
OpenText™ Fortify Static Code Analyzer
Software Version: 24.4.0

User Guide

Document Release Date: October 2024

Software Release Date: October 2024

Legal Notices
Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1

Copyright Notice
Copyright 2003 - 2024 Open Text.

The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are as may be set forth
in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Open Text shall not be liable for technical or editorial errors or omissions contained herein.
The information contained herein is subject to change without notice.

Trademark Notices
“OpenText” and other Open Text trademarks and service marks are the property of Open Text or its affiliates. All other
trademarks or service marks are the property of their respective owners.

Documentation Updates
The title page of this document contains the following identifying information:

 l Software Version number

 l Document Release Date, which changes each time the document is updated

 l Software Release Date, which indicates the release date of this version of the software

This document was produced for OpenText™ Fortify Static Code Analyzer CE 24.4 on October 16, 2024. To check for recent
updates or to verify that you are using the most recent edition of a document, go to:

https://www.microfocus.com/support/documentation

User Guide

Page 2 of 228OpenText™ Fortify Static Code Analyzer (24.4.0)

https://www.microfocus.com/support/documentation

Contents

Preface 13

Contacting Customer Support 13

For More Information 13

About the Documentation Set 13

Fortify Product Feature Videos 13

Change log 14

Chapter 1: Introduction 17

Fortify Static Code Analyzer 17

About the analyzers 18

Licensing 19

Renewing an expired license 20

Fortify Software Security Content 20

Fortify ScanCentral SAST 21

Fortify Static Code Analyzer applications and tools 21

Sample projects 22

Related Documents 22

All Products 23

Fortify ScanCentral SAST 23

Fortify Software Security Center 24

Fortify Static Code Analyzer 24

Fortify Static Code Analyzer Applications and Tools 25

Chapter 2: Installing Fortify Static Code Analyzer 27

About installing Fortify Static Code Analyzer 27

Installing Fortify Static Code Analyzer 28

Installing Fortify Static Code Analyzer silently 30

Installing Fortify Static Code Analyzer in text-based mode on non-Windows platforms 32

Manually installing Fortify Software Security Content 32

Using Docker to install and run Fortify Static Code Analyzer 33

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 3 of 228

Creating a Dockerfile to install Fortify Static Code Analyzer 33

Running the container 34

Example Docker run commands for translation and scan 35

About upgrading Fortify Static Code Analyzer 35

About uninstalling Fortify Static Code Analyzer 36

Uninstalling Fortify Static Code Analyzer 36

Uninstalling Fortify Static Code Analyzer silently 37

Uninstalling Fortify Static Code Analyzer in text-based mode on non-Windows platforms 37

Post-installation tasks 37

Running the post-install tool 37

Migrating properties files 38

Specifying a locale 38

Configuring Fortify Security Content updates 39

Configuring the connection to Fortify Software Security Center 39

Removing proxy server settings 40

Adding trusted certificates 40

Chapter 3: Analysis process overview 42

Analysis process 42

Parallel processing 43

Translation phase 43

Special considerations for the translation phase 44

Mobile build sessions 44

Mobile build session version compatibility 45

Creating a mobile build session 45

Importing a mobile build session 45

Analysis phase 46

Applying a scan policy to the analysis 46

Regular expression analysis 47

Higher-Order Analysis 48

Translation and analysis phase verification 48

Chapter 4: Translating Java code 50

Java translation command-line syntax 50

Java command-line options 51

Java command-line examples 53

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 4 of 228

Handling Java warnings 54

Java translation warnings 54

Translating Jakarta EE (Java EE) applications 55

Translating Java files 55

Translating JSP projects, configuration files, and deployment descriptors 55

Jakarta EE (Java EE) translation warnings 55

Translating Java bytecode 56

Troubleshooting JSP translation and analysis issues 57

Unable to translate some JSPs 57

Increased issues count in JSP-related categories 57

Chapter 5: Translating Kotlin code 58

Kotlin command-line syntax 58

Kotlin command-line options 59

Kotlin command-line examples 60

Kotlin and Java translation interoperability 60

Translating Kotlin scripts 61

Chapter 6: Translating Visual Studio projects 62

Visual Studio Project translation prerequisites 62

Visual Studio Project command-line syntax 62

Handling special cases for translating Visual Studio projects 64

Running translation from a script 64

Translating plain .NET and ASP.NET projects 64

Translating C/C++ and Xamarin projects 64

Translating projects with settings containing spaces 65

Translating a single project from a Visual Studio solution 65

Analyzing projects that build multiple executable files 65

Alternative ways to translate Visual Studio projects 66

Alternative translation options for Visual Studio solutions 66

Translating without explicitly running Fortify Static Code Analyzer 66

Chapter 7: Translating C and C++ code 68

C and C++ Code translation prerequisites 68

C and C++ command-line syntax 68

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 5 of 228

Scanning pre-processed C and C++ code 69

C/C++ Precompiled Header Files 70

Chapter 8: Translating JavaScript and TypeScript code 71

Translating pure JavaScript projects 71

Excluding dependencies 72

Managing issue detection in NPM dependencies 72

Examples of excluding NPM dependencies 73

Translating JavaScript projects with HTML files 75

Including external JavaScript or HTML in the translation 75

Chapter 9: Translating Python code 77

Python translation command-line syntax 77

Python command-line options 77

Python command-line examples 79

Translating Python in a virtual environment 79

Python virtual environment example 79

Conda environment example 79

Including imported modules and packages 80

Including namespace packages 80

Translating Django and Flask 81

Chapter 10: Translating code for mobile platforms 82

Translating Apple iOS projects 82

iOS project translation prerequisites 82

iOS code analysis command-line syntax 83

Translating Android projects 83

Android project translation prerequisites 84

Android code analysis command-line syntax 84

Filtering issues detected in Android layout files 84

Chapter 11: Translating Go code 85

Go command-line syntax 85

Go command-line options 85

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 6 of 228

Including custom Go build tags 87

Resolving dependencies 87

Chapter 12: Translating Dart and Flutter code 89

Dart and Flutter translation prerequisites 89

Dart and Flutter command-line syntax 90

Dart and Flutter command-line examples 90

Chapter 13: Translating Ruby code 91

Ruby command-line syntax 91

Ruby command-line options 91

Adding libraries 92

Adding gem paths 92

Chapter 14: Translating COBOL code 93

Preparing COBOL source and copybook files for translation 94

COBOL command-line syntax 94

Translating COBOL source files without file extensions 95

Translating COBOL source files with arbitrary file extensions 95

COBOL command-line options 95

Using Legacy COBOL translation 96

Legacy COBOL translation command-line options 96

Chapter 15: Translating Salesforce Apex and Visualforce code 98

Apex and Visualforce translation prerequisites 98

Apex and Visualforce command-line syntax 99

Chapter 16: Translating other languages and configurations 100

Analyzing Solidity code 100

Importing dependencies 100

Managing compiler versions 101

Translating PHP code 101

PHP command-line options 102

Translating ABAP code 102

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 7 of 228

INCLUDE processing 103

Importing the transport request 103

Adding Fortify Static Code Analyzer to your Favorites list 104

Running the Fortify ABAP Extractor 104

Uninstalling the Fortify ABAP Extractor 109

Translating Flex and ActionScript 109

Flex and ActionScript command-line options 109

ActionScript command-line examples 110

Handling resolution warnings 111

ActionScript warnings 111

Translating ColdFusion code 112

ColdFusion command-line syntax 112

ColdFusion (CFML) command-line options 113

Analyzing SQL 113

PL/SQL command-line example 113

T-SQL command-line example 114

Translating Scala code 114

Translating Infrastructure as Code (IaC) 115

ARM translation command-line examples 115

Bicep translation command-line examples 115

AWS CloudFormation translation command-line examples 116

HCL translation command-line examples 116

Translating JSON 116

Translating YAML 117

Translating Dockerfiles 117

Translating ASP/VBScript virtual roots 117

Classic ASP command-line example 119

VBScript command-line example 120

Chapter 17: Integrating the analysis into a build 121

Build integration 121

Modifying a build script to start the analysis 122

Integrating with Ant 123

Integrating with Bazel 123

Bazel build integration examples 124

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 8 of 228

Integrating with CMake 125

Integrating with Gradle 125

Using Gradle integration 125

Gradle integration examples 126

Troubleshooting Gradle integration 126

Using the Gradle plugin 127

Working with Java or Kotlin projects that have subprojects 129

Integrating with Maven 130

Installing and updating the Fortify Maven Plugin 130

Testing the Fortify Maven Plugin installation 131

Using the Fortify Maven Plugin 132

Chapter 18: Command-line interface 134

Translation options 134

Analysis options 136

Output options 139

Other options 142

Directives 144

LIM license directives 145

Specifying files and directories 146

Chapter 19: Command-line tools 148

About updating Fortify Software Security Content 149

Updating Fortify Software Security Content 149

fortifyupdate command-line options 150

Checking the scan status with SCAState 152

SCAState command-line options 152

Chapter 20: Improving performance 155

Antivirus software 155

Hardware considerations 156

Sample scans 157

Tuning options 158

Quick scan 159

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 9 of 228

Limiters 159

Using quick scan and full scan 159

Configuring scan speed with speed dial 160

Breaking down codebases 161

Limiting analyzers and languages 162

Disabling analyzers 162

Disabling languages 162

Optimizing FPR files 163

Using filter files 163

Using filter sets 163

Excluding source code from the FPR 164

Reducing the FPR file size 164

Opening large FPR files 165

Monitoring long running scans 167

Using the SCAState tool 167

Using JMX tools 167

Using JConsole 167

Using Java VisualVM 168

Chapter 21: Troubleshooting 169

Exit codes 169

Memory tuning 170

Java heap exhaustion 170

Native heap exhaustion 171

Stack overflow 171

Scanning complex functions 172

Dataflow Analyzer limiters 173

Control Flow and Null Pointer analyzer limiters 174

Issue non-determinism 174

Locating the log files 175

Configuring log files 175

Understanding log levels 176

Reporting issues and requesting enhancements 177

Appendix A: Filtering the analysis 178

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 10 of 228

Excluding issues with filter files 178

Filter file example 180

Using filter sets to exclude issues 182

Appendix B: Configuration options 184

Properties files 184

Properties file format 185

Precedence of setting properties 185

fortify-sca.properties 186

Translation and analysis phase properties 186

Regex analysis properties 193

LIM license properties 194

Rule properties 195

Java and Kotlin properties 197

Visual Studio and MSBuild project properties 199

JavaScript and TypeScript properties 200

Python properties 202

Go properties 204

Ruby properties 204

COBOL properties 205

PHP properties 206

ABAP properties 206

Flex and ActionScript properties 207

ColdFusion (CFML) properties 207

SQL properties 208

Output properties 209

Mobile build session (MBS) properties 211

Proxy properties 211

Logging properties 212

Debug properties 212

fortify-sca-quickscan.properties 213

fortify-rules.properties 216

Appendix C: Fortify Java annotations 223

Dataflow annotations 224

Source annotations 224

Passthrough annotations 224

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 11 of 228

Sink annotations 225

Validate annotations 226

Field and variable annotations 226

Password and private annotations 226

Non-negative and non-zero annotations 227

Other annotations 227

Check return value annotation 227

Dangerous annotations 227

Send Documentation Feedback 228

User Guide

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 12 of 228

Preface

Contacting Customer Support
Visit the Support website to:

 l Manage licenses and entitlements
 l Create and manage technical assistance requests
 l Browse documentation and knowledge articles
 l Download software
 l Explore the Community

https://www.microfocus.com/support

For More Information
For more information about Fortify software products:

https://www.microfocus.com/cyberres/application-security

About the Documentation Set
The Fortify Software documentation set contains installation, user, and deployment guides for all
Fortify Software products and components. In addition, you will find technical notes and release notes
that describe new features, known issues, and last-minute updates. You can access the latest versions
of these documents from the following Product Documentation website:

https://www.microfocus.com/support/documentation

To be notified of documentation updates between releases, subscribe to Fortify Product
Announcements on the OpenText Fortify Community:

https://community.microfocus.com/cyberres/fortify/w/announcements

Fortify Product Feature Videos
You can find videos that highlight Fortify products and features on the Fortify Unplugged YouTube
channel:

https://www.youtube.com/c/FortifyUnplugged

User Guide
Preface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 13 of 228

https://www.microfocus.com/support
https://www.microfocus.com/cyberres/application-security
https://www.microfocus.com/support/documentation
https://community.microfocus.com/cyberres/fortify/w/announcements
https://www.youtube.com/c/FortifyUnplugged

Change log
The following table lists changes made to this document. Revisions to this document are published
between software releases only if the changes made affect product functionality.

Software release /
Document version Changes

24.4.0 Updated:

 l Added installer for Linux on ARM (see "Installing Fortify Static Code
Analyzer" on page 28)

 l Scan policies can exclude dataflow issues based on taint flags (see
"Applying a scan policy to the analysis" on page 46)

 l By default, NPM dependencies are excluded from the analysis phase
(see "Managing issue detection in NPM dependencies" on page 72)

 l Support added for Flask and Jinja2 (see "Translating Python code" on
page 77)

 l Added the -gotags option to include custom build tags in Fortify
Static Code Analyzer translation of Go project (see "Including custom
Go build tags" on page 87 and "Go properties" on page 204)

 l Changes to the command-line options to analyze PL/SQL (see
"Analyzing SQL" on page 113)

 l Added an option to disable build tool name resolution and translate
build script files as source files (see "Translation options" on page 134
and "Translation and analysis phase properties" on page 186)

 l The -exclude option is supported in Ant, Bazel, Gradle, and Maven
build integrations (see "Integrating with Ant" on page 123, "Integrating
with Bazel" on page 123, "Using Gradle integration" on page 125,
"Using the Fortify Maven Plugin" on page 132, and "Translation
options" on page 134)

Removed:

 l Modular analysis was removed from this document. This feature is
deprecated and will be removed from the product in the next release.

User Guide
Change log

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 14 of 228

Software release /
Document version Changes

24.2.0 Added:

 l "Integrating with Bazel" on page 123

 l "Integrating with CMake" on page 125

Updated:

 l The default scan policy has changed (see "Applying a scan policy to the
analysis" on page 46)

 l Option added to specify a JDK version that is not distributed with
Fortify Static Code Analyzer to use for translation (see "Java command-
line options" on page 51)

 l The default Python version has changed (see "Python command-line
options" on page 77)

 l The default PHP version has changed (see "PHP command-line
options" on page 102)

Removed:

 l The -apex option and corresponding configuration property are
deprecated and no longer required to translate Apex and Visualforce
code

23.2.0 Added:

 l "Translating Python in a virtual environment" on page 79

 l "Analyzing Solidity code" on page 100

 l "Troubleshooting Gradle integration" on page 126

 l "Using the Gradle plugin" on page 127

Updated:

 l Improved the example Dockerfile to install Fortify Static Code Analyzer
(see "Creating a Dockerfile to install Fortify Static Code Analyzer" on
page 33)

 l Added considerations about generated code for the translation phase
("Translation phase" on page 43)

 l Added instructions for including source code in the MBS file (see
"Mobile build sessions" on page 44)

User Guide
Change log

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 15 of 228

Software release /
Document version Changes

 l The default JDK version was changed from 1.8 to 11 (see "Java
command-line options" on page 51 and "Kotlin command-line options"
on page 59)

 l Improved instructions for translating Java bytecode (see "Translating
Java bytecode" on page 56)

 l Improved instructions for excluding NPM dependencies (see "Managing
issue detection in NPM dependencies" on page 72)

 l Added a property to enable translation of minified JavaScript files (see
"JavaScript and TypeScript properties" on page 200)

 l Added rule properties for Apex and PowerShell (see "fortify-
rules.properties" on page 216)

Removed:

 l Removed all mentions of the -fcontainer option for running a Fortify
Static Code Analyzer image as a container as it is no longer necessary
and has been removed.

23.1.0 Added:

 l "Applying a scan policy to the analysis" on page 46

 l "Translating Dart and Flutter code" on page 89

 l New properties available for rules (see "Properties files" on page 184
and "fortify-rules.properties" on page 216)

Updated:

 l Installation of Fortify Static Code Analyzer is now separate from the
installation of Fortify Applications and Tools (see "Installing Fortify
Static Code Analyzer" on page 27)

 l New command-line syntax for .NET projects (see "Visual Studio Project
command-line syntax" on page 62)

 l New scan policy analysis option (see "Analysis options" on page 136
and "Translation and analysis phase properties" on page 186)

 l New filter types used for filter files and scan policy files (see "Excluding
issues with filter files" on page 178)

User Guide
Change log

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 16 of 228

Chapter 1: Introduction
This guide provides instructions for using Fortify Static Code Analyzer to scan code on most major
programming platforms. This guide is intended for people responsible for security audits and secure
coding.

This section contains the following topics:

Fortify Static Code Analyzer 17

Licensing 19

Renewing an expired license 20

Fortify Software Security Content 20

Fortify ScanCentral SAST 21

Fortify Static Code Analyzer applications and tools 21

Sample projects 22

Related Documents 22

Fortify Static Code Analyzer
Fortify Static Code Analyzer is a set of software security analyzers that search for violations of
security-specific coding rules and guidelines in a variety of languages. Fortify Static Code Analyzer
produces analysis information to help you deliver more secure software, and make security code
reviews more efficient, consistent, and complete. Its design enables you to incorporate customer-
specific security rules.

For a list of supported languages, libraries, compilers, and build tools, see the Fortify Software System
Requirements document.

At the highest level, using Fortify Static Code Analyzer involves:

 1. Running Fortify Static Code Analyzer as a stand-alone process or integrating Fortify Static Code
Analyzer in a build tool

 2. Translating the source code into an intermediate translated format

 3. Scanning the translated code and producing security vulnerability analysis results

 4. Auditing the results of the scan, either by opening the results (typically an FPR file) in
OpenText™ Fortify Audit Workbench or uploading them to OpenText™ Fortify Software Security
Center for analysis, or working directly with the results displayed on screen.

Note: For information about how to open and view results in Fortify Audit Workbench or Fortify
Software Security Center, see the OpenText™ Fortify Audit Workbench User Guide or the
OpenText™ Fortify Software Security Center User Guide, respectively.

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 17 of 228

About the analyzers

Fortify Static Code Analyzer comprises eight vulnerability analyzers: Buffer, Configuration, Content,
Control Flow, Dataflow, Null Pointer, Semantic, and Structural. Each analyzer accepts a different type
of rule specifically tailored to provide the information necessary for the corresponding type of
analysis performed. Rules are definitions that identify elements in the source code that might result in
security vulnerabilities or are otherwise unsafe. The following table describes each analyzer.

Analyzer Description

Dataflow The Dataflow Analyzer detects potential vulnerabilities that involve tainted data
(user-controlled input or private data) put to potentially dangerous use. The
Dataflow Analyzer uses interprocedural taint propagation analysis to detect the
flow of data between a site of user input (or private data) through the
application to a dangerous function call or operation. For example, the Dataflow
Analyzer detects whether a user-controlled input string dynamically generates
HTML (Cross-Site Scripting) and detects whether a user-controlled string
constructs SQL queries (SQL injection).

Control Flow The Control Flow Analyzer detects potentially dangerous sequences of
operations. By analyzing control flow paths in a program, the Control Flow
Analyzer determines whether a set of operations are executed in a certain order.
For example, the Control Flow Analyzer detects time of check/time of use issues
and race conditions, and checks whether utilities, such as XML readers, are
configured properly before being used.

Buffer The Buffer Analyzer detects buffer overflow vulnerabilities that involve writing
or reading more data than a buffer can hold. The buffer can be either stack-
allocated or heap-allocated. The Buffer Analyzer uses limited interprocedural
analysis to determine whether there is a condition that causes the buffer to
overflow. If any execution path to a buffer leads to a buffer overflow, Fortify
Static Code Analyzer reports it as a buffer overflow vulnerability and points out
the variables that might cause the overflow. If the value of the variable causing
the buffer overflow is tainted (user-controlled), then Fortify Static Code
Analyzer reports it as well and displays the dataflow trace to show how the
variable is tainted.

User Guide
Chapter 1: Introduction

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 18 of 228

Analyzer Description

Structural The Structural Analyzer detects potentially dangerous flaws in the structure or
definition of the program. By understanding the way programs are structured,
the Structural Analyzer identifies violations of secure programming practices
and techniques that are often difficult to detect through inspection because they
encompass a wide scope involving both the declaration and use of variables and
functions. For example, the Structural Analyzer detects hard-coded secrets,
cookie misconfiguration in code, and encryption weaknesses.

Configuration The Configuration Analyzer searches for mistakes, weaknesses, and policy
violations in application deployment configuration files. For example, the
Configuration Analyzer checks for reasonable timeouts in user sessions in a web
application. The Configuration Analyzer also performs regular expression
analysis (see "Regular expression analysis" on page 47).

Semantic The Semantic Analyzer detects potentially dangerous uses of functions and APIs
at the intra-procedural level.

Content The Content Analyzer searches for security issues and policy violations in HTML
content. In addition to static HTML pages, the Content Analyzer performs these
checks on files that contain dynamic HTML, such as PHP, JSP, and classic ASP
files.

Null Pointer The Null Pointer Analyzer detects dereferences of pointer variables that are
assigned the null value. The Null Pointer Analyzer detection is performed at the
intra-procedural level. Issues are detected only when the null assignment, the
dereference, and all the paths between them occur within a single function.

