field.toString());
 yield ui.message("Found field foreground is green? " +
(Color.GREEN === field.getForegroundColor()));
 yield ui.message("Found field background is default? " +
(Color.BLANK_UNSPECIFIED === field.getBackgroundColor()));
 }

 // Now, find command field and modify it.
 field = fields.findField(new Position(23, 80));
 if(field !== null) {
 field.setText("cics");

Using Fields and Field Lists

- 75/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

 }

 yield ui.message("Click to send 'cics' to host.");
 ps.sendKeys(ControlKey.ENTER);

 // Wait for new screen; get new fields.
 yield wait.forCursor(new Position(10, 26));
 fields = ps.getFields();

 // Find user field and set it.
 field = fields.findField(new Position(10, 24));
 if(field !== null) {
 field.setText("myusername");
 }

 // Find password field and set it.
 field = fields.findField(new Position(11, 24));
 if(field !== null) {
 field.setText("mypassword");
 }

 yield ui.message("Click to send login to host.");
 ps.sendKeys(ControlKey.ENTER);

 // Wait for new screen; get new fields.
 yield wait.forCursor(new Position(1, 1));
 fields = ps.getFields();

 // Find command field and set logoff command.
 field = fields.findField(new Position(24, 45));
 if(field !== null) {
 field.setText("cesf logoff");
 }

 yield ui.message("Click to send logoff to host.");
 ps.sendKeys(ControlKey.ENTER);

 } catch (error) {
 yield ui.message(error);
 }
 //End Generated Macro
});

// Run the macro
return macro();

Using Fields and Field Lists

- 76/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Automatic Sign-On Macro for Mainframes
In this example the Autosignon object is used to create a macro that uses the credentials associated
with a user to obtain a pass ticket from the Digital Certificate Access Server (DCAS).

Automatic Sign-On Macro for Mainframes

- 77/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

var macro = createMacro(function*() {
 'use strict';

 // Obtain the PresentationSpace for interacting with the host
 var ps = session.getPresentationSpace();

 // Variable for login pass ticket
 var passTicket;

 // Login application ID
 var appId = 'CICSV41A';

 // Set the default timeout for "wait" functions
 wait.setDefaultTimeout(10000);

 // Begin Generated Macro
 try {
 yield wait.forCursor(new Position(24, 2));

 // Obtain a pass ticket from DCAS.
 passTicket = yield autoSignon.getPassTicket(appId);

 ps.sendKeys('cics');
 ps.sendKeys(ControlKey.ENTER);

 yield wait.forCursor(new Position(10, 26));

 // Replace generated username with sendUserName(passTicket) ...
 yield autoSignon.sendUserName(passTicket);

 // ps.sendKeys('bvtst01' + ControlKey.TAB + ControlKey.TAB);
 ps.sendKeys(ControlKey.TAB + ControlKey.TAB);

 yield wait.forCursor(new Position(11, 26));

 // Replace generated password with sendPassword(passTicket) ...
 yield autoSignon.sendPassword(passTicket);

 // var userInput3 = yield ui.prompt('Password:', '', true);
 // if (userInput3 === null) {
 // throw new Error('Password not provided');
 // }
 // ps.sendKeys(userInput3);
 ps.sendKeys(ControlKey.ENTER);

 yield wait.forCursor(new Position(1, 1));

Automatic Sign-On Macro for Mainframes

- 78/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Using File Transfer (IND$File)
This series of sample macros demonstrate how to use the File Transfer API to retrieve a list of files,
download a file, and upload a file to a 3270 host.

You must be logged in and at a ready prompt before running these macros.

List files

Download file

Upload file

List files
This macro demonstrates how to use the File Transfer API to retrieve a list of files on a 3270 host using
IND$File transfer. The IND$File transfer object is retrieved from the file transfer factory and then used to
obtain an array of HostFile objects from either TSO or CMS.

 yield ui.message('Logged in. Log me off.');
 ps.sendKeys('cesf logoff');
 ps.sendKeys(ControlKey.ENTER);
 } catch (error) {
 yield ui.message(error);
 }
 //End Generated Macro
});

// Run the macro
return macro();

note

•

•

•

Using File Transfer (IND$File)

- 79/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

Download file
This macro shows how to use the File Transfer API to download a file from a 3270 host using IND$File
transfer. The IND$File transfer object is retrieved from the file transfer factory. In this example, the
transfer method is set to ASCII to demonstrate use of the setTransferOptions function.