Licensing
Fortify Static Code Analyzer requires a license to perform both the translation and analysis
(scan) phases of security analysis (for more information about these phases, see "Analysis process" on
page 42). For details on how to obtain a license for Fortify Static Code Analyzer, see the Fortify
Software System Requirements document.

You must have a Fortify license file (fortify.license) and optionally you can use the Fortify
License and Infrastructure Manager to manage concurrent licenses for Fortify Static Code Analyzer.
With a LIM managed concurrent license, multiple installations of Fortify Static Code Analyzer can
share a single license. For information about how to set up the LIM with licenses for Fortify Static
Code Analyzer, see OpenText™ Fortify License and Infrastructure Manager Installation and Usage
Guide. For more information about managing your LIM license from Fortify Static Code Analyzer, see
"LIM license directives" on page 145.

User Guide
Chapter 1: Introduction

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 19 of 228

Renewing an expired license
The license for Fortify Static Code Analyzer expires annually. For information about how to obtain a
Fortify license file, see the Fortify Software System Requirements document.

To update an expired license:

 l Put the updated Fortify license file in the <sca_install_dir> folder.

To update an expired LIM managed concurrent license, see the OpenText™ Fortify License and
Infrastructure Manager Installation and Usage Guide.

Fortify Software Security Content
Fortify Static Code Analyzer uses a knowledge base of rules to enforce secure coding standards
applicable to the codebase for static analysis. Fortify Software Security Center is required for both
translation and analysis. You can download and install security content when you install Fortify Static
Code Analyzer (see "Installing Fortify Static Code Analyzer" on page 27). Alternatively, you can
download or import previously downloaded Fortify Software Security Content with the fortifyupdate
command-line tool as a post-installation task (see "Manually installing Fortify Software Security
Content" on page 32).

Fortify Software Security Content (security content) consists of Fortify Secure Coding Rulepacks and
external metadata:

 l Fortify Secure Coding Rulepacks describe general secure coding idioms for popular languages and
public APIs

 l External metadata includes mappings from the Fortify categories to alternative categories (such as
CWE, OWASP Top 10, and PCI)

OpenText provides the ability to write custom rules that add to the functionality of Fortify Static
Code Analyzer and the Fortify Secure Coding Rulepacks. For example, you might need to enforce
proprietary security guidelines or analyze a project that uses third-party libraries or other pre-
compiled binaries that are not already covered by the Fortify Secure Coding Rulepacks. You can also
customize the external metadata to map Fortify issues to different taxonomies, such as internal
application security standards or additional compliance obligations. For instructions on how to create
your own custom rules or custom external metadata, see the OpenText™ Fortify Static Code Analyzer
Custom Rules Guide.

OpenText recommends that you periodically update the security content. You can use fortifyupdate
to obtain the latest security content. For more information, see "Updating Fortify Software Security
Content" on page 149.

User Guide
Chapter 1: Introduction

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 20 of 228

Fortify ScanCentral SAST
You can use OpenText™ Fortify ScanCentral SAST to manage your resources by offloading the Fortify
Static Code Analyzer analysis phase from build machines to a collection of machines provisioned for
this purpose. For most languages, Fortify ScanCentral SAST can perform both the translation and the
analysis (scan) phases. Users of Fortify Software Security Center can direct Fortify ScanCentral SAST
to output the FPR file directly to the server. You have the option to install a Fortify ScanCentral SAST
client when you install Fortify Static Code Analyzer.

You can analyze your code in one of two ways:

 l Perform the translation phase on a local build machine and generate a mobile build session (MBS).
Start the scan with Fortify ScanCentral SAST using the MBS file. In addition to freeing up the build
machines, this process gives you the ability to expand the system by adding more resources as
needed, without having to interrupt the build process. For more information about MBS, see
"Mobile build sessions" on page 44.

 l If your application is written in a language supported for Fortify ScanCentral SAST translation, you
can offload the translation and analysis (scan) phase of the analysis to Fortify ScanCentral SAST.
For information about the specific supported languages, see the Fortify Software System
Requirements document.

For detailed information about how to configure and use Fortify ScanCentral SAST, see the
OpenText™ Fortify ScanCentral SAST Installation, Configuration, and Usage Guide.

Fortify Static Code Analyzer applications and tools
OpenText provides applications and tools (including Fortify Secure Code Plugins) that integrate with
Fortify Static Code Analyzer, Fortify ScanCentral SAST, and Fortify Software Security Center. The
following table describes the applications that are available for installation with the Fortify
Applications and Tools installer. For instructions about installing the Fortify Applications and Tools,
see the OpenText™ Fortify Static Code Analyzer Applications and Tools Guide.

Application Description

Fortify Audit Workbench An application that provides a graphical user interface to help
you organize, investigate, and prioritize analysis results so
that developers can fix security flaws quickly.

OpenText™ Fortify Plugin for
Eclipse

Adds the ability to scan and analyze the entire codebase of a
project and apply software security rules that identify the
vulnerabilities in your Java code from the Eclipse IDE. The
results are displayed, along with descriptions of each of the
security issues and suggestions for their elimination.

User Guide
Chapter 1: Introduction

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 21 of 228

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440

Application Description

OpenText™ Fortify Analysis
Plugin for IntelliJ IDEA and
Android Studio

Adds the ability to run scans on the entire codebase of a
project and apply software security rules that identify the
vulnerabilities in your code from IntelliJ IDEA and Android
Studio.

OpenText™ Fortify Extension for
Visual Studio

Adds the ability to scan and locate security vulnerabilities in
your solutions and projects and displays the scan results in
Visual Studio. The results include a list of issues uncovered,
descriptions of the type of vulnerability each issue represents,
and suggestions on how to fix them. This extension also
includes remediation functionality that works with audit
results stored on a Fortify Software Security Center server.

OpenText™ Fortify Custom Rules
Editor

An application to create and edit custom rules.

Fortify Scan Wizard Provides a graphical user interface that enables you to
prepare a script to scan your code (either locally or remotely
using Fortify ScanCentral SAST) and then optionally upload
the results to Fortify Software Security Center.

BIRTReportGenerator

ReportGenerator

Command-line tools to generate issue reports (BIRT) and
legacy reports from FPR files.

Sample projects

OpenText provides sample projects available as a separate download in the Fortify_SCA_Samples_
<version>.zip archive.

The ZIP file contains two directories: basic and advanced. Each code sample includes a README.txt
file that provides instructions on how to scan the code with Fortify Static Code Analyzer and view the
results in Fortify Audit Workbench.

The basic directory includes an assortment of simple language-specific code samples. The
advanced directory includes more advanced samples.

Related Documents
This topic describes documents that provide information about Fortify Software products.

User Guide
Chapter 1: Introduction

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 22 of 228

Note: You can find the Fortify Product Documentation at
https://www.microfocus.com/support/documentation. Most guides are available in both PDF and
HTML formats.

All Products

The following documents provide general information for all products. Unless otherwise noted, these
documents are available on the Product Documentation website.

Document / File Name Description

About Fortify Software
Documentation

About_Fortify_Docs_<version>.pdf

This paper provides information about how to access
Fortify Software product documentation.

Note: This document is included only with the
product download.

Fortify Software System
Requirements

Fortify_Sys_Reqs_<version>.pdf

This document provides the details about the
environments and products supported for this version of
Fortify Software.

Fortify Software Release Notes

FortifySW_RN_<version>.pdf

This document provides an overview of the changes made
to Fortify Software for this release and important
information not included elsewhere in the product
documentation.

What’s New in Fortify Software
<version>

Fortify_Whats_New_<version>.pdf

This document describes the new features in Fortify
Software products.

Fortify ScanCentral SAST

The following document provides information about Fortify ScanCentral SAST. This document is
available on the Product Documentation website at
https://www.microfocus.com/documentation/fortify-software-security-center.

Document / File Name Description

OpenText™ Fortify ScanCentral SAST
Installation, Configuration, and Usage
Guide

This document provides information about how to install,
configure, and use Fortify ScanCentral SAST to streamline
the static code analysis process. It is written for anyone

User Guide
Chapter 1: Introduction

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 23 of 228

https://www.microfocus.com/support/documentation
https://www.microfocus.com/support/documentation
https://www.microfocus.com/documentation/fortify-software-security-center

Document / File Name Description

SC_SAST_Guide_<version>.pdf who intends to install, configure, or use Fortify
ScanCentral SAST to offload the resource-intensive
translation and scanning phases of their Fortify Static
Code Analyzer process.

Fortify Software Security Center

The following document provides information about Fortify Software Security Center. This document
is available on the Product Documentation website at
https://www.microfocus.com/documentation/fortify-software-security-center.

Document / File Name Description

OpenText™ Fortify Software
Security Center User Guide

SSC_Guide_<version>.pdf

This document provides Fortify Software Security Center
users with detailed information about how to deploy and use
Fortify Software Security Center. It provides all the
information you need to acquire, install, configure, and use
Fortify Software Security Center.

It is intended for use by system and instance administrators,
database administrators (DBAs), enterprise security leads,
development team managers, and developers. Fortify
Software Security Center provides security team leads with a
high-level overview of the history and status of a project.

Fortify Static Code Analyzer

The following documents provide information about Fortify Static Code Analyzer. Unless otherwise
noted, these documents are available on the Product Documentation website at
https://www.microfocus.com/documentation/fortify-static-code.

Document / File Name Description

OpenText™ Fortify Static Code
Analyzer User Guide

SCA_Guide_<version>.pdf

This document describes how to install and use Fortify
Static Code Analyzer to scan code on many of the major
programming platforms. It is intended for people
responsible for security audits and secure coding.

User Guide
Chapter 1: Introduction

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 24 of 228

https://www.microfocus.com/documentation/fortify-software-security-center
https://www.microfocus.com/documentation/fortify-static-code

Document / File Name Description

OpenText™ Fortify Static Code
Analyzer Custom Rules Guide

SCA_Cust_Rules_Guide_<version>.zip

This document provides the information that you need to
create custom rules for Fortify Static Code Analyzer. This
guide includes examples that apply rule-writing concepts
to real-world security issues.

Note: This document is included only with the
product download.

OpenText™ Fortify License and
Infrastructure Manager Installation
and Usage Guide

LIM_Guide_<version>.pdf

This document describes how to install, configure, and use
the Fortify License and Infrastructure Manager (LIM),
which is available for installation on a local Windows
server and as a container image on the Docker platform.

Fortify Static Code Analyzer Applications and Tools

The following documents provide information about Fortify Static Code Analyzer applications and
tools. These documents are available on the Product Documentation website at
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools.

Document / File Name Description

OpenText™ Fortify Static Code
Analyzer Applications and Tools
Guide

SCA_Apps_Tools_<version>.pdf

This document describes how to install Fortify Static Code
Analyzer applications and tools. It provides an overview of
the applications and command-line tools that enable you
to scan your code with Fortify Static Code Analyzer,
review analysis results, work with analysis results files, and
more.

OpenText™ Fortify Audit Workbench
User Guide

AWB_Guide_<version>.pdf

This document describes how to use Fortify Audit
Workbench to scan software projects and audit analysis
results. This guide also includes how to integrate with bug
trackers, produce reports, and perform collaborative
auditing.

OpenText™ Fortify Plugin for Eclipse
User Guide

Eclipse_Plugin_Guide_<version>.pdf

This document provides information about how to install
and use the Fortify Plugin for Eclipse to analyze and audit
your code.

OpenText™ Fortify Analysis Plugin for This document describes how to install and use the Fortify

User Guide
Chapter 1: Introduction

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 25 of 228

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools

Document / File Name Description

IntelliJ IDEA and Android Studio User
Guide

IntelliJ_AnalysisPlugin_Guide_
<version>.pdf

Analysis Plugin for IntelliJ IDEA and Android Studio to
analyze your code and optionally upload the results to
Fortify Software Security Center.

OpenText™ Fortify Extension for
Visual Studio User Guide

VS_Ext_Guide_<version>.pdf

This document provides information about how to install
and use the Fortify Extension for Visual Studio to analyze,
audit, and remediate your code to resolve security-related
issues in solutions and projects.

User Guide
Chapter 1: Introduction

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 26 of 228

Chapter 2: Installing Fortify Static Code
Analyzer
This chapter describes how to install and uninstall Fortify Static Code Analyzer. This chapter also
describes basic post-installation tasks. See the Fortify Software System Requirements document to be
sure that your system meets the minimum requirements for each software component installation.

This section contains the following topics:

About installing Fortify Static Code Analyzer 27

Using Docker to install and run Fortify Static Code Analyzer 33

About upgrading Fortify Static Code Analyzer 35

About uninstalling Fortify Static Code Analyzer 36

Post-installation tasks 37

About installing Fortify Static Code Analyzer
This section describes how to install Fortify Static Code Analyzer. Several command-line tools are
installed automatically with Fortify Static Code Analyzer (see "Command-line tools" on page 148). You
can optionally include a Fortify ScanCentral SAST client and the Fortify Software Security Center
fortifyclient utility with the Fortify Static Code Analyzer installation. For information about Fortify
ScanCentral SAST, see the OpenText™ Fortify ScanCentral SAST Installation, Configuration, and
Usage Guide.

You must provide a Fortify license file and optionally LIM license pool credentials during the
installation. The following table lists the different ways to install Fortify Static Code Analyzer.

Installation method Instructions

Perform the installation using a
standard install wizard

"Installing Fortify Static Code Analyzer" on the next page

Perform the installation silently
(unattended)

"Installing Fortify Static Code Analyzer silently" on page 30

Perform a text-based installation on
non-Windows systems

"Installing Fortify Static Code Analyzer in text-based mode
on non-Windows platforms" on page 32

Perform the installation using
Docker

"Using Docker to install and run Fortify Static Code Analyzer"
on page 33

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 27 of 228

For best performance, install Fortify Static Code Analyzer on the same local file system where the
code that you want to scan resides.

Note: On non-Windows systems, you must install Fortify Static Code Analyzer as a user that has a
home directory with write permission. Do not install Fortify Static Code Analyzer as a non-root
user that has no home directory.

After you complete the installation, see "Post-installation tasks" on page 37 for additional steps you
can perform to complete your system setup. You can also configure settings for runtime analysis,
output, and performance of Fortify Static Code Analyzer by updating the installed configuration files.
For information about the configuration options for Fortify Static Code Analyzer, see "Configuration
options" on page 184.

Installing Fortify Static Code Analyzer

To install Fortify Static Code Analyzer:

 1. Run the installer file for your operating system to start the Fortify Static Code Analyzer Setup
wizard:
 l Windows: Fortify_SCA_<version>_windows_x64.exe

 l Linux: Fortify_SCA_<version>_linux_x64.run or Fortify_SCA_<version>_linux_
arm64.run

 l macOS: Fortify_SCA_<version>_osx_x64.app.zip
Uncompress the ZIP file before you run the APP installer file.

 l AIX: Fortify_SCA_<version>_aix.run

where <version> is the software release version, and then click Next.

 2. Review and accept the license agreement, and then click Next.

 3. (Optional) Select components to install, and then click Next.

 4. If the installer detects that the system does not include the minimum software required to
analyze some types of projects, a System Requirements page displays any missing requirements
and which projects require them. Click Next.

See the Fortify Software System Requirements document for all software requirements.

 5. Choose where to install Fortify Static Code Analyzer, and then click Next.

If you selected to include Fortify ScanCentral SAST client with the installation in step 3, then you
must specify a location that does not include spaces in the path.

Important! Do not install Fortify Static Code Analyzer in the same directory where Fortify
Applications and Tools is installed.

 6. Specify the path to the fortify.license file, and then click Next.
 7. (Optional) On the LIM License page, select Yes to manage your concurrent licenses with Fortify

License and Infrastructure Manager (LIM), and then click Next.

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 28 of 228

Note: When Fortify Static Code Analyzer performs a task that requires a license, the
application will attempt to acquire a LIM lease from the license pool. If Fortify Static Code
Analyzer fails to acquire a license due to a communication issue with the LIM server, it will
use the Fortify license file. To change this behavior, use the
com.fortify.sca.lim.WaitForInitialLicense in the fortify-sca.properties file
(see "LIM license properties" on page 194).

 a. Type the LIM API URL, the license pool name, and the pool password.

 b. Click Next. The LIM Proxy Settings page opens.

 c. If connection to the LIM server requires a proxy server, type the proxy host (hostname or
IP address of your proxy server) and optionally a port number.

 d. Click Next.

 8. To update the security content for your installation:

Note: For deployment environments that do not have access to the Internet during
installation, you can update the security content using the fortifyupdate command-line tool.
See "Manually installing Fortify Software Security Content" on page 32.

 a. Type the web address of the update server. To use the Fortify Rulepack update server for
security content updates, keep the web address https://update.fortify.com. You can
also use Fortify Software Security Center as the update server.

 b. (Optional) If connection to the update server requires a proxy server, type the proxy host and
port number.

 c. If you want to update the security content manually, clear the Update security content
after installation check box.

 d. Click Next.

 9. Specify if you want to migrate from a previous installation on your system.

Migrating from a previous installation preserves Fortify Static Code Analyzer artifact files. For
more information, see "About upgrading Fortify Static Code Analyzer" on page 35.

Note: You can also migrate artifacts using the scapostinstall command-line tool. For
information on how to use the post-install tool to migrate from a previous installation, see
"Migrating properties files" on page 38.

To migrate artifacts from a previous installation:

 a. In the Fortify Static Code Analyzer Migration page, select Yes, and then click Next.

 b. Specify the location of the existing installation on your system, and then click Next.

To skip migration of artifacts from a previous release, leave the migration selection set to No, and
then click Next.

 10. Click Next on the Ready to Install page to install Fortify Static Code Analyzer, any selected
components, and Fortify security content.

If you selected to update security content, the Security Content Update Result window displays
the security content update results.

 11. Click Finish to close the Setup wizard.

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 29 of 228

Installing Fortify Static Code Analyzer silently

A silent installation enables you to complete the installation without any user prompts. To install
silently, you need to create an option file to provide the necessary information to the installer. Using
the silent installation, you can replicate the installation parameters on multiple machines.

Important! Do not install Fortify Static Code Analyzer in the same directory where Fortify
Applications and Tools is installed.

When you install Fortify Static Code Analyzer silently, the installer does not download the Fortify
Software Security Center by default. You can enable download of the Fortify security content in the
options file or you can install the Fortify security content manually (see "Manually installing Fortify
Software Security Content" on page 32).

To install Fortify Static Code Analyzer silently:

 1. Create an options file.

 a. Create a text file that contains the following line:

fortify_license_path=<license_file_location>

where <license_file_location> is the full path to your fortify.license file.
 b. To use a LIM license server, add the following lines with your LIM license pool credentials to

the options file:

lim_url=<lim_url>
 lim_pool_name=<license_pool_name>
 lim_pool_password=<license_pool_pwd>

 c. To use a location for Fortify Software Security Content updates that is different than the
default of https://update.fortify.com, add the following line:

update_server=<update_server_url>

 d. If you require a proxy server for the Fortify security content download, add the following lines:

update_proxy_server=<proxy_server>
 update_proxy_port=<port_number>

 e. To enable download of Fortify security content, add the following line:

update_security_content=1

 f. Add more installation instructions, as needed, to the options file.

To obtain a list of installation options that you can add to your options file, open a command
prompt, and then type the installer file name and the --help option. This command displays

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 30 of 228

each available command-line option preceded with a double dash and the available
parameters enclosed in angle brackets. For example, if you want to see the progress of the
install displayed at the command line, add unattendedmodeui=minimal to your options file.

Notes:

 o The command-line options are case-sensitive.
 o The installation options are not the same on all supported operating systems. Run the

installer with --help to see the options available for your operating system.

The following example Windows options file specifies the location of the license file, the
location of a Fortify Software Security Center server and proxy information to obtain Fortify
Software Security Content, a request to migrate from a previous release, and the location of
the Fortify Static Code Analyzer installation directory:

fortify_license_path=C:\Users\admin\Desktop\fortify.license
 update_server=https://my_ssc_host:8080/ssc
update_proxy_server=webproxy.abc.company.com
update_proxy_port=8080
migrate_sca=1
install_dir=C:\Fortify

The following options file example is for Linux and macOS:

fortify_license_path=/opt/Fortify/fortify.license
 update_server=https://my_ssc_host:8080/ssc
 update_proxy_server=webproxy.abc.company.com
 update_proxy_port=8080
 migrate_sca=1
 install_dir=/opt/Fortify

 2. Save the options file.

 3. Run the silent install command for your operating system.

Note: You might need to run the command prompt as an administrator before you run the
installer.

Windows Fortify_SCA_<version>_windows_x64.exe --mode unattended --
optionfile <full_path_to_options_file>

Linux ./Fortify_SCA_<version>_linux_x64.run --mode unattended --
optionfile <full_path_to_options_file>

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 31 of 228

macOS You must uncompress the ZIP file before you run the command.

Fortify_SCA_<version>_osx_x64.app/Contents/
MacOS/installbuilder.sh --mode unattended --optionfile <full_
path_to_options_file>

AIX ./Fortify_SCA_<version>_aix.run --mode unattended --optionfile
<full_path_to_options_file>

The installer creates an installer log file when the installation is complete. This log file is in the
following location, which depends on your operating system.

Windows C:\Users\<username>\AppData\Local\Temp\FortifySCA-<version>-
install.log

Non-Windows /tmp/FortifySCA-<version>-install.log

Installing Fortify Static Code Analyzer in text-based mode on
non-Windows platforms

You perform a text-based installation on the command line. During the installation, you are prompted
for information required to complete the installation. Text-based installations are not supported on
Windows systems.

Important! Do not install Fortify Static Code Analyzer in the same directory where Fortify
Applications and Tools is installed.

To perform a text-based installation of Fortify Static Code Analyzer, run the text-based install
command for your operating system as listed in the following table.

Linux ./Fortify_SCA_<version>_linux_x64.run --mode text

macOS You must uncompress the provided ZIP file before you run the command.

Fortify_SCA_<version>_osx_x64.app/Contents/
MacOS/installbuilder.sh --mode text

AIX ./Fortify_SCA_<version>_aix.run --mode text

Manually installing Fortify Software Security Content

You can install Fortify Software Security Content (Fortify Secure Coding Rulepacks and
metadata) automatically during the installation. However, you can also download Fortify Software
Security Content from the Fortify Rulepack update server, and then use the fortifyupdate command-

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 32 of 228

line tool to install it. This option is provided for deployment environments that do not have access to
the Internet during installation.

Use fortifyupdate to install Fortify security content from either a remote server or a locally
downloaded file.

To install security content:

 1. Open a command window.

 2. Navigate to the <sca_install_dir>/bin directory.

 3. At the command prompt, type fortifyupdate.
If you have previously downloaded the Fortify Software Security Content from the Fortify
Rulepack update server, run fortifyupdate with the -import option and the path to the
directory where you downloaded the ZIP file.

You can also use this same tool to update your Fortify Software Security Content. For more
information about the fortifyupdate command-line tool, see "Updating Fortify Software Security
Content" on page 149.

Using Docker to install and run Fortify Static Code
Analyzer
You can install Fortify Static Code Analyzer in a Docker image and then run Fortify Static Code
Analyzer as a Docker container.

Note: You can only run Fortify Static Code Analyzer in Docker on supported Linux platforms.

Creating a Dockerfile to install Fortify Static Code Analyzer

This topic describes how to create a Dockerfile to install Fortify Static Code Analyzer in a Docker
image.

The Dockerfile must include the following instructions:

 1. Set a Linux system to use for the base image.

Note: If you intend to use build tools when you run Fortify Static Code Analyzer, make sure
that the required build tools are installed in the image. For information about using the
supported build tools, see "Build integration" on page 121.

 2. Copy the Fortify Static Code Analyzer installer, the Fortify license file, and installation options file
to the Docker image using the COPY instruction.

For instructions on how to create an installation options file, see "Installing Fortify Static Code
Analyzer silently" on page 30.

 3. Run the Fortify Static Code Analyzer installer using the RUN instruction.

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 33 of 228

You must run the installer in unattended mode. For more information, see "Installing Fortify Static
Code Analyzer silently" on page 30.

 4. Run fortifyupdate to install the Fortify security content using the RUN instruction.

Important! Fortify Static Code Analyzer requires installation of the Fortify Software Security
Content to perform analysis of projects. The following example installs Fortify Software
Security Content from a previously downloaded local file during the build of the image. For
more information about downloading and installing Fortify Software Security Content using
the fortifyupdate tool, see "Manually installing Fortify Software Security Content" on
page 32.

 5. To configure the image so you can run Fortify Static Code Analyzer, set the entry point to the
location of the installed sourceanalyzer executable using the ENTRYPOINT instruction.

The default sourceanalyzer installation path is: /opt/Fortify/Fortify_SCA_
<version>/bin/sourceanalyzer.

The following is an example of a Dockerfile to install Fortify Static Code Analyzer:

FROM ubuntu:18.04
WORKDIR /app
ENV APP_HOME="/app"
ENV RULEPACK="MyRulepack.zip"

COPY fortify.license ${APP_HOME}
COPY Fortify_SCA_24.4.0_linux_x64.run ${APP_HOME}
COPY optionFile ${APP_HOME}
COPY ${RULEPACK} ${APP_HOME}

RUN ./Fortify_SCA_24.4.0_linux_x64.run --mode unattended \
 --optionfile "${APP_HOME}/optionFile" && \
 /opt/Fortify/Fortify_SCA_24.4.0/bin/fortifyupdate -import ${RULEPACK} && \
 rm Fortify_SCA_24.4.0_linux_x64.run optionFile

ENTRYPOINT ["/opt/Fortify/Fortify_SCA_24.4.0/bin/sourceanalyzer"]

To create the docker image using the Dockerfile from the current directory, you must use the docker
build command. For example:

docker buildx build -f <docker_file> -t <image_name> "."

Running the container

This topic describes how to run the Fortify Static Code Analyzer image as a container and provides
example Docker run commands for translation and scan.

Note: When you run Fortify Static Code Analyzer in a container and especially if you also leverage
runtime container protections, make sure that Fortify Static Code Analyzer has the appropriate
permission to run build commands (for example, javac).

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 34 of 228

To run the Fortify Static Code Analyzer image as a container, you must mount two directories from
the host file system to the container:

 l The directory that contains the source files you want to analyze.
 l A temporary directory to store the Fortify Static Code Analyzer build session between the translate

and scan phases and to share the output files (logs and FPR file) with the host.

Specify this directory using the –project-root command-line option in both the Fortify Static
Code Analyzer translate and scan commands.

The following example commands mount the input directory /sources in /src and the temporary
directory in /scratch_docker. The image name in the example is fortify-sca.

Example Docker run commands for translation and scan

The following example mounts the temporary directory and the sources directory, and then runs
Fortify Static Code Analyzer from the container for the translation phase:

docker run -v /scratch_local/:/scratch_docker -v /sources/:/src
 -it fortify-sca –b MyProject -project-root /scratch_docker [<sca_options>]
/src

The following example mounts the temporary directory, and then runs Fortify Static Code Analyzer
from the container for the analysis phase:

docker run -v /scratch_local/:/scratch_docker
 -it fortify-sca –b MyProject -project-root /scratch_docker –scan [<sca_
options>] –f /scratch_docker/MyResults.fpr

The MyResults.fpr output file is created in the host's /scratch_local directory.

About upgrading Fortify Static Code Analyzer
To upgrade Fortify Static Code Analyzer, install the new version in a different location than where
your current version is installed and choose to migrate settings from the previous installation. This
migration preserves and updates the Fortify Static Code Analyzer artifact files located in the <sca_
install_dir>/Core/config directory.

If you choose not to migrate any settings from a previous release, OpenText recommends that you
save a backup of the following data if it has been modified:

 l <sca_install_dir>/Core/config/rules folder
 l <sca_install_dir>/Core/config/customrules folder
 l <sca_install_dir>/Core/config/ExternalMetadata folder
 l <sca_install_dir>/Core/config/CustomExternalMetadata folder
 l <sca_install_dir>/Core/config/server.properties file
 l <sca_install_dir>/Core/config/scales folder

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 35 of 228

After you install the new version, you can uninstall the previous version. For more information, see
"About uninstalling Fortify Static Code Analyzer" below.

Note: You can leave the previous version installed. If you have multiple versions installed on the
same system, the most recently installed version is used when you run the command from the
command line.

About uninstalling Fortify Static Code Analyzer
This section describes how to uninstall Fortify Static Code Analyzer. You can use the standard install
wizard, or you can silently install Fortify Static Code Analyzer. You can also perform a text-based
uninstallation on non-Windows systems.

Uninstalling Fortify Static Code Analyzer

To uninstall Fortify Static Code Analyzer:

 1. Run the uninstall command located in the <sca_install_dir> for your operating system:

OS Uninstall command

Windows Uninstall_FortifySCA.exe
Alternatively, you can uninstall the application from the Windows interface. See
the Microsoft Windows documentation for instructions.

Linux

AIX

./Uninstall_FortifySCA

macOS Uninstall_FortifySCA.app

 2. You are prompted to indicate whether to remove the entire application or individual components.
Make your selection, and then click Next.

If you are uninstalling specific components, select the components to remove on the Select
Components to Uninstall page, and then click Next.

 3. You are prompted to indicate whether to remove all application settings. Do one of the following:
 l Click Yes to remove the application settings for the components installed with the version of

Fortify Static Code Analyzer that you are uninstalling.

The Fortify Static Code Analyzer (sca<version>) folder is not removed.

 l Click No to retain the application settings on your system.

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 36 of 228

Uninstalling Fortify Static Code Analyzer silently

To uninstall Fortify Static Code Analyzer silently:

 1. Navigate to the installation directory.

 2. Type one of the following commands based on your operating system:

Windows Uninstall_FortifySCA_<version>.exe --mode unattended

Linux
AIX

./Uninstall_FortifySCA_<version> --mode unattended

macOS Uninstall_FortifySCA_
<version>.app/Contents/MacOS/installbuilder.sh
--mode unattended

Note: For Windows, Linux, and macOS, the uninstaller removes the application settings for the
components installed with the version of Fortify Static Code Analyzer that you are uninstalling.

Uninstalling Fortify Static Code Analyzer in text-based mode on
non-Windows platforms

To uninstall Fortify Static Code Analyzer in text-based mode, run the text-based install command for
your operating system, as follows:

 1. Navigate to the installation directory.

 2. Type one of the following commands based on your operating system:

Linux
AIX

./Uninstall_Fortify_SCA --mode text

macOS Uninstall_Fortify_SCA.app/Contents/MacOS/installbuilder.sh --mode
text

Post-installation tasks
Post-installation tasks prepare you to start using Fortify Static Code Analyzer.

Running the post-install tool

You can use the post-install tool to migrate properties files from a previous version of Fortify Static
Code Analyzer, configure Fortify security content updates, and configure settings to connect to

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 37 of 228

Fortify Software Security Center.

To run the Fortify Static Code Analyzer post-install tool:

 1. Navigate to the <sca_install_dir>/bin directory from the command line.

 2. At the command prompt, type scapostinstall.
 3. Type one of the following:

 l To display settings, type s.

 l To return to the previous prompt, type r.

 l To exit the tool, type q.

Migrating properties files

To migrate properties files from a previous version of Fortify Static Code Analyzer to the current
version of Fortify Static Code Analyzer installed on your system:

 1. Navigate to the <sca_install_dir>/bin directory from the command line.

 2. At the command prompt, type scapostinstall.

 3. Type 1 to select Migration.

 4. Type 1 to select Static Code Analyzer Migration.

 5. Type 1 to select Migrate from an existing Fortify installation.

 6. Type 1 to select Set previous Fortify installation directory.
 7. Type the previous install directory.

 8. Type s to confirm the settings.

 9. Type 2 to perform the migration.

 10. Type y to confirm.

Specifying a locale

English is the default locale for a Fortify Static Code Analyzer installation.

To change the locale for your Fortify Static Code Analyzer installation:

 1. Navigate to the bin directory from the command line.

 2. At the command prompt, type scapostinstall.

 3. Type 2 to select Settings.

 4. Type 1 to select General.

 5. Type 1 to select Locale.
 6. Type one of the following locale codes:

 l en (English)

 l es (Spanish)

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 38 of 228

 l ja (Japanese)

 l ko (Korean)

 l pt_BR (Brazilian Portuguese)

 l zh_CN (Simplified Chinese)

 l zh_TW (Traditional Chinese)

Configuring Fortify Security Content updates

Specify how you want to obtain Fortify security content. You must also specify proxy information if it
is required to reach the server.

To specify settings for Fortify Security Content updates:

 1. Navigate to the bin directory from the command line.

 2. At the command prompt, type scapostinstall.

 3. Type 2 to select Settings.

 4. Type 2 to select Fortify Update.

 5. To change the Fortify Rulepack update server URL, type 1, and then type the URL.

The default Fortify Rulepack update server URL is https://update.fortify.com.
 6. To specify a proxy for Fortify security content updates, do the following:

 a. Type 2 to select Proxy Server, and then type the name of the proxy server.
Exclude the protocol and port number (for example, some.secureproxy.com).

 b. Type 3 to select Proxy Server Port, and then type the proxy server port number.

 c. (Optional) You can also specify a proxy server user name (option 4) and password (option 5).

Configuring the connection to Fortify Software Security Center

Specify how to connect to Fortify Software Security Center. If your network uses a proxy server to
reach the Fortify Software Security Center server, you must specify the proxy information.

To specify settings for connecting to Fortify Software Security Center:

 1. Navigate to the bin directory from the command line.

 2. At the command prompt, type scapostinstall.

 3. Type 2 to select Settings.

 4. Type 3 to select Software Security Center Settings.

 5. Type 1 to select Server URL, and then type the Fortify Software Security Center server URL.

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 39 of 228

 6. To specify proxy settings for the connection, do the following:

 a. Type 2 to select Proxy Server, and then type the name of the proxy server.
Exclude the protocol and port number (for example, some.secureproxy.com).

 b. Type 3 to select Proxy Server Port, and then type the proxy server port number.

 c. To specify a proxy server user name and password, use option 4 for the username and
option 5 for the password.

 7. (Optional) You can also specify the following:
 l Whether to update Fortify Software Security Content from your Fortify Software Security

Center server (option 6)

 l The Fortify Software Security Center user name (option 7)

Removing proxy server settings

If you previously specified proxy server settings for the Fortify Rulepack update server or Fortify
Software Security Center and it is no longer required, you can remove these settings.

To remove the proxy settings for obtaining Fortify Software Security Content updates or connecting
to Fortify Software Security Center:

 1. Navigate to the bin directory from the command line.

 2. At the command prompt, type scapostinstall.

 3. Type 2 to select Settings.

 4. Type 2 to select Fortify Update or type 3 to select Software Security Center Settings.
 5. Type the number that corresponds to the proxy setting you want to remove, and then type a

minus sign (-) to remove the setting.
 6. Repeat step 5 for each proxy setting you want to remove.

Adding trusted certificates

Connection from Fortify Static Code Analyzer to other Fortify Software products and external
systems might require communication over HTTPS. Some examples include:

 l Fortify Static Code Analyzer by default requires an HTTPS connection to communicate with the
LIM server for license management.

The property com.fortify.sca.lim.RequireTrustedSSLCert determines whether the
connection with the LIM server requires a trusted SSL certificate. For more information about this
property, see "LIM license properties" on page 194.

 l The fortifyupdate command-line tool uses an HTTPS connection either automatically during a
Windows system installation or manually (see "Manually installing Fortify Software Security
Content" on page 32) to update Fortify security content.

 l Fortify Static Code Analyzer configured as a Fortify ScanCentral SAST sensor uses an
HTTPS connection to communicate with the Controller.

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 40 of 228

When using HTTPS, Fortify Static Code Analyzer and its applications will by default apply standard
checks to the presented SSL server certificate, including a check to determine if the certificate is
trusted. If your organization runs its own certificate authority (CA) and Fortify Static Code Analyzer
needs to trust connections where the server presents a certificate issued by this CA, you must
configure Fortify Static Code Analyzer to trust the CA. Otherwise, the use of HTTPS connections
might fail.

You must add the trusted certificate of the CA to the Fortify Static Code Analyzer keystore. The
Fortify Static Code Analyzer keystore is in the <sca_install_dir>/jre/lib/security/cacerts
file. You can use the keytool command to add the trusted certificate to the keystore.

To add a trusted certificate to the Fortify Static Code Analyzer keystore:

 1. Open a command prompt, and then run the following command:

<sca_install_dir>/jre/bin/keytool -importcert -alias <alias_name> -
cacerts -file <cert_file>

where:
 l <alias_name> is a unique name for the certificate you are adding.

 l <cert_file> is the name of the file that contains the trusted root certificate in PEM or
DER format.

 2. Enter the keystore password.

Note: The default password is changeit.

 3. When prompted to trust this certificate, select yes.

User Guide
Chapter 2: Installing Fortify Static Code Analyzer

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 41 of 228

Chapter 3: Analysis process overview
This section contains the following topics:

Analysis process 42

Translation phase 43

Mobile build sessions 44

Analysis phase 46

Translation and analysis phase verification 48

Analysis process
There are four distinct phases that make up the analysis process:

 1. Build Integration—Choose whether to integrate Fortify Static Code Analyzer into your build
tool. For descriptions of build integration options, see "Integrating the analysis into a build" on
page 121.

 2. Translation—Gathers source code using a series of commands and translates it into an
intermediate format associated with a build ID. The build ID is usually the name of the project you
are translating. For more information, see "Translation phase" on the next page.

 3. Analysis—Scans source files identified in the translation phase and generates an analysis result
file (typically in the Fortify Project Results (FPR) format). FPR files have the .fpr extension. For
more information, see "Analysis phase" on page 46.

 4. Verification of translation and analysis—Verifies that the source files were scanned using the
correct Rulepacks and that no errors were reported. For more information, see "Translation and
analysis phase verification" on page 48.

OpenText recommends that you perform translation and analysis commands from a user account with
least privilege access. OpenText does not recommend that you run Fortify Static Code Analyzer as a
root user or translate a project that requires root access, because it might not work properly.

The following is the fundamental sequence of commands to translate and analyze code:

 1. Remove all existing Fortify Static Code Analyzer temporary files for the specified build ID.

sourceanalyzer -b MyProject -clean

Always begin an analysis with this step to analyze a project with a previously used build ID.

 2. Translate the project code.

sourceanalyzer -b MyProject <files_to_analyze>

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 42 of 228

For most languages, this step can consist of multiple calls to sourceanalyzer with the same build
ID. For more details, see "Translation phase" below.

 3. Analyze the project code and save the results in a Fortify Project Results(FPR) file.

sourceanalyzer -b MyProject -scan -f MyResults.fpr

For more information, see "Analysis phase" on page 46.

Parallel processing

Fortify Static Code Analyzer runs in parallel analysis mode to reduce the scan time of large projects.
This takes advantage of all CPU cores available on your system. When you run Fortify Static Code
Analyzer, avoid running other CPU intensive processes during the Fortify Static Code Analyzer
execution because it expects to have the full resources of your hardware available for the scan.

Translation phase
To successfully translate a project that is normally compiled, make sure that you have any
dependencies required to build the project available. For languages that have any specific
requirements, see the chapters for the specific source code type.

The basic command-line syntax to perform the first step of the analysis process, file translation, is:

sourceanalyzer -b <build_id> ... <files>

or

sourceanalyzer -b <build_id> ... <compiler_command>

The translation phase consists of one or more invocations of Fortify Static Code Analyzer using the
sourceanalyzer command. Fortify Static Code Analyzer uses a build ID (-b option) to tie the
invocations together. Subsequent invocations of sourceanalyzer add any newly specified source or
configuration files to the file list associated with the build ID.

After translation, you can use the -show-build-warnings directive to list any warnings and errors
that occurred in the translation phase:

sourceanalyzer -b <build_id> -show-build-warnings

To view the files associated with a build ID, use the -show-files directive:

sourceanalyzer -b <build_id> -show-files

User Guide
Chapter 3: Analysis process overview

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 43 of 228

Special considerations for the translation phase

Consider the following special considerations before you perform the translation phase on your
project:

 l When you translate dynamic languages (JavaScript/TypeScript, PHP, Python, and Ruby), you must
specify all source files together in one invocation. Fortify Static Code Analyzer does not support
adding new files to the file list associated with the build ID on subsequent invocations.

 l Generated code is automatically generated by a script or a tool such as a parsing tool. This code
can be optimized, minimized, or large and complex. Therefore, OpenText recommends that you
exclude it from translation because it would be challenging to fix any vulnerabilities Fortify Static
Code Analyzer might report in this code. Use the -exclude command-line option to exclude this
type of code from translation.

The following chapters describe how to translate different types of source code:

 l "Translating Java code" on page 50
 l "Translating Kotlin code" on page 58
 l "Translating Visual Studio projects" on page 62
 l "Translating C and C++ code" on page 68
 l "Translating JavaScript and TypeScript code" on page 71
 l "Translating Python code" on page 77
 l "Translating code for mobile platforms" on page 82
 l "Translating Go code" on page 85
 l "Translating Dart and Flutter code" on page 89
 l "Translating Ruby code" on page 91
 l "Translating COBOL code" on page 93
 l "Translating Salesforce Apex and Visualforce code" on page 98
 l "Translating other languages and configurations" on page 100

Mobile build sessions
With a Fortify Static Code Analyzer mobile build session (MBS), you can translate a project on one
machine and scan it on another. A mobile build session (MBS file) includes all the files needed for the
analysis phase. To improve scan time, you can perform the translation on the build computer, and
then move the build session (MBS file) to a better equipped computer for the scan. The developers
can run translations on their own computers and use only one powerful computer to run large scans.

To include regular expression analysis (see "Regular expression analysis" on page 47) for your project,
OpenText recommends that you include -Dcom.fortify.sca.MobileBuildSessions=true in the
command to create the MBS file so that the source code is included in the MBS. This enables regular
expression analysis to work for the scan on a different computer.

User Guide
Chapter 3: Analysis process overview

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 44 of 228

You must have the same version of Fortify Software Security Content (Rulepacks) installed on both
the system where you perform the translation and the system where you perform the analysis.

Mobile build session version compatibility

The Fortify Static Code Analyzer version on the translate machine must be compatible with the
Fortify Static Code Analyzer version on the analysis machine. The version number format is
<major>.<minor>.<patch>.<build_number> (for example, 24.4.0.0140). The <major> and <minor>
portions of the Fortify Static Code Analyzer version numbers on both the translation and the analysis
machines must match. For example, 24.4.0 and 24.4.x are compatible. To determine the Fortify Static
Code Analyzer version number, type sourceanalyzer -v on the command line.