The sample macro downloads the first file returned from a call to getHostFileListing by creating a
download URI with a call to the getDownloadUrl function. The macro can be used in either a CMS or
TSO environment but the choice must be specified on the first line or the code modified slightly for the
intended system.

var macro = createMacro(function*() {
 'use strict';

 try {
 var fileTransfer = fileTransferFactory.getInd$File();
 var hostFiles = yield fileTransfer.getHostFileListing();

 yield ui.message('Found ' + hostFiles.length + ' files');
 if (hostFiles.length > 0) {
 var firstFile = hostFiles[0];
 var msg1 = 'The catalog name is ' + firstFile.getParent() + '.
';
 var msg2 = 'The first file is ' + firstFile.getName();
 yield ui.message(msg1 + msg2);
 }
 } catch (error) {
 yield ui.message(error);
 }
});

// Run the macro
return macro();

Using File Transfer (IND$File)

- 80/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

var hostEnvironment = 'CMS'; // 'TSO'
// Construct file path, ie catalog/file.name or catalog/partition/file
function getPath (fileNode) {
 var prefix = fileNode.getParent() ? fileNode.getParent() + '/' : '';
 return prefix + fileNode.getName();
}

var macro = createMacro(function*() {
 'use strict';

 try {
 var fileTransfer = fileTransferFactory.getInd$File();

 // The transferMethod options are 'binary' and 'ascii'
 fileTransfer.setTransferOptions({transferMethod: 'ascii'});

 // This demo retrieves the first file returned in the listing
 var hostFiles = yield fileTransfer.getHostFileListing();
 var firstHostFile = hostFiles[0];

 if (hostEnvironment === 'CMS') {
 yield wait.forText('Ready', new Position(1,1), 5000);
 }

 // Download
 // If you already know the path of the file you want, just pass that
to getDownloadURL()
 var downloadUrl =
fileTransfer.getDownloadURL(getPath(firstHostFile));

 // This changes the browser location. You may experience different
results on different browsers
 window.location = downloadUrl;

 // If you want to read the file contents into a variable instead of
downloading
 // it, you can use jQuery
 // var fileContents = yield $.get(downloadUrl);

 } catch (error) {
 yield ui.message(error);
 }
});

// Run the macro
return macro();

Using File Transfer (IND$File)

- 81/81 - © 2015 - 2024 Rocket Software, Inc. or its affiliates.

	Host Access for the Cloud Web Client
	3.1.1

	Welcome to Host Access for the Cloud Web Client
	Connection Settings
	Connection Settings
	Common Connection Settings
	Using Terminal ID Manager
	Terminal ID Manager Criteria
	Test Terminal ID Manager Criteria

	3270 and 5250 connection settings
	VT connection settings
	VT session configuration options

	UTS connection settings
	UTS INT1 session configuration options

	T27 connection settings
	T27 Connection Settings

	ALC connection settings
	ALC Connection Settings

	Working with Sessions
	Using Quick Keys
	Editing the Screen
	Logging Out

	Macros
	Creating Macros
	Working with Macros
	Record
	Edit
	Run
	Stop
	Delete
	View

	Debugging Macros
	Using the Macro API

	Macro API Objects
	Attribute
	AttributeSet
	AutoSignOn
	Color
	ControlKey
	IBM 3270
	IBM 5250
	VT
	UTS

	DataCell
	Dimension
	Field
	FieldList
	FileTransfer
	FileTransferFactory
	FileTransferOptions
	HostFile
	HostFileType
	OIA
	OIAStatus
	Position
	PresentationSpace
	Session
	SessionType
	StatusSet
	User Interface
	Wait

	Sample Macros
	Basic Host Interaction
	User Interaction
	Paging Through Data
	Invoking a Web Service
	Cross Origin Scripting Proxy Support

	Working with Data Cells and Attributes
	Using Fields and Field Lists
	Automatic Sign-On Macro for Mainframes
	Using File Transfer (IND$File)
	List files
	Download file