You can obtain the build ID and the Fortify Static Code Analyzer version from an MBS file with the
following command:

sourceanalyzer -import-build-session <file>.mbs
 -Dcom.fortify.sca.ExtractMobileInfo=true

Creating a mobile build session

On the machine where you performed the translation, issue the following command to generate a
mobile build session:

sourceanalyzer -b <build_id> -export-build-session <file>.mbs

where <file>.mbs is the file name you provide for the Fortify Static Code Analyzer mobile build
session.

To include source code in the MBS file, run the following command:

sourceanalyzer -b <build_id> -Dcom.fortify.sca.MobileBuildSessions=true -
export-build-session <file>.mbs

Importing a mobile build session

After you move the <file>.mbs file to the machine where you want to perform the scan, import the
mobile build session into the Fortify Static Code Analyzer project root directory.

To import the mobile build session, type the following command:

sourceanalyzer -import-build-session <file>.mbs

After you import your Fortify Static Code Analyzer mobile build session, you can proceed to the
analysis phase. Perform a scan with the same build ID that was used in the translation.

You cannot merge multiple mobile build sessions into a single MBS file. Each exported build session
must have a unique build ID. However, after all the build IDs are imported on the same Fortify Static

User Guide
Chapter 3: Analysis process overview

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 45 of 228

Code Analyzer installation, you can scan multiple build IDs in one scan with the -b option (see
"Analysis phase" below).

Analysis phase
The analysis phase scans the intermediate files created during translation and creates the
vulnerability results file (FPR).

The analysis phase consists of one invocation of sourceanalyzer. You specify the build ID and
include the -scan directive with any other required analysis or output options (see "Analysis options"
on page 136 and "Output options" on page 139).

The following example shows the command-line syntax to perform the analysis phase and save the
results in an FPR file:

sourceanalyzer -b MyProject -scan -f MyResults.fpr

Note: By default, Fortify Static Code Analyzer includes the source code in the FPR file.

To combine multiple builds into a single scan command, add the additional builds to the command
line:

sourceanalyzer -b MyProject1 -b MyProject2 -b MyProject3 -scan -f
MyResults.fpr

Applying a scan policy to the analysis

For the analysis (scan) phase, you can specify a scan policy to help you identify the most serious
vulnerabilities so you can remediate the code quickly. The following table describes the three
available scan policies.

Policy name Description

security This is the default scan policy, which excludes issues related to code quality and
dataflow that involves typically trusted locations from the analysis results. Use
this policy to focus code remediation on the security issues.

devops This scan policy excludes issues that are also excluded by the security policy and
reduces the number of reported low-priority issues. Use this scan policy when
scan speed is a priority, and developers review results directly (without any
intermediate auditing). Issues that remain after you apply this scan policy are
probably serious security issues that require remediation.

Note: This devops scan policy does not automatically include any

User Guide
Chapter 3: Analysis process overview

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 46 of 228

Policy name Description

customization made to the local security scan policy.

classic This scan policy does not exclude any issues. Use this scan policy to see all issues,
including those that are code quality related.

To specify a scan policy for your analysis, include the -scan-policy (or -sc) option in the analysis
phase as shown in the following example:

sourceanalyzer -b MyProject -scan -scan-policy devops -f MyResults.fpr

Alternatively, you can specify the scan policy with the com.fortify.sca.ScanPolicy property in
the fortify-sca.properties file. For example:

com.fortify.sca.ScanPolicy=devops

Note: You can apply a filter file (see "Excluding issues with filter files" on page 178) with a scan
policy setting for an analysis. In this case, Fortify Static Code Analyzer applies both the scan
policy and the filter file to the analysis.

The policy files are in the <sca_install_dir>/Core/config/scales directory. There is one file
for each scan policy. You can change the settings in these policy files to customize your scan policies.
For information about the syntax used for the policy files, see "Excluding issues with filter files" on
page 178.

See also

"Translation and analysis phase properties" on page 186

Regular expression analysis

Regular expression (regex) analysis provides the ability for using regular expression rules to detect
vulnerabilities in both file content and file names. This analysis can detect vulnerable secrets such as
passwords, keys, and credentials in project files. The Configuration Analyzer includes the regex
analysis capability.

Important! Regex analysis is language agnostic and therefore it might detect vulnerabilities in
file types that Fortify Static Code Analyzer does not officially support.

Regex analysis recursively examines all file paths and path patterns included in the translation phase.
Every file, for each directory found is analyzed unless it is specifically excluded from the translation.
To manage the files that are included in regex analysis, the following options are available:

 l Exclude any file or directory with the -exclude option in the translation phase.
For more information about this option, see "Translation options" on page 134.

User Guide
Chapter 3: Analysis process overview

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 47 of 228

 l By default, regex analysis excludes all detectible binary files. To include binary files in the analysis,
add the following property to the fortify-sca.properties file (or include this property on the
command line using the -D option):

com.fortify.sca.regex.ExcludeBinaries = false

 l By default, regex analysis excludes files larger than 10 MB to ensure that the scan time is
acceptable. You can change the maximum file size (in megabytes) with the following property:

com.fortify.sca.regex.MaxSize = <max_file_size_mb>

To disable regex analysis, add the following property to the fortify-sca.properties file or
include it on the command line:

com.fortify.sca.regex.Enable = false

See also

"Mobile build sessions" on page 44

"Regex analysis properties " on page 193

Higher-Order Analysis

Higher-Order Analysis (HOA) improves the ability to track dataflow through higher-order code.
Higher-order code manipulates functions as values, generates them with anonymous function
expressions (lambda expressions), passes them as arguments, returns them as values, and assigns
them to variables and to fields of objects. These code patterns are common in modern dynamic
languages such as JavaScript, TypeScript, Python, Ruby, and Swift.

By default, Fortify Static Code Analyzer performs Higher-Order Analysis when you scan JavaScript,
TypeScript, Python, Ruby, and Swift code. For a description of the Higher-Order Analysis properties,
see "Translation and analysis phase properties" on page 186.

Translation and analysis phase verification
Fortify Audit Workbench certification indicates whether the code analysis from a scan is complete and
valid. The project summary in Fortify Audit Workbench shows the following specific information about
Fortify Static Code Analyzer scanned code:

 l List of files scanned, with file sizes and timestamps
 l Java class path used for the translation (if applicable)
 l Rulepacks used for the analysis
 l Fortify Static Code Analyzer runtime settings and command-line options
 l Any errors or warnings encountered during translation or analysis
 l Machine and platform information

User Guide
Chapter 3: Analysis process overview

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 48 of 228

Note: To obtain result certification, you must specify FPR for the analysis phase output format.

To view result certification information, open the FPR file in Fortify Audit Workbench and select Tools
> Project Summary > Certification. For more information, see the OpenText™ Fortify Audit
Workbench User Guide.

User Guide
Chapter 3: Analysis process overview

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 49 of 228

Chapter 4: Translating Java code
This section describes how to translate Java code.

Fortify Static Code Analyzer supports analysis of Jakarta EE (Java EE) applications (including JSP
files, configuration files, and deployment descriptors), Java Bytecode, and Java code with Lombok
annotations.

This section contains the following topics:

Java translation command-line syntax 50

Handling Java warnings 54

Translating Jakarta EE (Java EE) applications 55

Translating Java bytecode 56

Troubleshooting JSP translation and analysis issues 57

Java translation command-line syntax
To translate Java code, all types defined in a library that are referenced in the code must have a
corresponding definition in the source code, a class file, or a JAR file. Include all source files on the
Fortify Static Code Analyzer command line.

If your project contains Java code that refers to Kotlin code, make sure that the Java and Kotlin code
are translated in the same Fortify Static Code Analyzer instance so that the Java references to Kotlin
elements are resolved correctly. Kotlin to Java interoperability does not support Kotlin files provided
by the –sourcepath option. For more information about the –sourcepath option, see "Java
command-line options" on the next page

The basic command-line syntax to translate Java code is shown in the following example:

sourceanalyzer -b <build_id> -cp <classpath> <files>

With Java code, Fortify Static Code Analyzer can either:

 l Emulate the compiler, which might be convenient for build integration
 l Accept source files directly, which is convenient for command-line scans

For information about how to integrate Fortify Static Code Analyzer with Ant, see "Integrating with
Ant" on page 123.

To have Fortify Static Code Analyzer emulate the compiler, type:

sourceanalyzer -b <build_id> javac [<translation_options>]

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 50 of 228

To pass files directly to Fortify Static Code Analyzer, type:

sourceanalyzer -b <build_id> -cp <classpath> [<translation_options>]
<files> | <file_specifiers>

where:

 l <translation_options> are options passed to the compiler.
 l -cp <classpath> specifies the class path to use for the Java source code.

Include all JAR dependencies normally used to build the project. Separate multiple paths with
semicolons (Windows) or colons (non-Windows).

Similar to javac, Fortify Static Code Analyzer loads classes in the order they appear in the class
path. If there are multiple classes with the same name in the list, Fortify Static Code Analyzer uses
the first loaded class. In the following example, if both A.jar and B.jar include a class called
MyData.class, Fortify Static Code Analyzer uses the MyData.class from A.jar.

sourceanalyzer -cp A.jar:B.jar myfile.java

OpenText strongly recommends that you avoid using duplicate classes with the -cp option.
Fortify Static Code Analyzer loads JAR files in the following order:

 a. From the -cp option

 b. From jre/lib
 c. From <sca_install_dir>/Core/default_jars
This enables you to override a library class by including the similarly-named class in a
JAR specified with the -cp option.

For descriptions of all the available Java-specific command-line options, see "Java command-line
options" below.

Java command-line options

The following table describes the Java command-line options (for Java SE and Jakarta EE).

Java or Jakarta EE option Description

-appserver
weblogic | websphere

Specifies the application server to process JSP files.

Equivalent property name:

com.fortify.sca.AppServer

-appserver-home <dir> Specifies the application server’s home.

 l For WebLogic, this is the path to the directory that

contains the server/lib directory.
 l For WebSphere, this is the path to the directory that

User Guide
Chapter 4: Translating Java code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 51 of 228

Java or Jakarta EE option Description

contains the JspBatchCompiler script.

Equivalent property name:

com.fortify.sca.AppServerHome

-appserver-version
<version>

Specifies the version of the application server.

Equivalent property name:

com.fortify.sca.AppServerVersion

-cp <paths> |
-classpath <paths>

Specifies the class path used to analyze Java source code.
The format is the same as javac: a semicolon- or colon-
separated list of directories. You can use Fortify Static Code
Analyzer file specifiers as shown in the following example:

-cp "build/classes:lib/*.jar"

For information about file specifiers, see "Specifying files
and directories" on page 146.

Equivalent property name:

com.fortify.sca.JavaClasspath

-extdirs <dirs> Similar to the javac extdirs option, accepts a semicolon- or
colon-separated list of directories. Any JAR files found in
these directories are included implicitly on the class path.

Equivalent property name:

com.fortify.sca.JavaExtdirs

-java-build-dir <dirs> Specifies one or more directories that contain compiled Java
sources.

-source <version> |
-jdk <version>

Indicates the JDK version for which the Java code is written.
See the Fortify Software System Requirements document
for supported versions. The default is version 11.

Equivalent property name:

com.fortify.sca.JdkVersion

-custom-jdk-dir Specifies a directory that contains a JDK. Use this option to
specify a version that is not included in the Fortify Static

Code Analyzer installation (<sca_install_
dir>/Core/bootcp/). See the Fortify Software System

User Guide
Chapter 4: Translating Java code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 52 of 228

Java or Jakarta EE option Description

Requirements document for supported versions.

Equivalent property name:

com.fortify.sca.CustomJdkDir

-show-unresolved-symbols Displays any unresolved types, fields, and functions
referenced in translated Java source files at the end of the
translation. It lists only field and function references for
which the receiver type is a resolved Java type. Displays
each class, field, and function with the source information of
the first translated occurrence in the code. This information
is also written in the log file.

Equivalent property name:

com.fortify.sca.ShowUnresolvedSymbols

-sourcepath <dirs> Specifies a semicolon- or colon-separated list of directories
that contain source code that is not included in the scan but
is used for name resolution. The source path is similar to
class path, except it uses source files instead of class files for
resolution. Only source files that are referenced by the
target file list are translated.

Equivalent property name:

com.fortify.sca.JavaSourcePath

See also

"Java and Kotlin properties" on page 197

Java command-line examples

To translate a single file named MyServlet.java with javaee.jar as the class path, type:

sourceanalyzer -b MyServlet -cp lib/javaee.jar MyServlet.java

To translate all .java files in the src directory using all JAR files in the lib directory as a class path,
type:

sourceanalyzer -b MyProject -cp "lib/*.jar" "src/**/*.java"

To translate and compile the MyCode.java file with the javac compiler, type:

sourceanalyzer -b MyProject javac -classpath libs.jar MyCode.java

User Guide
Chapter 4: Translating Java code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 53 of 228

Handling Java warnings
To see all warnings that were generated during translation, type the following command before you
start the scan phase:

sourceanalyzer -b <build_id> -show-build-warnings

Java translation warnings

You might see the following warnings in the Java code translation.

Warning Resolution

Unable to resolve type...

Unable to resolve function...

Unable to resolve field...

Unable to locate import...

Unable to resolve symbol...

These warnings are typically caused by
missing resources. For example, some of

the .jar and .class files required to
build the application might not have been
specified.

To resolve these warnings, make sure that
you include all the required files that your
application uses.

Multiple definitions found for class... This warning is typically caused by
duplicate classes in the Java files.

To resolve these warnings, make sure that
the source files displayed in the warning
are not duplicates of the same file
included several times in the sources to
translate (for example if it contains two
versions of the same project). If a
duplicate exists, remove one of them from
the files to translate. Then Fortify Static
Code Analyzer can determine which
version of the class to use.

User Guide
Chapter 4: Translating Java code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 54 of 228

Translating Jakarta EE (Java EE) applications
To translate Jakarta EE applications, Fortify Static Code Analyzer processes Java source files and
Jakarta EE components such as JSP files, deployment descriptors, and configuration files. While you
can process all the pertinent files in a Jakarta EE application in one step, your project might require
that you break the procedure into its components for integration in a build process or to meet the
needs of various stakeholders in your organization.

Translating Java files

To translate Jakarta EE applications, use the same procedure used to translate Java files. For
examples, see "Java command-line examples" on page 53.

Translating JSP projects, configuration files, and deployment
descriptors

In addition to translating the Java files in your Jakarta EE (Java EE) application, you might also need
to translate JSP files, configuration files, and deployment descriptors. Your JSP files must be part of a
Web Application Archive (WAR). If your source directory is already organized in a WAR file format,
you can translate the JSP files directly from the source directory. If not, you might need to deploy
your application and translate the JSP files from the deployment directory.

For example:

sourceanalyzer -b MyJavaApp "/**/*.jsp" "/**/*.xml"

where /**/*.jsp refers to the location of your JSP project files and /**/*.xml refers to the location
of your configuration and deployment descriptor files.

Jakarta EE (Java EE) translation warnings

You might see the following warning in the translation of Jakarta EE applications:

Could not locate the root (WEB-INF) of the web application. Please build
your web application and try again. Failed to parse the following jsp
files:

<list_of_jsp_files>

This warning indicates that your web application is not deployed in the standard WAR directory
format or does not contain the full set of required libraries. To resolve the warning, make sure that
your web application is in an exploded WAR directory format with the correct WEB-INF/lib and
WEB-INF/classes directories that contain all the .jar and .class files required for your

User Guide
Chapter 4: Translating Java code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 55 of 228

application. Also verify that you have all the TLD files for all your tags and the corresponding JAR files
with their tag implementations.

Translating Java bytecode
OpenText recommends that you do not translate Java bytecode and JSP/Java code in the same call
to sourceanalyzer. Use multiple invocations of sourceanalyzer with the same build ID to
translate a project that contains both bytecode and JSP/Java code.

To translate bytecode:

 1. Add the following properties to the fortify-sca.properties file (or include these properties
on the command line using the -D option):

com.fortify.sca.fileextensions.class=BYTECODE
com.fortify.sca.fileextensions.jar=ARCHIVE

This specifies how Fortify Static Code Analyzer processes .class and .jar files.
 2. Do one of the following:

 l Request that Fortify Static Code Analyzer decompile the bytecode classes to regular Java files
for inclusion in the translation.

Add the following property to the fortify-sca.properties file:

com.fortify.sca.DecompileBytecode=true

or include this property on the command line for the translation phase with the -D option:

sourceanalyzer -b MyProject -Dcom.fortify.sca.DecompileBytecode=true
-cp "lib/*.jar" "src/**/*.class"

 l Request that Fortify Static Code Analyzer translate bytecode without decompilation.

For best results, OpenText recommends that the bytecode be compiled with full debug
information (javac -g).
Include bytecode in the translation phase by specifying the Java bytecode files that you want
to translate. For best performance, specify only the .jar or .class files that require
scanning. In the following example, the .class files are translated:

sourceanalyzer -b MyProject -cp "lib/*.jar" "src/**/*.class"

User Guide
Chapter 4: Translating Java code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 56 of 228

Troubleshooting JSP translation and analysis issues
The following sections provide troubleshooting information for JSP analysis.

Unable to translate some JSPs

Fortify Static Code Analyzer uses either the built-in compiler or your specific application server JSP
compiler to translate JSP files into Java files for analysis. If the JSP parser encounters problems when
Fortify Static Code Analyzer converts JSP files to Java files, you will see a message similar to the
following:

Failed to translate the following jsps into analysis model. Please see the
log file for any errors from the jsp parser and the user manual for hints
on fixing those
<list_of_jsp_files>

This typically happens for one or more of the following reasons:

 l The web application is not laid out in a proper deployable WAR directory format
 l Some JAR files or classes required for the application are missing
 l Some tag libraries or their definitions (TLD) for the application are missing

To obtain more information about the problem, perform the following steps:

 1. Open the Fortify Static Code Analyzer log file in an editor.

 2. Search for the following strings:
 l Jsp parser stdout:

 l Jsp parser stderr:

The JSP parser generates these errors. Resolve the errors and rerun Fortify Static Code Analyzer.

For more information about how to analyze Jakarta EE applications, see "Translating Jakarta EE (Java
EE) applications" on page 55.

Increased issues count in JSP-related categories

If the analysis results contain a considerable increase in the number of vulnerabilities in JSP-related
categories such as cross-site scripting compared with earlier Fortify Static Code Analyzer versions,
you can specify the -legacy-jsp-dataflow option in the analysis phase (with the -scan option).
This option enables additional filtering on JSP-related dataflow to reduce the number of spurious
false positives detected.

The equivalent property for this option that you can specify in the fortify-sca.properties file is
com.fortify.sca.jsp.LegacyDataflow.

User Guide
Chapter 4: Translating Java code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 57 of 228

Chapter 5: Translating Kotlin code
This section describes how to translate Kotlin code.

This section contains the following topics:

Kotlin command-line syntax 58

Kotlin and Java translation interoperability 60

Translating Kotlin scripts 61

Kotlin command-line syntax
The translation of Kotlin code is similar to the translation of Java code. To translate Kotlin code, all
types defined in a library that are referenced in the code must have a corresponding definition in the
source code, a class file, or a JAR file. Include all source files on the Fortify Static Code Analyzer
command line.

The basic command-line syntax to translate Kotlin code is shown in the following example:

sourceanalyzer –b <build_id> -cp <classpath> [<translation_options>]
<files>

where

 l -cp <classpath> specifies the class path to use for the Kotlin source code.
Include all JAR dependencies normally used to build the project. Separate multiple paths with
semicolons (Windows) or colons (non-Windows).

Fortify Static Code Analyzer loads classes in the order they appear in the class path. If there are
multiple classes with the same name in the list, Fortify Static Code Analyzer uses the first loaded
class. In the following example, if both A.jar and B.jar include a class called MyData.class,
Fortify Static Code Analyzer uses the MyData.class from A.jar.

sourceanalyzer –cp "A.jar:B.jar" myfile.kt

OpenText strongly recommends that you avoid using duplicate classes with the -cp option.

For descriptions of all the available Kotlin-specific command-line options, see "Kotlin command-line
options" on the next page.

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 58 of 228

Kotlin command-line options

The following table describes the Kotlin-specific command-line options.

Kotlin option Description

-cp <paths> |
-classpath <paths>

Specifies the class path used to analyze Kotlin source code,
which is a semicolon- or colon-separated list of directories.
You can use Fortify Static Code Analyzer file specifiers as
shown in the following example:

-cp "build/classes:lib/*.jar"

For information about file specifiers, see "Specifying files
and directories" on page 146.

Equivalent property name:

com.fortify.sca.JavaClasspath

-source <version> |
-jdk <version>

Indicates the JDK version for which the Kotlin code is
written. See the Fortify Software System Requirements
document for supported versions. The default is version 11.

Equivalent property name:

com.fortify.sca.JdkVersion

-sourcepath <dirs> Specifies a semicolon- or colon-separated list of directories
that contain Java source code that is not included in the
scan but is used for name resolution. The source path is
similar to class path, except it uses source files instead of
class files for resolution. Only source files that are
referenced by the target file list are translated.

Equivalent property name:

com.fortify.sca.JavaSourcePath

-jvm-default <mode> Specifies the generation of the DefaultImpls class for
methods with bodies in Kotlin interfaces. The valid values
for <mode> are:

 l disable—Specifies to generate the DefaultImpls class
for each interface that contains methods with bodies.

 l all—Specifies to generate the DefaultImpls class if an
interface is annotated with

User Guide
Chapter 5: Translating Kotlin code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 59 of 228

Kotlin option Description

@JvmDefaultWithCompatibility.
 l all-compatibility—Specifies to generate the

DefaultImpls class unless an interface is annotated
with @JvmDefaultWithoutCompatibility.

Equivalent property name:

com.fortify.sca.KotlinJvmDefault

See also

"Java and Kotlin properties" on page 197

Kotlin command-line examples

To translate a single file named MyKotlin.kt with A.jar as the class path, type:

sourceanalyzer -b MyProject -cp lib/A.jar MyKotlin.kt

To translate all .kt files in the src directory using all JAR files in the lib directory as a class path,
type:

sourceanalyzer -b MyProject -cp "lib/**/*.jar" "src/**/*.kt"

To translate a gradle project using gradlew, type:

sourceanalyzer -b MyProject gradlew clean assemble

To translate all files in the src directory using Java dependencies from src/java and all JAR files in
the lib directory and subdirectories as a class path, type:

sourceanalyzer –b MyProject –cp "lib/**/*.jar" -sourcepath "src/java" "src"

Kotlin and Java translation interoperability
If your project contains Kotlin code that refers to Java code, you can provide Java files to the
translator the same way as Kotlin files that refers to another Kotlin file. You can provide them as part
of the translated project source or as –sourcepath parameters.

If your project contains Java code that refers to Kotlin code, make sure that the Java and Kotlin code
are translated in the same Fortify Static Code Analyzer instance so that the Java references to Kotlin
elements are resolved correctly. Kotlin to Java interoperability does not support Kotlin files provided
by the –sourcepath option. For more information about the –sourcepath option, see "Kotlin
command-line options" on the previous page

User Guide
Chapter 5: Translating Kotlin code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 60 of 228

Translating Kotlin scripts
Fortify Static Code Analyzer supports translation of Kotlin scripts excluding experimental script
customization. Script customization includes adding external properties, providing static or dynamic
dependencies, and so on. Script definitions (templates) are used to create custom scripts and the
template is applied to the script based on the *.kts extension. Fortify Static Code Analyzer
translates *.kts files but does not apply these templates.

User Guide
Chapter 5: Translating Kotlin code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 61 of 228

Chapter 6: Translating Visual Studio projects
Fortify Static Code Analyzer provides a build integration to support translation of the following Visual
Studio project types:

 l C/C++ projects
 l C# projects that target .NET Framework and .NET Core
 l ASP.NET applications that target ASP.NET framework and ASP.NET Core
 l Xamarin applications that target Android and iOS platforms

For a list of supported versions of relevant programming languages and frameworks, as well as Visual
Studio and MSBuild, see the Fortify Software System Requirements document.

This section contains the following topics:

Visual Studio Project translation prerequisites 62

Visual Studio Project command-line syntax 62

Handling special cases for translating Visual Studio projects 64

Alternative ways to translate Visual Studio projects 66

Visual Studio Project translation prerequisites
OpenText recommends that each project you translate is complete and that you perform the
translation in an environment where you can build it without errors. For a list of software environment
requirements, see the Fortify Software System Requirements document. A complete project contains
the following:

 l All necessary source code files (C/C++, C#, or VB.NET).
 l All required reference libraries.

This includes those from relevant frameworks, NuGet packages, and third-party libraries.
 l For C/C++ projects, include all necessary header files that do not belong to the Visual Studio or

MSBuild installation.
 l For ASP.NET and ASP.NET Core projects, include all the necessary ASP.NET page files.

The supported ASP.NET page types are ASAX, ASCX, ASHX, ASMX, ASPX, AXML, BAML, CSHTML,
Master, RAZOR, VBHTML, and XAML.

Visual Studio Project command-line syntax
The basic syntax to translate a Visual Studio solution or project is to specify the corresponding build
option for your project as part of the Fortify Static Code Analyzer translation command. This starts a

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 62 of 228

build integration that analyzes your solution and project files and automatically executes the
appropriate translation steps.

Important! To ensure that the build integration correctly pulls in all of the appropriate project
dependencies and resources, you must run the Fortify Static Code Analyzer command from a
command prompt with access to your build environment configuration. OpenText strongly
recommends you run this command from the Developer Command Prompt for Visual Studio to
ensure an optimal environment for the translation.

In the following examples, Fortify Static Code Analyzer translates all the projects contained in the
Visual Studio solution Sample.sln. You can also translate one or more specific projects by providing
a semicolon-separated list of projects.

 l For a .NET 6.0 or later solution on Windows or Linux, use the following commands to translate the
solution:

 a. Optionally, run the following command to remove any intermediate files from previous project
builds:

dotnet clean Sample.sln

 b. Optionally, run the following command to ensure that all required reference libraries are
downloaded and installed in the project. Run this command from the top-level folder of the
project:

dotnet restore Sample.sln

 c. Run one of the following Fortify Static Code Analyzer commands depending on how your
project build is implemented. You can include any additional build parameters in this command:

sourceanalyzer –b MyProject dotnet msbuild Sample.sln

or

sourceanalyzer –b MyProject dotnet build Sample.sln

 l For a C, C++, and .NET Framework solution (4.8.x or earlier) on Windows, use the following
command to translate the solution:

sourceanalyzer –b MyProject msbuild /t:rebuild [<msbuild_options>]
Sample.sln

Note: If you run Fortify Static Code Analyzer from a Windows Command Prompt instead of the
Visual Studio Developer Command Prompt, you must set up the environment and make sure
the path to the MSBuild executable required to build your project is included in the PATH
environment variable.

User Guide
Chapter 6: Translating Visual Studio projects

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 63 of 228

After the translation is complete, perform the analysis phase and save the results in an FPR file as
shown in the following example:

sourceanalyzer –b MyProject -scan -f MyResults.fpr

Handling special cases for translating Visual Studio
projects

Running translation from a script

To perform the translation in a non-interactive mode such as with a script, establish an optimal
environment for translation by executing the following command before you run the Fortify Static
Code Analyzer translation:

cmd.exe /k <vs_install_dir>/Common7/Tools/VSDevCmd.bat

where <vs_install_dir> is the directory where you installed Visual Studio.

Translating plain .NET and ASP.NET projects

You can translate plain .NET and ASP.NET projects from the Windows Command Prompt as well as
from a Visual Studio environment. When you translate from the Windows Command Prompt, make
sure the path to the MSBuild executable required to build your project is included in the PATH
environment variable.

Translating C/C++ and Xamarin projects

You must translate C/C++ and Xamarin projects either from a Developer Command Prompt for Visual
Studio or from the Fortify Extension for Visual Studio.

Note: For Xamarin projects, there is no need to use a custom rule for the Xamarin.Android API if a
rule for the corresponding native Android API exists in the Fortify Secure Coding Rulepacks.
Doing so can cause duplicate issues to be reported.

User Guide
Chapter 6: Translating Visual Studio projects

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 64 of 228

Translating projects with settings containing spaces

If your project is built with a configuration or other settings file that contains spaces, make sure to
enclose the setting values in quotes. For example, to translate a Visual Studio solution Sample.sln
that is built with configuration My Configuration, use the following command:

sourceanalyzer –b MySampleProj msbuild /t:rebuild
 /p:Configuration="My Configuration" Sample.sln

Translating a single project from a Visual Studio solution

If your Visual Studio solution contains multiple projects, you have the option to translate a single
project instead of the entire solution. Project files have a file name extension that ends with proj
such as .vcxproj and .csproj. To translate a single project, specify the project file instead of the
solution as the parameter for the MSBuild command.

The following example translates the Sample.vcxproj project file:

sourceanalyzer –b MySampleProj msbuild /t:rebuild Sample.vcxproj

Analyzing projects that build multiple executable files

If your Visual Studio or MSBuild project builds multiple executable files (such as files with the file
name extension *.exe), OpenText strongly recommends that you run the analysis phase separately
for each executable file to avoid false positive issues in the analysis results. To do this, use the –
binary-name option when you run the analysis phase and specify the executable file name or .NET
assembly name as the parameter.

The following example shows how to translate and analyze a Visual Studio solution Sample.sln that
consists of two projects, Sample1 (a C++ project with no associated .NET assembly name) and
Sample2 (a .NET project with .NET assembly name Sample2). Each project builds a separate
executable file, Sample1.exe and Sample2.exe, respectively. The analysis results are saved in
Sample1.fpr and Sample2.fpr files.

sourceanalyzer -b MySampleProj msbuild /t:rebuild Sample.sln
 sourceanalyzer -b MySampleProj -scan -binary-name Sample1.exe -f
Sample1.fpr
 sourceanalyzer -b MySampleProj -scan -binary-name Sample2.exe -f
Sample2.fpr

For more information about the -binary-name option, see "Analysis options" on page 136.

User Guide
Chapter 6: Translating Visual Studio projects

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 65 of 228

Alternative ways to translate Visual Studio projects
This section describes alternative methods of translating Visual Studio projects.

Alternative translation options for Visual Studio solutions

The following are two alternative ways of translation available only for Visual Studio solutions:

 l Use the Fortify Extension for Visual Studio

The Fortify Extension for Visual Studio runs the translation and analysis (scan) phases together in
one step.

 l Append a devenv command to the Fortify Static Code Analyzer command

The following command translates the Visual Studio solution Sample.sln:

sourceanalyzer –b MySampleProj devenv Sample.sln /rebuild

Note that Fortify Static Code Analyzer converts a devenv invocation to the equivalent MSBuild
invocation, therefore in this case, the solution with this command is built by MSBuild instead of the
devenv tool.

Translating without explicitly running Fortify Static Code
Analyzer

You have the option to translate your Visual Studio project without invoking Fortify Static Code
Analyzer directly. This requires the Fortify.targets file, which is located in <sca_install_
dir>\Core\private-bin\sca\MSBuildPlugin in the DotNet and Framework directory. You can
specify the file using an absolute or relative path in the build command line that builds your project.
Use the path with the Dotnet or Framework directory depending on the build command you are
using: dotnet.exe or MSBuild.exe respectively. For example:

dotnet.exe msbuild /t:rebuild /p:CustomAfterMicrosoftCommonTargets=<sca_
install_dir>\Core\private-bin\sca\MSBuildPlugin\Dotnet\Fortify.targets
Sample.sln

or

msbuild.exe /t:rebuild
 /p:CustomAfterMicrosoftCommonTargets=<sca_install_dir>\Core\private-
bin\sca\MSBuildPlugin\Framework\Fortify.targets Sample.sln

User Guide
Chapter 6: Translating Visual Studio projects

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 66 of 228

There are several environment variables that you can set to configure the translation of your project.
Most of them have default values, which Fortify Static Code Analyzer uses if the variable is not set.
These variables are listed in the following table.

Environment
variable Description Default value

FORTIFY_
MSBUILD_
BUILDID

Specifies the Fortify Static Code Analyzer
build ID for translation. Make sure that you
set this value.

This is equivalent to the Fortify Static Code

Analyzer -b option.

None

FORTIFY_
MSBUILD_
DEBUG

Enables debug mode. This is equivalent to

the Fortify Static Code Analyzer –debug
option.

False

FORTIFY_
MSBUILD_
DEBUG_
VERBOSE

Enables verbose debug mode. This is
equivalent to the Fortify Static Code

Analyzer –debug-verbose option. Takes
precedence over FORTIFY_MSBUILD_
DEBUG variable if both are set to true.

False

FORTIFY_
MSBUILD_MEM

Specifies the memory requirements for

translation in the form of the JVM -Xmx
option. For example, -Xmx2G.

Automatic allocation based on
physical memory available on
the system

FORTIFY_
MSBUILD_
SCALOG

Specifies the location (absolute path) of the
Fortify Static Code Analyzer log file.

This is equivalent to the Fortify Static Code

Analyzer -logfile option.

%LOCALAPPDATA%/Fortify/
sca/log/sca.log

User Guide
Chapter 6: Translating Visual Studio projects

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 67 of 228

Chapter 7: Translating C and C++ code
This section describes how to translate C and C++ code.

Important! The chapter describes how to translate C and C++ code that is not a part of a Visual
Studio or MSBuild project. For instructions on how to translate Visual Studio or MSBuild projects,
see "Translating Visual Studio projects" on page 62.

This section contains the following topics:

C and C++ Code translation prerequisites 68

C and C++ command-line syntax 68

Scanning pre-processed C and C++ code 69

C/C++ Precompiled Header Files 70

C and C++ Code translation prerequisites
Make sure that you have any dependencies required to build the project available, including headers
for third-party libraries. Fortify Static Code Analyzer translation does not require object files and
static/dynamic library files.

Note: Fortify Static Code Analyzer might not support all non-standard C++ constructs.

If you use Gradle to build your C++ project, make sure that the C++ Application Plugin is added to
your Gradle file in one of the following formats:

apply plugin: 'cpp'

plugins {
 id 'cpp-application'
 }

See also

"Using Gradle integration" on page 125

C and C++ command-line syntax
Command-line options passed to the compiler affect preprocessor execution and can enable or
disable language features and extensions. For Fortify Static Code Analyzer to interpret your source
code in the same way as the compiler, the translation phase for C/C++ source code requires the

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 68 of 228

complete compiler command line. Prefix your original compiler command with the sourceanalyzer
command and options.

The basic command-line syntax for translating a single file is:

sourceanalyzer -b <build_id> [<sca_options>] <compiler> [<compiler_
options>] <file>.c

where:

 l <sca_options> are options passed to Fortify Static Code Analyzer.
 l <compiler> is the name of the C/C++ compiler you use, such as gcc, g++, or cl. See the Fortify

Software System Requirements document for a list of supported C/C++ compilers.
 l <compiler_options> are options passed to the C/C++ compiler.
 l <file>.c must be in ASCII or UTF-8 encoding.

Note: All Fortify Static Code Analyzer options must precede the compiler options.

The compiler command must successfully complete when executed on its own. If the compiler
command fails, then the Fortify Static Code Analyzer command prefixed to the compiler command
also fails.

For example, if you compile a file with the following command:

gcc -I. -o hello.o -c helloworld.c

then you can translate this file with the following command:

sourceanalyzer -b MyProject gcc -I. -o hello.o -c helloworld.c

Fortify Static Code Analyzer executes the original compiler command as part of the translation phase.
In the previous example, the command produces both the translated source suitable for scanning, and
the object file hello.o from the gcc execution. You can use the Fortify Static Code Analyzer -nc
option to disable the compiler execution.

Scanning pre-processed C and C++ code
If, before compilation, your C/C++ build executes a third-party C preprocessor that Fortify Static Code
Analyzer does not support, you must start the Fortify Static Code Analyzer translation on the
intermediate file. Fortify Static Code Analyzer touchless build integration automatically translates the
intermediate file provided that your build executes the unsupported preprocessor and supported
compiler as two commands connected by a temporary file rather than a pipe chain.

User Guide
Chapter 7: Translating C and C++ code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 69 of 228

C/C++ Precompiled Header Files
Some C/C++ compilers support Precompiled Header Files, which can improve compilation
performance. Some compilers' implementations of this feature have subtle side-effects. When the
feature is enabled, the compiler might accept erroneous source code without warnings or errors. This
can result in a discrepancy where Fortify Static Code Analyzer reports translation errors even when
your compiler does not.

If you use your compiler's Precompiled Header feature, disable Precompiled Headers, and then
perform a full build to make sure that your source code compiles cleanly.

User Guide
Chapter 7: Translating C and C++ code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 70 of 228

Chapter 8: Translating JavaScript and
TypeScript code
You can analyze JavaScript projects that contain JavaScript, TypeScript, JSX, and TSX source files, as
well as JavaScript embedded in HTML files.

Some JavaScript frameworks are transpiled (source-to-source compilation) to plain JavaScript, which
is generated code. Use the -exclude command-line option to exclude this type of code.

When you translate JavaScript and TypeScript code, make sure that you specify all source files
together in one invocation. Fortify Static Code Analyzer does not support adding new files to the file
list associated with the build ID on subsequent invocations.

Fortify Static Code Analyzer does not translate minified JavaScript (*.min.js).

Note: There are some types of minified JavaScript files that Fortify Static Code Analyzer cannot
automatically detect for exclusion from the translation. Use the -exclude command-line option
to exclude these files directly.

This section contains the following topics:

Translating pure JavaScript projects 71

Excluding dependencies 72

Managing issue detection in NPM dependencies 72

Translating JavaScript projects with HTML files 75

Including external JavaScript or HTML in the translation 75

Translating pure JavaScript projects
The basic command-line syntax to translate JavaScript is:

sourceanalyzer –b <build_id> <js_file_or_dir>

where <js_file_or_dir> is either the name of the JavaScript file to be translated or a directory that
contains multiple JavaScript files. You can also translate multiple files by specifying *.js for the <js_
file_or_dir>.

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 71 of 228

Excluding dependencies
You can avoid translating specific dependencies by adding them to the appropriate property setting
in the fortify-sca.properties file. Files specified in the following properties are not translated:

 l com.fortify.sca.skip.libraries.ES6
 l com.fortify.sca.skip.libraries.jQuery
 l com.fortify.sca.skip.libraries.javascript
 l com.fortify.sca.skip.libraries.typescript

Each property specifies a list of comma- or colon-separated file names (without path information).

The files specified in these properties apply to both local files and files on the internet. Suppose, for
example, that the JavaScript code includes the following local file reference:

<script src="js/jquery-ui.js" type="text/javascript" charset="utf-
8"></script>

By default, the com.fortify.sca.skip.libraries.jQuery property in the fortify-
sca.properties file includes jquery-us.js, and therefore Fortify Static Code Analyzer does not
translate the file shown in the previous example.

You can use regular expressions for the file names. Note that Fortify Static Code Analyzer
automatically inserts the regular expression '(-?\d+\.\d+\.\d+)?' before .min.js or .js for
each file name included in the com.fortify.sca.skip.libraries.jQuery property value.

Note: You can also exclude local files or entire directories with the -exclude command-line
option. For more information about this option, see "Translation options" on page 134.

To provide a thorough analysis, dependent files are included in the translation even if the
dependency is in a language that is disabled with the -disable-language option. For more
information about the option to disable languages, see "Translation options" on page 134).

Managing issue detection in NPM dependencies
By default, Fortify Static Code Analyzer does not report issues in NPM dependencies (files in the
node_modules directory). This is configured with the com.fortify.sca.exclude.node.modules
property, which is set to true by default.

Setting the com.fortify.sca.exclude.node.modules property to false directs Fortify Static
Code Analyzer to use the following options, which determines what results to report for
NPM dependencies:

 l The com.fortify.sca.follow.imports property is enabled by default and directs Fortify
Static Code Analyzer to resolve all imported files (including NPM dependencies) used in the project

User Guide
Chapter 8: Translating JavaScript and TypeScript code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 72 of 228

and include them in the translation and the subsequent analysis. For resolution to find imported
files within the project, Fortify Static Code Analyzer uses an algorithm similar to Node.js (see the
Node.js website for more information).

Setting this property to false prevents imported NPM dependencies that are not explicitly included
on the command-line from being included in the translation and analysis.

 l The com.fortify.sca.exclude.unimported.node.modules property is enabled by default
and directs Fortify Static Code Analyzer to exclude node_modules directories that are not
referenced by the project. This property is enabled by default to avoid translating dependencies
that are not needed for the final project such as those only required for the build system.

Setting this property to false causes Fortify Static Code Analyzer to include in the translation (and
subsequent analysis) all modules discovered during resolution (with the
com.fortify.sca.follow.imports property enabled) that are not referenced by the project.

You can use the -exclude option together with the two properties listed previously to specifically
exclude modules. Use of this option takes precedence over the previously described property
configurations.

Note: OpenText does not recommend using the -exclude option to exclude node modules if
com.fortify.sca.exclude.node.modules is set to true, because it can change the quality
of the results.

See also

"Examples of excluding NPM dependencies" below

Examples of excluding NPM dependencies

The following examples illustrate three different scenarios for excluding NPM dependencies. All these
examples use the following directory structure:

./
 RootProjectDir
 innerSrcDir
 node_modules
 innerProjectReferencedModule
 index.ts
 moduleNotReferencedByProject
 index.ts
 innerProject.ts (contains import from innerProjectReferencedModule)
 node_modules
 projectReferencedModule
 index.ts
 moduleNotReferencedByProject
 index.ts
 projectMain.ts (contains import from projectReferencedModule)

User Guide
Chapter 8: Translating JavaScript and TypeScript code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 73 of 228

Example 1

This example shows the files are translated with
com.fortify.sca.exclude.unimported.node.modules set to false. In this case,
com.fortify.sca.follow.imports and
com.fortify.sca.exclude.unimported.node.modules are both set to true.

sourceanalyzer RootProjectDir/ -Dcom.fortify.sca.exclude.node.modules=false

The following files are included in the translation for Example 1:

./RootProjectDir/innerSrcDir/innerProject.ts
 ./RootProjectDir/innerSrcDir/node_
modules/innerProjectReferencedModule/index.ts
 ./RootProjectDir/projectMain.ts
 ./RootProjectDir/node_modules/projectReferencedModule/index.ts

Example 2

This example shows that in addition to modules referenced by the project, modules found during
resolution but not referenced by the project are also included in the translation.

sourceanalyzer RootProjectDir/ -
Dcom.fortify.sca.exclude.unimported.node.modules=false

The following files are included in the translation for Example 2:

./RootProjectDir/innerSrcDir/innerProject.ts
 ./RootProjectDir/innerSrcDir/node_
modules/innerProjectReferencedModule/index.ts
 ./RootProjectDir/innerSrcDir/node_
modules/moduleNotReferencedByProject/index.ts
 ./RootProjectDir/projectMain.ts
 ./RootProjectDir/node_modules/projectReferencedModule/index.ts
 ./RootProjectDir/node_modules/moduleNotReferencedByProject/index.ts

Example 3

This example shows use of the -exclude option to exclude all files under any node_modules
directory. The -exclude option overrides resolution of modules based on the configuration of the
com.fortify.sca.follow.imports and
com.fortify.sca.exclude.unimported.node.modules properties.

sourceanalyzer RootProjectDir/ -exclude "**/node_modules/*.*"

The following files are included in the translation for Example 3:

./RootProjectDir/innerSrcDir/innerProject.ts
 ./RootProjectDir/projectMain.ts

User Guide
Chapter 8: Translating JavaScript and TypeScript code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 74 of 228

Translating JavaScript projects with HTML files
If the project contains HTML files in addition to JavaScript files, set the
com.fortify.sca.EnableDOMModeling property to true in the fortify-sca.properties file or
on the command line as shown in the following example:

sourceanalyzer –b MyProject <js_file_or_dir>
 -Dcom.fortify.sca.EnableDOMModeling=true

When you set the com.fortify.sca.EnableDOMModeling property to true, this can decrease false
negative reports of DOM-related attacks, such as DOM-related cross-site scripting issues.

Note: If you enable this option, Fortify Static Code Analyzer generates JavaScript code to model
the DOM tree structure in the HTML files. The duration of the analysis phase might increase
(because there is more translated code to analyze).

If you set the com.fortify.sca.EnableDOMModeling property to true, you can also specify
additional HTML tags for Fortify Static Code Analyzer to include in the DOM modeling with the
com.fortify.sca.DOMModeling.tags property. By default, Fortify Static Code Analyzer includes
the following HTML tags: body, button, div, form, iframe, input, head, html, and p.

For example, to additionaly include the HTML tags ul and li in the DOM model, use the following
command:

sourceanalyzer –b MyProject <js_file_or_dir>
 -Dcom.fortify.sca.DOMModeling.tags=ul,li

Including external JavaScript or HTML in the
translation

To include external JavaScript or HTML files that are specified with the src attribute, you can specify
which domains Fortify Static Code Analyzer can download and include in the translation phase. To do
this, specify one or more domains with the
com.fortify.sca.JavaScript.src.domain.whitelist property.

Note: You can also set this property globally in the fortify-sca.properties file.

For example, you might have the following statement in your HTML file:

<script src='http://xyzdomain.com/foo/bar.js' language='text/javascript'/>
</script>

User Guide
Chapter 8: Translating JavaScript and TypeScript code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 75 of 228

If you are confident that the xyzdomain.com domain is a safe location from which to download files,
then you can include it in the translation phase by adding the following property specification on the
command line:

-Dcom.fortify.sca.JavaScript.src.domain.whitelist="xyzdomain.com/foo"

Note: You can omit the www. prefix from the domain in the property value. For example, if the src
tag in the original HTML file specifies to download files from www.google.com, you can specify
just the google.com domain.

To trust more than one domain, include each domain separated by the vertical bar character (|) as
shown in the following example:

-Dcom.fortify.sca.JavaScript.src.domain.whitelist=
 "xyzdomain.com/foo|abcdomain.com|123.456domain.com”

If you are using a proxy server, then you need to include the proxy server information on the
command line as shown in the following example:

-Dhttp.proxyHost=example.proxy.com -Dhttp.proxyPort=8080

For a complete list of proxy server options, see the Networking Properties Java documentation.

User Guide
Chapter 8: Translating JavaScript and TypeScript code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 76 of 228

Chapter 9: Translating Python code

Fortify Static Code Analyzer translates Python applications, and processes files with the .py
extension as Python source code. Fortify Static Code Analyzer supports translation of the Django and
Flask frameworks.

This section contains the following topics:

Python translation command-line syntax 77

Translating Python in a virtual environment 79

Including imported modules and packages 80

Including namespace packages 80

Translating Django and Flask 81

Python translation command-line syntax
The basic command-line syntax to translate Python code is:

sourceanalyzer -b <build_id> -python-version <python_version>
 -python-path <dirs> <files>

Note: When you translate Python code, make sure that you specify all source files together in one
invocation. Fortify Static Code Analyzer does not support adding new files to the file list
associated with the build ID on subsequent invocations.

Python command-line options

The following table describes the Python options.

Python option Description

-python-version
<version>

Specifies the Python source code version to scan. The valid values for

<version> are 2 and 3. The default value is 3.

Equivalent property name:

com.fortify.sca.PythonVersion

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 77 of 228

Python option Description

-python-no-auto-
root-calculation

Disables the automatic calculation of a common root directory of all
project source files to use for importing modules and packages.

Equivalent property name:

com.fortify.sca.PythonNoAutoRootCalculation

-python-path
<dirs>

Specifies a semicolon-separated (Windows) or colon-separated (non-

Windows) list of additional import directories. You can use the -python-
path option to specify all paths used to import packages or modules.
Include all paths to namespace package directories with this option.
Fortify Static Code Analyzer sequentially searches the specified paths for
each imported file and uses the first file encountered.

Equivalent property name:

com.fortify.sca.PythonPath

-django-template-
dirs <dirs>

Specifies a semicolon-separated (Windows) or colon-separated (non-
Windows) list of directories that contain Django templates. Fortify Static
Code Analyzer sequentially searches the specified paths for each Django
template file and uses the first template file encountered.

Equivalent property name:

com.fortify.sca.DjangoTemplateDirs

-django-disable-
autodiscover

Specifies that Fortify Static Code Analyzer does not automatically
discover Django templates.

Equivalent property name:

com.fortify.sca.DjangoDisableAutodiscover

-jinja-template-
dirs <dirs>

Specifies a semicolon-separated (Windows) or colon-separated (non-
Windows) list of directories that contain Jinja2 templates. Fortify Static
Code Analyzer sequentially searches the specified paths for each Jinja2
template file and uses the first template file encountered.

Equivalent property name:

com.fortify.sca.JinjaTemplateDirs

-disable-template-
autodiscover

Specifies that Fortify Static Code Analyzer does not automatically
discover Django or Jinja2 templates.

Equivalent property name:

com.fortify.sca.DisableTemplateAutodiscover

User Guide
Chapter 9: Translating Python code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 78 of 228

See also

"Python properties" on page 202

Python command-line examples

Translate Python 3 code on Windows:

sourceanalyzer -b Python3Proj -python-path
"C:\Python312\Lib;C:\Python312\Lib\site-packages" src/*.py

Translate Python 2 code on Windows:

sourceanalyzer -b MyPython2 -python-version 2 -python-path
"C:\Python27\Lib;C:\Python27\Lib\site-packages" src/*.py

Translate Python 3 code on non-Windows:

sourceanalyzer -b Python3Proj -python-path
/usr/lib/python3.12:/usr/local/lib/python3.12/site-packages src/*.py

Translate Python 2 code on non-Windows:

sourceanalyzer -b MyPython2 -python-version 2 -python-path
/usr/lib/python2.7:/usr/local/lib/python2.7/site-packages src/*.py

Translating Python in a virtual environment
This section describes how to translate Python projects in virtual environments. Make sure that all
project dependencies are installed in your virtual environment. To translate a Python project in a
virtual environment, include the -python-path option to specify the project dependencies.

Python virtual environment example

To translate a Python project where the virtual environment name is myenv and the dependencies for
the project are installed in the myenv/lib/python<version>/site-packages directory, type:

sourceanalyzer –b mybuild -python-path "myenv/lib/python<version>/site-
packages/" myproject/

Conda environment example

To translate a Python project where the conda environment name is myenv and the project
dependencies are installed in the <conda_install_

User Guide
Chapter 9: Translating Python code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 79 of 228

dir>/envs/myenv/lib/python<version>/site-packages directory, type:

sourceanalyzer –b mybuild -python-path "<conda_install_
dir>/envs/myenv/lib/python<version>/site-packages/" myproject/

Including imported modules and packages
To translate Python applications and prepare for a scan, Fortify Static Code Analyzer searches for any
imported modules and packages used by the application. Fortify Static Code Analyzer does not
respect the PYTHONPATH environment variable, which the Python runtime system uses to find
imported modules and packages.

Fortify Static Code Analyzer searches for imported modules and packages using the list of directories
in the following order:

 1. The common root directory for all project source files. which Fortify Static Code Analyzer
calculates automatically. For example, if there are two project directories
PrimaryDir/project1/* and PrimaryDir/project2/*, the common root directory is
PrimaryDir.
To remove the common root directory as a search target for imported modules and packages,
include the -python-no-auto-root-calculation option in the translation command.

 2. The directories specified with the -python-path option.
Fortify Static Code Analyzer includes a subset of modules from the standard Python library
(module "builtins", all modules originally written in C, and others) in the translation. Fortify Static
Code Analyzer first searches for a standard Python library module in the set included with Fortify
Static Code Analyzer and then in the paths specified with the -python-path option. If your
Python code imports any module that Fortify Static Code Analyzer cannot find, it produces a
warning. To make sure that all modules of the standard Python library are found, add the path to
your standard Python library in the -python-path list.

 3. The current directory that contains the file being translated. For example, when Fortify Static
Code Analyzer translates a PrimaryDir/project1/a.py, the directory
PrimaryDir/project1 is added as the last directory to search for imported modules and
packages.

Including namespace packages
To translate namespace packages, include all the paths to the namespace package directories with
the -python-path option. For example, if you have two subpackages for a namespace package
package_name in multiple folders:

/path_1/package_name/subpackageA
/path_2/package_name/subpackageB

Include /path_1;/path_2 with the -python-path option in the sourceanalyzer command line.

User Guide
Chapter 9: Translating Python code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 80 of 228

Translating Django and Flask
To translate code created using the Django or Flask framework, add the following properties to the
<sca_install_dir>/Core/config/fortify-sca.properties configuration file:

com.fortify.sca.limiters.MaxPassthroughChainDepth=8
com.fortify.sca.limiters.MaxChainDepth=8

By default, Fortify Static Code Analyzer attempts to discover Django and Jinja2 templates in the
project root directory. All detected Django and Jinja2 templates are automatically added to the
translation. You can specify additional locations of Django or Jinja2 template files by adding the -
django-template-dirs or the -jinja-template-dirs option to the sourceanalyzer command.

If you do not want Fortify Static Code Analyzer to automatically discover Django and Jinja2
templates, use the -disable-template-autodiscover option. If your project requires Django or
Jinja2 templates, but the project is configured such that the templates are in an unexpected location,
use the -django-template-dirs or -jinja-template-dirs option to specify the directories that
contain the templates in addition to the -disable-template-autodiscover option as shown in
the following non-Windows examples:

sourceanalyzer -b djangoProj -python-path
/usr/lib/python3.12:/usr/local/lib/python3.12/site-packages djangoProj -
django-template-dirs djangoProj/templatedir1:/djangoProj/dir2 -disable-
template-autodiscover

sourceanalyzer -b flaskProj -python-path
/usr/lib/python3.12:/usr/local/lib/python3.12/site-packages flaskProj -
jinja-template-dirs flaskProj/templatedir1:/flaskProj/dir2 -disable-
template-autodiscover

The following example translates a Python project that has a combination of Django and Jinja2
templates on Windows:

sourceanalyzer -b pythonProj -python-path
"C:\Python312\Lib;C:\Python312\Lib\site-packages" flaskProj -django-
template-dirs "C:\djangoProj\templatedir1;C:\djangoProj\dir2" -jinja-
template-dirs "C:\flaskProj\templatedir1;C:\flaskProj\dir2" -disable-
template-autodiscover

User Guide
Chapter 9: Translating Python code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 81 of 228

Chapter 10: Translating code for mobile
platforms
Fortify Static Code Analyzer supports analysis of the following mobile application source languages:

 l Swift, Objective-C, and Objective-C++ for iOS applications developed using Xcode
 l Java for Android applications

For information about translating Xamarin applications, see "Translating Visual Studio projects" on
page 62.

This section contains the following topics:

Translating Apple iOS projects 82

Translating Android projects 83

Translating Apple iOS projects
This section describes how to translate Swift, Objective-C, and Objective-C++ source code for iOS
applications. Fortify Static Code Analyzer automatically integrates with the Xcode Command Line
Tool, Xcodebuild, to identify the project source files.

iOS project translation prerequisites

The following are the prerequisites for translating iOS projects:

 l Objective-C++ projects must use the non-fragile Objective-C runtime (ABI version 2 or 3).
 l Use Apple’s xcode-select command-line tool to set your Xcode path. Fortify Static Code

Analyzer uses the system global Xcode configuration to find the Xcode toolchain and headers.
 l Make sure that all source files required for a successful Xcode build are provided.

You can exclude files from the analysis using the -exclude option (see "iOS code analysis
command-line syntax" on the next page).

 l Make sure that you have any dependencies required to build the project available.
 l To translate Swift code, make sure that you have available all third-party modules, including

CocoaPods. Bridging headers must also be available. However, Xcode usually generates them
automatically during the build.

 l If your project includes property list files in binary format, you must first convert them to XML
format. You can do this with the Xcode putil command.

 l To translate Objective-C projects, ensure that the headers for third-party libraries are available.

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 82 of 228

 l To translate WatchKit applications, make sure that you translate both the iPhone application target
and the WatchKit extension target.

iOS code analysis command-line syntax

The command-line syntax to translate iOS code using Xcodebuild is:

sourceanalyzer -b <build_id> xcodebuild [<compiler_options>]

where <compiler_options> are the supported options that are passed to the Xcode compiler. You
must include the build option with any <compiler_options>. The Fortify Static Code Analyzer
Xcodebuild integration does not support the output format of alternate build commands such as
xcodebuild archive.

Note: Xcodebuild compiles the source code when you run this command.

To exclude files from the analysis, use the -exclude option (see "Translation options" on page 134).
All source files that match the exclude specification are not translated, even if they are included in the
Xcode build. The following is an example:

sourceanalyzer -b MyProject -exclude "**/TestFile.swift" xcodebuild clean
build

If your application uses any property list files (for example, <file>.plist), translate these files with
a separate sourceanalyzer command. Use the same build ID that you used to translate the project
files. The following is an example:

sourceanalyzer -b MyProject <path_to_plist_files>

If your project uses CocoaPods, include -workspace to build the project. For example:

sourceanalyzer -b DemoAppSwift xcodebuild clean build -workspace
DemoAppSwift.xcworkspace -scheme DemoAppSwift -sdk iphonesimulator

After the translation is complete, you can perform the analysis phase and save the results in an
FPR file, as shown in the following example:

sourceanalyzer -b DemoAppSwift -scan -f MyResults.fpr

Translating Android projects
This section describes how to translate Java source code for Android applications. You can use Fortify
Static Code Analyzer to scan the code with Gradle from either:

User Guide
Chapter 10: Translating code for mobile platforms

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 83 of 228

 l Your operating system's command line
 l A terminal window running in Android Studio

The way you use Gradle is the same for either method.

Note: You can also scan Android code directly from Android Studio with the Fortify Analysis
Plugin for IntelliJ IDEA and Android Studio. For more information, see the OpenText™ Fortify
Analysis Plugin for IntelliJ IDEA and Android Studio User Guide.

Android project translation prerequisites

The following are the prerequisites for translating Android projects:

 l Android Studio and the relevant Android SDKs are installed on the system where you will run the
scans

 l Your Android project uses Gradle for builds.

If you have an older project that does not use Gradle, you must add Gradle support to the
associated Android Studio project

Use the same version of Gradle that is provided with the version of Android Studio that you use to
create your Android project

 l Make sure you have available all dependencies that are required to build the Android code in the
application's project

 l To translate your Android code from a command window that is not displayed within Android
Studio, make sure that Gradle Wrapper (gradlew) is defined on the system path

Android code analysis command-line syntax

Use gradlew to scan Android projects, which is similar to using Gradle except that you use the Gradle
Wrapper. For information about how to translate your Android project using the Gradle Wrapper, see
"Using Gradle integration" on page 125.

Filtering issues detected in Android layout files

If your Android project contains layout files (used to design the user interface), your project files
might include R.java source files that are automatically generated by Android Studio. When you
scan the project, Fortify Static Code Analyzer can detect issues associated with these layout files.

OpenText recommends that Issues reported in any layout file be included in your standard audit so
you can carefully determine if any of them are false positives. After you identify issues in layout files
that you are not interested in, you can filter them out as described in "Filtering the analysis" on
page 178. You can filter out the issues based on the Instance ID.

User Guide
Chapter 10: Translating code for mobile platforms

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 84 of 228

Chapter 11: Translating Go code
This section describes how to translate Go code. Fortify Static Code Analyzer supports analysis of Go
code on Windows, Linux, and macOS.

This section contains the following topics:

Go command-line syntax 85

Go command-line options 85

Including custom Go build tags 87

Resolving dependencies 87

Go command-line syntax
For the best results, your project must be compilable and you must have all required dependencies
available.

The following entities are excluded from the translation (and the scan):

 l Vendor folder
 l All projects defined by any go.mod files in subfolders, except the project defined by the go.mod file

under the %PROJECT_ROOT%
 l All files with the _test.go suffix (unit tests)

The basic command-line syntax to translate Go code is:

sourceanalyzer -b <build_id> [-gopath <dir>] [-goroot <dir>] <files>

Go command-line options
The following table describes the command-line options that are specifically for translating Go code.

Go option Description

-gotags <go_build_
tags>

Specifies a comma-separated list of custom build tags for a Go project.

This is equivalent to the -tags option for the go command. For more
information, see "Including custom Go build tags" on page 87.

Equivalent property name:

com.fortify.sca.gotags

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 85 of 228

Go option Description

-gopath <dir> Specifies the value of the GOPATH environment variable to use for
translating a Go project. If this option is not specified, then Fortify
Static Code Analyzer uses the existing value of the GOPATH system
environment variable.

You must specify the gopath directory as an absolute path. The

following examples are valid values for <dir>:

/home/projects/go_workspace/my_proj
C:\projects\go_workspace\my_proj

The following example is an invalid value for <dir>:

go_workspace/my_proj

If this option and the GOPATH system environment variable is not set,

then the gopath defaults to a subdirectory named go in the user's
home directory ($HOME/go on Linux and %USERPROFILE%\go on
Windows), unless that directory contains a Go distribution.

When using modules, the GOPATH environment variable is not
required to resolve package imports as described in the go compiler
command documentation. However, GOPATH still determines the
output directory to use when downloading missing module
dependencies.

Note: Fortify Static Code Analyzer does not fully support older Go
projects that rely solely on the GOPATH environment variable to
resolve package imports.

Equivalent property name:

com.fortify.sca.GOPATH

-goroot <dir> Specifies the location of the Go installation. If this option is not
specified, the GOROOT system environment variable is used.

If this option is not specified and the GOROOT system environment
variable is not set, then Fortify Static Code Analyzer uses the Go
compiler included in the Fortify Static Code Analyzer installation.

Equivalent property name:

com.fortify.sca.GOROOT

User Guide
Chapter 11: Translating Go code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 86 of 228

Go option Description

-goproxy <url> Specifies one or more comma-separated proxy URLs. You can also

specify direct or off (to disable network usage).

If this option is not specified and the GOPROXY system environment
variable is not set, then Fortify Static Code Analyzer uses

https://proxy.golang.org,direct.

Equivalent property name:

com.fortify.sca.GOPROXY

See also

"Go properties" on page 204

Including custom Go build tags
If your Go project includes files that require custom build tags, then you can include these build tags
in the Fortify Static Code Analyzer translation using the -gotags option. For example:

sourceanalyzer -b MyProject -gotags release "src/**/*.go"

The Fortify Static Code Analyzer -gotags option does not allow you to override automatic build tags
for the operating system, architecture, or Go version (for example, //go:build linux, //go:build
arm, //go:build go1.21). To translate your Go project for a different operating system or
architecture, set the appropriate cross-compile targets in the GOOS and GOARCH environment
variables. To set a specific Go version, specify the path for the Go SDK version in the GOROOT
environment variable or the -goroot option.

Resolving dependencies
Fortify Static Code Analyzer supports two dependency management systems built into Go:

 l Modules

Fortify Static Code Analyzer downloads all required dependencies using the native Go toolchain. If
access to the internet is restricted on the machine where you run Fortify Static Code Analyzer, then
do one of the following:
 l If you are using an artifact management system such as Artifactory, set the GOPROXY

environment variable or use the -goproxy option described in "Go command-line options" on
page 85.

 l Download all required dependencies using modules and vendoring.

User Guide
Chapter 11: Translating Go code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 87 of 228

 l GOPATH dependency resolution

If you are using a third-party dependency management system such as dep, you must download all
dependencies before you start the translation.

User Guide
Chapter 11: Translating Go code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 88 of 228

Chapter 12: Translating Dart and Flutter
code
This section describes how to translate Dart and Flutter code. Fortify Static Code Analyzer supports
analysis of Dart and Flutter code on Windows and Linux.

This section contains the following topics:

Dart and Flutter translation prerequisites 89

Dart and Flutter command-line syntax 90

Dart and Flutter command-line examples 90

Dart and Flutter translation prerequisites
The following are the prerequisites for translating Dart and Flutter projects:

 l Make sure that you have a supported Dart SDK (for Dart-only projects) and the Flutter SDK (for
Flutter projects) installed on your system. See the Fortify Software System Requirements
document for the supported Dart and Flutter SDK versions.

 l Download the project dependencies by running one of the following commands:
 l For Flutter projects, use flutter pub get.

 l For Dart-only projects, use dart pub get .

For example, to download the dependencies for a Flutter project that has the project root
myproject, run the following commands:

cd myproject

flutter pub get

Important! If the project includes nested packages with different pubspec.yaml files, you
must run dart pub get or flutter pub get for each package root.

Important! Make sure that the following are included in the project directory:

 l The pubspec.yaml file, which specifies the dependencies

 l The .dart_tool directory, which includes the package_config.json file automatically
generated by the pub tool

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 89 of 228

 Dart and Flutter command-line syntax
The basic command-line syntax to translate Dart and Flutter code is:

sourceanalyzer –b <build_id> <translation_options> <dirs>

sourceanalyzer –b <build_id> <translation_options> <files>

Dart and Flutter command-line examples

To translate a Dart or Flutter project with the my_app project root directory:

sourceanalyzer -b MyProject my_app/

To translate the a_widget.dart file in the my_app project root directory:

sourceanalyzer -b MyProject my_app/a_widget.dart

To translate all dart source files in the my_dart_proj directory:

sourceanalyzer -b MyProject "my_dart_proj/**/*.dart"

User Guide
Chapter 12: Translating Dart and Flutter code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 90 of 228

Chapter 13: Translating Ruby code
This section contains the following topics:

Ruby command-line syntax 91

Adding libraries 92

Adding gem paths 92

Ruby command-line syntax
The basic command-line syntax to translate Ruby code is:

sourceanalyzer –b <build_id> <file>

where <file> is the name of the Ruby file you want to scan. To include multiple Ruby files, separate
them with a space, as shown in the following example:

sourceanalyzer –b <build_id> file1.rb file2.rb file3.rb

In addition to listing individual Ruby files, you can use the asterisk (*) wildcard to select all Ruby files
in a specified directory. For example, to find all the Ruby files in a directory called src, use the
following sourceanalyzer command:

sourceanalyzer –b <build_id> src/*.rb

Note: When you translate Ruby code, make sure that you specify all source files together in one
invocation. Fortify Static Code Analyzer does not support adding new files to the file list
associated with the build ID on subsequent invocations.

Ruby command-line options

The following table describes the Ruby translation options.

Ruby option Description

-ruby-path <dirs> Specifies one or more paths to directories that contain Ruby libraries
(see "Adding libraries " on the next page)

Equivalent property name:

com.fortify.sca.RubyLibraryPaths

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 91 of 228

Ruby option Description

-rubygem-path
<dirs>

Specifies the path(s) to a RubyGems location (see "Adding gem paths"
below)

Equivalent property name:

com.fortify.sca.RubyGemPaths

See also

"Ruby properties" on page 204

Adding libraries

If your Ruby source code requires a specific library, add the Ruby library to the sourceanalyzer
command. Include all ruby libraries that are installed with ruby gems. For example, if you have a
utils.rb file that resides in the /usr/share/ruby/myPersonalLibrary directory, then add the
following to the sourceanalyzer command:

-ruby-path /usr/share/ruby/myPersonalLibrary

Separate multiple libraries with semicolons (Windows) or colons (non-Windows). The following is an
example of the option on non-Windows system:

-ruby-path /path/one:/path/two:/path/three

Adding gem paths
To add all RubyGems and their dependency paths, import all RubyGems. To obtain the Ruby gem
paths, run the gem env command. Under GEM PATHS, look for a directory similar to:

/home/myUser/gems/ruby-version

This directory contains another directory called gems, which contains directories for all the gem files
installed on the system. For this example, use the following in your command line:

-rubygem-path /home/myUser/gems/ruby-version/gems

If you have multiple gems directories, separate them with semicolons (Windows) or colons (non-
Windows) such as:

-rubygem-path /path/to/gems:/another/path/to/more/gems

Note: On Windows systems, separate the gems directories with a semicolon.

User Guide
Chapter 13: Translating Ruby code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 92 of 228

Chapter 14: Translating COBOL code
The COBOL translation runs on Windows systems only and supports modern COBOL dialects.
Alternatively, you can use the legacy COBOL translation (see "Using Legacy COBOL translation" on
page 96).

For a list of supported technologies for translating COBOL code, see the Fortify Software System
Requirements document. Fortify Static Code Analyzer does not currently support custom rules for
COBOL applications.

Note: To scan COBOL with Fortify Static Code Analyzer, you must have a Fortify Static Code
Analyzer license file that specifically includes COBOL scanning capabilities. Contact Customer
Support for more information about how to obtain the required license file.

This section contains the following topics:

Preparing COBOL source and copybook files for translation 94

COBOL command-line syntax 94

Using Legacy COBOL translation 96

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 93 of 228

Preparing COBOL source and copybook files for
translation
Before you can analyze a COBOL program, you must copy the following program components to the
Windows system where you run Fortify Static Code Analyzer:

 l COBOL source code

OpenText strongly recommends that your COBOL source code files have extensions .CBL, .cbl,
 .COB, or .cob. If your source code files do not have extensions or have non-standard extensions,
you must follow the instructions in "Translating COBOL source files without file extensions" on the
next page and "Translating COBOL source files with arbitrary file extensions" on the next page.

 l All copybook files that the COBOL source code uses

This includes All SQL INCLUDE files that the COBOL source code references (a SQL INCLUDE file is
technically a copybook file)

Important! The copybook files must have the extension .CPY or .cpy.

If your COBOL source code contains:

COPY FOO

or

EXEC SQL INCLUDE FOO END-EXEC

then FOO is the name of a COBOL copybook and the corresponding copybook file has the name
FOO.CPY or FOO.cpy.

OpenText recommends that you place your COBOL source code files in a directory called sources
and your copybook files in a directory called copybooks. Create these directories at the same level.

COBOL command-line syntax
The basic syntax used to translate a single COBOL source code file is:

sourceanalyzer -b <build_id> <path>

The basic syntax used to scan a translated COBOL program and save the analysis results in an
FPR file is:

sourceanalyzer -b <build_id> -scan -f <results>.fpr

See also

"Specifying files and directories" on page 146

User Guide
Chapter 14: Translating COBOL code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 94 of 228

Translating COBOL source files without file extensions

If you have COBOL source files (not copybook files) retrieved from a mainframe without .COB or .CBL
file extensions (which is typical for COBOL file names), then you must include the following in the
translation command line:

-noextension-type COBOL

The following example command translates COBOL source code without file extensions:

sourceanalyzer -b MyProject -noextension-type COBOL -copydirs copybooks
sources

Translating COBOL source files with arbitrary file extensions

If you have COBOL source files with an arbitrary extension .xyz, then you must include the following
in the translation command line:

-Dcom.fortify.sca.fileextensions.xyz=COBOL

You must also include the expression *.xyz in the file or directory specifier, if any (see "Specifying
files and directories" on page 146).

COBOL command-line options

The following table describes the COBOL command-line options. To use legacy COBOL translation,
see "Legacy COBOL translation command-line options" on the next page.

COBOL option Description

-copydirs <dirs> Specifies one or more semicolon-separated directories where Fortify
Static Code Analyzer looks for copybook files.

Equivalent property name:

com.fortify.sca.CobolCopyDirs

-dialect <dialect> Specifies the COBOL dialect. The valid values for <dialect> are

COBOL390 and MICROFOCUS. The dialect value is case insensitive. The
default value is COBOL390.

Equivalent property name:
com.fortify.sca.CobolDialect

-checker- Specifies one or more semicolon-separated COBOL checker directives.

User Guide
Chapter 14: Translating COBOL code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 95 of 228

COBOL option Description

directives
<directives>

Note: This option is intended for advanced users of OpenText™
Server Express.

Equivalent property name:

com.fortify.sca.CobolCheckerDirectives

Using Legacy COBOL translation
Use the legacy COBOL translation if either of the following is true:

 l You run Fortify Static Code Analyzer on a non-Windows operating system.

For supported non-Windows platforms and architectures, see the Fortify Software System
Requirements document.

 l Your COBOL dialect is different than what is supported by the default COBOL translation (see the
-dialect option in "COBOL command-line options" on the previous page).

Prepare the COBOL source code and copybook files as described in "Preparing COBOL source and
copybook files for translation" on page 94 and use the command-line syntax described in "COBOL
command-line syntax" on page 94. Note that the legacy COBOL translation accepts copybook files
with or without file extensions. If the copybook files have file extensions, use the -copy-extensions
command-line option (see "Legacy COBOL translation command-line options" below).

Legacy COBOL translation command-line options

The following table describes the command-line options for the legacy COBOL translation.

Legacy COBOL option Description

-cobol-legacy Specifies translation of COBOL code using legacy COBOL translation.
This option is required to enable legacy COBOL translation.

Equivalent Property Name:

com.fortify.sca.CobolLegacy

-copydirs <dirs> Specifies one or more semicolon- or colon-separated directories where
Fortify Static Code Analyzer looks for copybook files.

Equivalent Property Name:

com.fortify.sca.CobolCopyDirs

-copy-extensions
<ext>

Specifies one or more semicolon- or colon-separated copybook file

User Guide
Chapter 14: Translating COBOL code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 96 of 228

Legacy COBOL option Description

extensions.

Equivalent Property Name:

com.fortify.sca.CobolCopyExtensions

-fixed-format Specifies fixed-format COBOL to direct Fortify Static Code Analyzer to
only look for source code between columns 8–72 in all lines of code.
The default is free-format.

IBM Enterprise COBOL code is typically fixed-format. The following are

indications that you might need the -fixed-format option:

 l The COBOL translation appears to hang indefinitely

 l Fortify Static Code Analyzer reports numerous parsing errors in the
COBOL translation

Equivalent Property Name:

com.fortify.sca.CobolFixedFormat

User Guide
Chapter 14: Translating COBOL code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 97 of 228

Chapter 15: Translating Salesforce Apex and
Visualforce code
This section contains the following topics:

Apex and Visualforce translation prerequisites 98

Apex and Visualforce command-line syntax 99

Apex and Visualforce translation prerequisites
To translate Apex and Visualforce projects, make sure that all the source code to scan is available on
the same machine where you have installed Fortify Static Code Analyzer.

To scan your custom Salesforce app, download it to your local computer from your Salesforce
organization (org) where you develop and deploy it. The downloaded version of your app consists of:

 l Apex classes in files with the .cls extension
 l Visualforce web pages in files with the .page extension
 l Apex code files called database “trigger” functions in files with the .trigger extension
 l Visualforce component files in files with the .component extension
 l Objects in files with the .object extension

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 98 of 228

Use the Ant Migration Tool available on the Salesforce website to download your app from your org in
the Salesforce cloud to your local computer. Make sure that the project manifest files are set up
correctly for the specified target in your build.xml file. For example, the following package.xml
manifest file provides Fortify Static Code Analyzer with all classes, custom objects, pages, and
components.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns=http://soap.sforce.com/2006/04/metadata>
 <types>
 <members>*</members>
 <name>ApexClass</name>
 </types>
 <types>
 <members>*</members>
 <name>ApexTrigger</name>
 </types>
 <types>
 <members>*</members>
 <name>ApexPage</name>
 </types>
 <types>
 <members>*</members>
 <name>ApexComponent</name>
 </types>
 <types>
 <members>*</members>
 <name>CustomObject</name>
 </types>
 <version>55.0</version>
</Package>

Configure the retrieve targets using the Ant Migration Tool documentation. If your organization uses
any apps from the app exchange, make sure that these are downloaded as packaged targets.

Apex and Visualforce command-line syntax
The basic command-line syntax to translate Apex and Visualforce code is:

sourceanalyzer -b <build_id> <files>

where <files> is an Apex or Visualforce file or a path to the source files.

Important! Supported file extensions for the source files are: .cls, .component, .trigger,
 .object, and .page.

User Guide
Chapter 15: Translating Salesforce Apex and Visualforce code

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 99 of 228

Chapter 16: Translating other languages and
configurations
This section contains the following topics:

Analyzing Solidity code 100

Translating PHP code 101

Translating ABAP code 102

Translating Flex and ActionScript 109

Translating ColdFusion code 112

Analyzing SQL 113

Translating Scala code 114

Translating Infrastructure as Code (IaC) 115

Translating JSON 116

Translating YAML 117

Translating Dockerfiles 117

Translating ASP/VBScript virtual roots 117

Classic ASP command-line example 119

VBScript command-line example 120

Analyzing Solidity code
The basic command-line syntax to translate and scan Solidity code is:

sourceanalyzer -b <build_id> <files>

sourceanalyzer -b <build_id> -scan -f <results>.fpr

Importing dependencies

Fortify Static Code Analyzer translation only supports import statements for files with relative and
absolute paths. Import statements for libraries is not supported.

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 100 of 228

Managing compiler versions

Fortify Static Code Analyzer downloads compilers that are referenced in the code with the pragma
statement from the Solidity compiler repository. By default, Fortify Static Code Analyzer downloads
Solidity compilers to ${flight.workdir}/solidity.

If a file does not contain a pragma statement, then the default of ^0.8.0 is used. You can specify
different default compiler version to use in the analysis by including the
flight.solidity.defaultCompilerVersion property on the command line. The version you
specify must exist in the Solidity compiler repository. For example:

sourceanalyzer -b MyProject ./

sourceanalyzer -b MyProject -scan -
Dflight.solidity.defaultCompilerVersion=0.8.16 -f MyResults.fpr

If a proxy is required for the connection to download Solidity compilers, include the proxy information
with -Dhttps.proxyHost and -Dhttps.proxyPort. For example:

sourceanalyzer -b MyProject ./

sourceanalyzer -b MyProject -scan -Dhttps.proxyHost=MyProxyHost -
Dhttps.proxyPort=1234 -f MyResults.fpr

You can add flight.solidity.defaultCompilerVersion to the fortify-sca.properties
file.

See also

"Properties files" on page 184

Translating PHP code

The syntax to translate a single PHP file named MyPHP.php is shown in the following example:

sourceanalyzer -b <build_id> MyPHP.php

To translate a file where the source or the php.ini file entry includes a relative path name (starts
with ./ or ../), consider setting the PHP source root as shown in the following example:

sourceanalyzer -php-source-root <path> -b <build_id> MyPHP.php

For more information about the -php-source-root option, see the description in "PHP command-
line options" on the next page.

Note: When you translate PHP code, make sure that you specify all source files together in one
invocation. Fortify Static Code Analyzer does not support adding new files to the file list

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 101 of 228

associated with the build ID on subsequent invocations.

PHP command-line options

The following table describes the PHP-specific command-line options.

PHP option Description

-php-source-root
<path>

Specifies an absolute path to the project root directory. The relative path
name first expands from the current directory. If the file is not found,
then the path expands from the specified PHP source root directory.

Equivalent property name:

com.fortify.sca.PHPSourceRoot

-php-version
<version>

Specifies the PHP version. The default version is 8.2. For a list of valid
versions, see the Fortify Software System Requirements document.

Equivalent property name:

com.fortify.sca.PHPVersion

See also

"PHP properties" on page 206

Translating ABAP code
ABAP code translation requires additional preparation steps to extract the code from the SAP
database and prepare it for scanning. See "Importing the transport request" on the next page for more
information. This section assumes you have a basic understanding of SAP and ABAP.

To translate ABAP code, the Fortify ABAP Extractor program downloads source files to the
presentation server, and optionally, starts Fortify Static Code Analyzer. You need to use an account
with permission to download files to the local system and execute operating system commands.

Because the extractor program is executed online, you might receive a max dialog work process
time reached exception message if the volume of source files selected for extraction exceeds the
allowable process run time. To work around this, download large projects as a series of smaller
Extractor tasks. For example, if your project consists of four different packages, download each
package separately into the same project directory. If the exception occurs frequently, work with your
SAP Basis administrator to increase the maximum time limit (rdisp/max_wprun_time).

When a PACKAGE is extracted from ABAP, the Fortify ABAP Extractor extracts everything from
TDEVC with a parentcl field that matches the package name. It then recursively extracts everything
else from TDEVC with a parentcl field equal to those already extracted from TDEVC. The field
extracted from TDEVC is devclass.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 102 of 228

The devclass values are treated as a set of program names and handled the same way as a program
name, which you can provide.

Programs are extracted from TRDIR by comparing the name field with either:

 l The program name specified in the selection screen
 l The list of values extracted from TDEVC if a package was provided

The rows from TRDIR are those for which the name field has the given program name and the
expression LIKEprogramname is used to extract rows.

This final list of names is used with READ REPORT to get code out of the SAP system. This method
reads classes and methods out as well as merely REPORTS, for the record.

Each READ REPORT call produces a file in the temporary folder on the local system. Fortify Static
Code Analyzer translates and scans this set of files to produce an FPR file that you can open with
Fortify Audit Workbench.

See also

"ABAP properties" on page 206

INCLUDE processing

As source code is downloaded, the Fortify ABAP Extractor detects INCLUDE statements in the source.
When found, it downloads the include targets to the local machine for analysis.

Importing the transport request

To scan ABAP code, you need to import the Fortify ABAP Extractor transport request on your SAP
Server. You can find the transport request in <sca_install_dir>/Tools/SAP_Extractor.zip.

The Fortify ABAP Extractor package, SAP_Extractor.zip, contains the following files:

 l K900XXX.S9S (where the “XXX” is the release number)
 l R900XXX.S9S (where the “XXX” is the release number)

These files make up the SAP transport request that you must import into your SAP system from
outside your local Transport Domain. Have your SAP administrator or an individual authorized to
install transport requests on the system import the transport request.

The S95 files contain a program, a transaction (YSCA), and the program user interface. After you
import them into your system, you can extract your code from the SAP database and prepare it for
Fortify Static Code Analyzer scanning.

Installation note

The Fortify ABAP Extractor transport request is supported on a system running SAP release 7.02, SP
level 0006. If you run a different SAP version and you get the transport request import error:
Install release does not match the current version, then the transport request
installation has failed.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 103 of 228

To try to resolve this issue, perform the following steps:

 1. Re-run the transport request import.

The Import Transport Request dialog box opens.

 2. Select the Options tab.

 3. Select the Ignore Invalid Component Version check box.

 4. Complete the import procedure.

If this does not resolve the issue or if your system runs on an SAP version with a different table
structure, OpenText recommends that you export your ABAP file structure using your own
technology so that Fortify Static Code Analyzer can scan the ABAP code.

Adding Fortify Static Code Analyzer to your Favorites list

Adding Fortify Static Code Analyzer to your Favorites list is optional, but doing so can make it quicker
to access and start Fortify Static Code Analyzer scans. The following steps assume that you use the
user menu in your day-to-day work. If your work is done from a different menu, add the Favorites link
to the menu that you use. Before you create the Fortify Static Code Analyzer entry, make sure that
the SAP server is running and you are in the SAP Easy Access area of your web-based client.

To add Fortify Static Code Analyzer to your Favorites list:

 1. From the SAP Easy Access menu, type S000 in the transaction box.
The SAP Menu opens.

 2. Right-click the Favorites folder and select Insert transaction.

The Manual entry of a transaction dialog box opens.

 3. Type YSCA in the Transaction Code box.
 4. Click the green check mark icon.

The Extract ABAP code and launch SCA item appears in the Favorites list.

 5. Click the Extract ABAP code and launch SCA link to start the Fortify ABAP Extractor.

Running the Fortify ABAP Extractor

To run the Fortify ABAP Extractor:

 1. Start the Fortify ABAP Extractor from the Favorites link, the transaction code, or manually start
the Extractor object.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 104 of 228

This opens the Fortify ABAP Extractor.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 105 of 228

 2. Select the code to download.

Provide the start and end name for the range of software components, packages, programs, or
BSP applications that you want to scan.

Note: You can specify multiple objects or ranges.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 106 of 228

 3. Provide the Fortify Static Code Analyzer-specific parameters described in the following table.

Field Description

FPR File Path (Optional) Type or select the directory where you want to store the scan
results file (FPR). Include the name for the FPR file in the path name. You must
provide the FPR file path to automatically scan the downloaded code on the
same machine where you are running the extraction process.

Working
Directory

Type or select the directory where you want to store the extracted source
code.

Build-ID (Optional) Type the build ID for the scan. Fortify Static Code Analyzer uses
the build ID to identify the translated source code, which is necessary to scan
the code. You must specify the build ID to automatically translate the
downloaded code on the same machine where you are running the extraction
process.

Translation
Parameters

(Optional) Type any additional Fortify Static Code Analyzer command-line
translation options. You must specify translation options to automatically
translate the downloaded code on the same machine where you are running
the extraction process or to customize the translation options.

Scan
Parameters

(Optional) Type any Fortify Static Code Analyzer command-line scan options.
You must specify scan options to scan the downloaded code automatically on
the same machine where you are running the extraction process or to
customize the scan options.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 107 of 228

Field Description

ZIP File Name (Optional) Type a ZIP file name if you want your output in a compressed
package.

Maximum
Call-chain
Depth

A global SAP-function F is not downloaded unless F was explicitly selected or
unless F can be reached through a chain of function calls that start in
explicitly-selected code and whose length is this number or less. OpenText
recommends that you do not specify a value greater than 2 unless directed to
do so by Customer Support.

 4. Provide action information described in the following table.

Field Description

Download Select the Download check box to have Fortify Static Code Analyzer
download the source code extracted from your SAP database.

Build Select the Build check box to have Fortify Static Code Analyzer translate all
downloaded ABAP code and store it using the specified build ID. This action
requires that you have an installed version of Fortify Static Code Analyzer
on the machine where you are running the Fortify ABAP Extractor. It is
often easier to move the downloaded source code to a system where Fortify
Static Code Analyzer is installed.

Scan Select the Scan check box to have Fortify Static Code Analyzer run a scan of
the specified build ID. This action requires that the translate (build) action
was previously performed. This action requires that you have an installed
version of Fortify Static Code Analyzer on the machine where you are
running the Fortify ABAP Extractor. It is often easier to move the
downloaded source code to a predefined Fortify Static Code Analyzer
machine.

Launch AWB Select the Launch AWB check box to start Fortify Audit Workbench and
open the specified FPR file.

Create ZIP File Select the Create ZIP File check box to compress the output. You can also
manually compress the output after the source code is extracted from your
SAP database.

Export
SAP standard
code

Select the Export SAP standard code check box to export SAP standard
code as well as custom code.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 108 of 228

 5. Click Execute.

Uninstalling the Fortify ABAP Extractor

To uninstall the ABAP extractor:

 1. In ABAP Workbench, open the Object Navigator.

 2. Select package Y_FORTIFY_ABAP.

 3. Expand the Programs tab.

 4. Right-click the following element, and then select Delete.
 l Program: Y_FORTIFY_SCA

Translating Flex and ActionScript
The basic command-line syntax to translate ActionScript is:

sourceanalyzer -b <build_id> -flex-libraries <libs> <files>

where:

<libs> is a semicolon-separated (Windows) or a colon-separated (non-Windows) list of library names
to which you want to "link" and <files> are the files to translate.

Flex and ActionScript command-line options

Use the following command-line options to translate Flex files. You can also specify this information in
the properties configuration file (fortify-sca.properties) as noted in each description.

Flex and ActionScript
option Description

-flex-sdk-root
<dir>

Specifies the location of the root of a valid Flex SDK. This directory must

contain a frameworks folder that contains a flex-config.xml file. It
must also contain a bin folder that contains an MXMLC executable.

Equivalent property name:

com.fortify.sca.FlexSdkRoot

-flex-libraries
<libs>

Specifies a semicolon-separated (Windows) or a colon-separated (non-
Windows) list of library names to which you want to link. In most cases,

this list includes flex.swc, framework.swc, and playerglobal.swc
(usually found in frameworks/libs/ in your Flex SDK root).

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 109 of 228

Flex and ActionScript
option Description

Note: You can specify SWC or SWF files as Flex libraries (SWZ is not
currently supported).

Equivalent property name:

com.fortify.sca.FlexLibraries

-flex-source-roots
<dirs>

Specifies a semicolon-separated (Windows) or a colon-separated (non-
Windows) list of root directories where MXML sources are located.

Normally, these contain a subfolder named com.

For example, if the Flex source root specified is foo/bar/src, then
foo/bar/src/com/fortify/manager/util/Foo.mxml is
transformed into an object named com.fortify.manager.util.Foo
(an object named Foo in the package com.fortify.manager.util).

Equivalent property name:

com.fortify.sca.FlexSourceRoots

Note: The -flex-sdk-root and –flex-source-roots options are primarily for MXML
translation, and are optional if you are scanning pure ActionScript. Use –flex-libraries for to
resolve all ActionScript linked libraries.

Fortify Static Code Analyzer translates MXML files into ActionScript, and then runs them through an
ActionScript parser. The generated ActionScript is simple to analyze; not rigorously correct like the
Flex runtime model. Consequently, you might get parse errors with MXML files. For instance, the XML
parsing might fail, translation to ActionScript might fail, and the parsing of the resulting ActionScript
might also fail. If you see any errors that do not have a clear connection to the original source code,
notify Customer Support.

See also

"Flex and ActionScript properties" on page 207

ActionScript command-line examples

The following examples provide command-line syntax to translation ActionScript.

Example 1

The following example is for a simple application that contains only one MXML file and a single SWF
library (MyLib.swf):

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 110 of 228

sourceanalyzer -b MyFlexApp -flex-libraries lib/MyLib.swf -flex-sdk-root
/home/myself/flex-sdk/ -flex-source-roots . my/app/FlexApp.mxml

This identifies the location of the libraries to include and the Flex SDK and the Flex source root
locations. The single MXML file, located in /my/app/FlexApp.mxml, results in the translation of the
MXML application as a single ActionScript class called FlexApp and located in the my.app package.

Example 2

The following example is for an application in which the source files are relative to the src directory.
It uses a single SWF library, MyLib.swf, and the Flex and framework libraries from the Flex SDK:

sourceanalyzer -b MyFlexProject -flex-sdk-root /home/myself/flex-sdk/
-flex-source-roots src/ -flex-libraries lib/MyLib.swf "src/**/*.mxml"
"src/**/*.as"

This example locates the Flex SDK and uses file specifiers to include the .as and .mxml files in the
src folder. It is not necessary to explicitly specify the .SWC files located in the –flex-sdk-root,
although this example does so for the purposes of illustration. Fortify Static Code Analyzer
automatically locates all .SWC files in the specified Flex SDK root, and it assumes that these are
libraries intended for use in translating ActionScript or MXML files.

Example 3

In this example, the Flex SDK root and Flex libraries are specified in the properties file because typing
the information for each sourceanalyzer run is time consuming and the data does not change often.
Divide the application into two sections and store them in folders: a main section folder and a modules
folder. Each folder contains a src folder where the paths start. File specifiers contain wild cards to
pick up all the .mxml and .as files in both src folders. An MXML file in
main/src/com/foo/util/Foo.mxml is translated as an ActionScript class named Foo in the
package com.foo.util, for example, with the source roots specified here:

sourceanalyzer -b MyFlexProject -flex-source-roots main/src:modules/src
"./main/src/**/*.mxml" "./main/src/**/*.as" "./modules/src/**/*.mxml"
"./modules/src/**/*.as"

Handling resolution warnings

To see all warnings that were generated during translation, type the following command before you
start the scan phase:

sourceanalyzer -b <build_id> -show-build-warnings

ActionScript warnings

You might receive a message similar to the following:

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 111 of 228

The ActionScript front end was unable to resolve the following imports:
 a.b at y.as:2. foo.bar at somewhere.as:5. a.b at foo.mxml:8.

This error occurs when Fortify Static Code Analyzer cannot find all the required libraries. You might
need to specify additional SWC or SWF Flex libraries (using the -flex-libraries option or the
com.fortify.sca.FlexLibraries property) so that Fortify Static Code Analyzer can complete the
analysis.

Translating ColdFusion code

To treat undefined variables in a CFML page as tainted, uncomment the following line in <sca_
install_dir>/Core/config/fortify-sca.properties:

#com.fortify.sca.CfmlUndefinedVariablesAreTainted=true

This instructs the Dataflow Analyzer to watch out for register-globals-style vulnerabilities. However,
enabling this property interferes with Dataflow Analyzer findings in which a variable in an included
page is initialized to a tainted value in an earlier-occurring included page.

ColdFusion command-line syntax

The basic command-line syntax to translate ColdFusion source code is:

sourceanalyzer -b <build_id> -source-base-dir <dir> <files> | <file_
specifiers>

where:

 l <build_id> specifies a build ID for the project
 l <dir> specifies the root directory of the web application
 l <files> | <file_specifiers> specifies the CFML source code files

For a description of how to use <file_specifiers>, see "Specifying files and directories" on
page 146.

Note: Fortify Static Code Analyzer calculates the relative path to each CFML source file with the
-source-base-dir directory as the starting point. Fortify Static Code Analyzer uses these
relative paths when it generates instance IDs. If you move the entire application source tree to a
different directory, the Fortify Static Code Analyzer- generated instance IDs remain the same if
you specify an appropriate parameter for the -source-base-dir option.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 112 of 228

ColdFusion (CFML) command-line options

The following table describes the CFML options.

ColdFusion option Description

-source-base-dir <web_app_root_dir> <files>
| <file_specifiers>

The web application root directory.

Equivalent property name:

com.fortify.sca.SourceBaseDir

See also

"ColdFusion (CFML) properties" on page 207

Analyzing SQL
On Windows (and Linux for .NET projects only), Fortify Static Code Analyzer assumes that files with
the .sql extension are T-SQL rather than PL/SQL. If you have PL/SQL files with the .sql extension
on Windows, you must configure Fortify Static Code Analyzer to treat them as PL/SQL.

The basic syntax to translate and scan PL/SQL is:

sourceanalyzer -b <build_id> -sql-language PL/SQL <files>

sourceanalyzer -b <build_id> -sql-language PL/SQL -scan -f <results>.fpr

Alternatively, you can change the default behavior for files with the .sql extension. In the fortify-
sca.properties file, set the com.fortify.sca.fileextensions.sql property to PLSQL.

The basic syntax to translate and scan T-SQL is:

sourceanalyzer -b <build_id> -sql-language TSQL <files>

sourceanalyzer -b <build_id> -scan -f <results>.fpr

See also

"SQL properties" on page 208

PL/SQL command-line example

The following example commands translate and scan two PL/SQL files:

sourceanalyzer -b MyProject -sql-language PL/SQL x.pks y.pks

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 113 of 228

sourceanalyzer -b MyProject -sql-language PL/SQL -scan -f MyResults.fpr

The following example commands translate and scan all PL/SQL files in the sources directory:

sourceanalyzer -b MyProject -sql-language PL/SQL "sources/**/*.pks"

sourceanalyzer -b MyProject -sql-language PL/SQL -scan -f MyResults.fpr

T-SQL command-line example

The following example translates two T-SQL files:

sourceanalyzer -b MyProject x.sql y.sql

The following example translates all T-SQL files in the sources directory:

sourceanalyzer -b MyProject "sources***.sql"

Note: This example assumes the com.fortify.sca.fileextensions.sql property in
fortify-sca.properties is set to TSQL, which is the property's default value.

Translating Scala code
Translating Scala code requires the following:

 l The Scala compiler plugin

You can download this plugin from the Maven Central Repository.
 l A Lightbend license file

This license file is included with the Fortify Static Code Analyzer installation in the <sca_install_
dir>/plugins/lightbend directory

For instructions on how set up the license and translate Scala code, see Lightbend documentation
Fortify SCA for Scala.

Important! If your project contains source code other than Scala, you must translate the Scala
code using the Scala Fortify compiler plugin, and then translate other source code with
sourceanalyzer using the same build ID before you run the analysis phase.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 114 of 228

https://developer.lightbend.com/docs/fortify/current

Translating Infrastructure as Code (IaC)
Fortify Static Code Analyzer translates Azure Resource Manager (ARM), Bicep, AWS CloudFormation,
and HCL templates.

Note: HCL analysis support is specific to Terraform and supported cloud provider Infrastructure
as Code (IaC) configurations.

For best results, make sure that the template files are deployment valid. The templates must not
contain:

 l Validation errors that are static and locally detectable (for example, type errors or references to
undefined variables or functions).

 l Predeployment errors that occur during template interpretation, but before any resources are
deployed or modified (for example, invalid array indexing operations).

 l Deployment errors that occur in the cloud (for example, dynamically referencing a non-existent
resource).

OpenText recommends that AWS CloudFormation file name extensions are .json, .yaml,
 .template, or .txt. Fortify Static Code Analyzer supports other extensions only if they are not
commonly used by other languages or file types (such as .java or .html).

By default, Fortify Static Code Analyzer translates files with the HCL extensions .hcl and .tf.

ARM translation command-line examples

Translate an ARM template:

 sourceanalyzer -b MyProject ArmTemplate.json

Translate all ARM templates in a directory:

sourceanalyzer -b MyProject "src/**/*.json"

Bicep translation command-line examples

Translate a single Bicep template:

 sourceanalyzer -b MyProject BicepTemplate.bicep

Translate all Bicep templates in a directory:

sourceanalyzer -b MyProject "src/**/*.bicep"

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 115 of 228

AWS CloudFormation translation command-line examples

Translate AWS CloudFormation templates that have different extensions:

 sourceanalyzer -b MyProject CFTemplateA.template CFTemplateB.yaml
CFTemplateC.json CFTemplateD.customext

Translate all AWS CloudFormation templates in a directory that have the .template extension:

sourceanalyzer -b MyProject "src/**/*.template"

Translate all AWS CloudFormation templates in a directory that have either the .json or .yaml
extension:

sourceanalyzer -b MyProject "src/**/*.json" "src/**/*.yaml"

HCL translation command-line examples

Translate two HCL templates with different extensions:

 sourceanalyzer -b MyProject HCLTemplateA.hcl HCLTemplateB.tf

Translate all HCL templates in a directory:

sourceanalyzer -b MyProject "src/**/*.tf" "src/**/*.hcl"

See also

"Translating JSON" below

"Translating YAML" on the next page

Translating JSON

By default, Fortify Static Code Analyzer translates files with the JSON extension .json as JSON. The
following example translates a JSON file:

 sourceanalyzer -b MyProject x.json

The following example translates all JSON files in the sources directory:

 sourceanalyzer -b MyProject "sources/**/*.json"

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 116 of 228

Translating YAML

By default, Fortify Static Code Analyzer translates files with the YAML extensions .yaml and .yml.
The following example translates two YAML files with different file extensions:

 sourceanalyzer -b MyProject x.yaml y.yml

The following example translates all YAML files in the sources directory:

 sourceanalyzer -b MyProject "sources/**/*.yaml" "sources/**/*.yml"

Translating Dockerfiles

By default, Fortify Static Code Analyzer translates the following files as Dockerfiles: Dockerfile*,
dockerfile*, *.Dockerfile, and *.dockerfile.

Note: You can modify the file name extension used to detect Dockerfiles using the
com.fortify.sca.fileextensions property. See "Translation and analysis phase properties"
on page 186.

Fortify Static Code Analyzer accepts the following escape characters in Dockerfiles: backslash (\) and
backquote (`). If the escape character is not set in the Dockerfile, then Fortify Static Code Analyzer
assumes that the backslash is the escape character.

The syntax to translate a directory that contains Dockerfiles is shown in the following example:

sourceanalyzer -b <build_id> <dir>

If the Dockerfile is malformed, Fortify Static Code Analyzer writes an error to the log file to indicate
that the file cannot be parsed and skips the analysis of the Dockerfile. The following is an example of
the error written to the log:

Unable to parse dockerfile ProjA.Dockerfile, error on Line 1:20: mismatched
input '\n' expecting {LINE_EXTEND, WHITESPACE}

Unable to parse config file
C:/Users/jsmith/MyProj/docker/dockerfile/ProjA.Dockerfile

Translating ASP/VBScript virtual roots
Fortify Static Code Analyzer allows you to handle ASP virtual roots. For web servers that use virtual
directories as aliases that map to physical directories, Fortify Static Code Analyzer enables you to use

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 117 of 228

an alias.

For example, you can have virtual directories named Include and Library that refer to the physical
directories C:\WebServer\CustomerOne\inc and C:\WebServer\CustomerTwo\Stuff,
respectively.

The following example shows the ASP/VBScript code for an application that uses virtual includes:

<!--#include virtual="Include/Task1/foo.inc"-->

For this example, the previous ASP code refers to the file in the following physical location:

C:\Webserver\CustomerOne\inc\Task1\foo.inc

The real directory replaces the virtual directory name Include in this example.

Accommodating virtual roots

To provide the mapping of each virtual directory to Fortify Static Code Analyzer, you must set the
com.fortify.sca.ASPVirtualRoots.name_of_virtual_directory property in your Fortify
Static Code Analyzer command-line invocation as shown in the following example:

sourceanalyzer -Dcom.fortify.sca.ASPVirtualRoots.<virtual_directory>=<full_
path_to_corresponding_physical_directory>

Note: On Windows, if the physical path includes spaces, you must enclose the property setting in
quotes:
sourceanalyzer "-Dcom.fortify.sca.ASPVirtualRoots.<virtual_
directory>=<full_path_to_corresponding_physical_directory>"

To expand on the example in the previous section, pass the following property value to Fortify Static
Code Analyzer:

-Dcom.fortify.sca.ASPVirtualRoots.Include="C:\WebServer\CustomerOne\inc"

-Dcom.fortify.sca.ASPVirtualRoots.Library="C:\WebServer\CustomerTwo\Stuff"

This maps Include to C:\WebServer\CustomerOne\inc and Library to
C:\WebServer\CustomerTwo\Stuff.

When Fortify Static Code Analyzer encounters the #include directive:

<!-- #include virtual="Include/Task1/foo.inc" -->

Fortify Static Code Analyzer determines if the project contains a physical directory named Include. If
there is no such physical directory, Fortify Static Code Analyzer looks through its runtime properties
and finds the -Dcom.fortify.sca.ASPVirtualRoots.Include=
"C:\WebServer\CustomerOne\inc" setting. Fortify Static Code Analyzer then looks for this file:
C:\WebServer\CustomerOne\inc\Task1\foo.inc.

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 118 of 228

Alternatively, you can set this property in the fortify-sca.properties file located in <sca_
install_dir>\Core\config. You must escape the backslash character (\) in the path of the
physical directory as shown in the following example:

com.fortify.sca.ASPVirtualRoots.Library=C:\\WebServer\\CustomerTwo\\Stuff

com.fortify.sca.ASPVirtualRoots.Include=C:\\WebServer\\CustomerOne\\inc

Note: The previous version of the ASPVirtualRoot property is still valid. You can use it on the
Fortify Static Code Analyzer command line as follows:
-Dcom.fortify.sca.ASPVirtualRoots=C:\WebServer\CustomerTwo\Stuff;
C:\WebServer\CustomerOne\inc

This prompts Fortify Static Code Analyzer to search through the listed directories in the order
specified when it resolves a virtual include directive.

Using virtual roots example

You have a file as follows:

C:\files\foo\bar.asp

To specify this file, use the following include:

<!-- #include virtual="/foo/bar.asp">

Then set the virtual root in the sourceanalyzer command as follows:

-Dcom.fortify.sca.ASPVirtualRoots=C:\files\foo

This strips the /foo from the front of the virtual root. If you do not specify foo in the
com.fortify.sca.ASPVirtualRoots property, then Fortify Static Code Analyzer looks for
C:\files\bar.asp and fails.

The sequence to specify virtual roots is as follows:

 1. Remove the first part of the path in the source.

 2. Replace the first part of the path with the virtual root as specified on the command line.

Classic ASP command-line example

To translate a single file classic ASP written in VBScript named MyASP.asp, type:

sourceanalyzer -b mybuild "MyASP.asp"

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 119 of 228

VBScript command-line example

To translate a VBScript file named myApp.vb, type:

sourceanalyzer -b mybuild "myApp.vb"

User Guide
Chapter 16: Translating other languages and configurations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 120 of 228

Chapter 17: Integrating the analysis into a
build
You can integrate the analysis into supported build tools.

This section contains the following topics:

Build integration 121

Modifying a build script to start the analysis 122

Integrating with Ant 123

Integrating with Bazel 123

Integrating with CMake 125

Integrating with Gradle 125

Integrating with Maven 130

Build integration
You can translate entire projects with a single operation. Prefix your original build operation with the
sourceanalyzer command followed by the Fortify Static Code Analyzer options.

The basic command-line syntax to translate a complete project is:

sourceanalyzer -b <build_id> [<sca_options>] <build_tool> [<build_tool_
options>]

where <build_tool> is the name of your build tool, such as make, gmake, msbuild, devenv, or
xcodebuild. See the Fortify Software System Requirements document for a list of supported build
tools. Fortify Static Code Analyzer executes your build tool and intercepts all compiler operations to
collect the specific command line used for each input.

Note: Fortify Static Code Analyzer only processes the compiler commands that the build tool
executes. If you do not clean your project before you execute the build, then Fortify Static Code
Analyzer only processes those files that the build tool re-compiles.

For information about how to integrate with Xcodebuild, see "iOS code analysis command-line syntax"
on page 83. For information about integration with MSBuild, see "Translating Visual Studio projects"
on page 62.

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 121 of 228

Successful build integration requires that the build tool:

 l Executes a Fortify Static Code Analyzer-supported compiler
 l Executes the compiler on the operating system path search, not with a hardcoded path (This

requirement does not apply to xcodebuild integration.)
 l Executes the compiler, rather than executing a sub-process that then executes the compiler

If you cannot meet these requirements in your environment, see "Modifying a build script to start the
analysis" below.

Make example

If you build your project with the following build commands:

make clean
 make
 make install

then you can simultaneously translate and compile the entire project with the following example
commands:

make clean
 sourceanalyzer -b MyProject make
 make install

Modifying a build script to start the analysis
As an alternative to build integration, you can modify your build script to prefix each compiler, linker,
and archiver operation with the sourceanalyzer command. For example, a makefile often defines
variables for the names of these tools:

CC=gcc
CXX=g++
LD=ld
 AR=ar

You can prepend the tool references in the makefile with the sourceanalyzer command and the
appropriate options.

CC=sourceanalyzer -b MyProject gcc
 CXX=sourceanalyzer -b MyProject g++
 LD=sourceanalyzer -b MyProject ld
 AR=sourceanalyzer -b MyProject ar

When you use the same build ID for each operation, Fortify Static Code Analyzer automatically
combines each of the separately-translated files into a single translated project.

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 122 of 228

Integrating with Ant
You can translate Java source files for projects that use an Ant build file. You can apply this
integration on the command line without modifying the Ant build.xml file. When the build runs,
Fortify Static Code Analyzer intercepts all javac task invocations and translates the Java source files
as they are compiled. Make sure that you pass any properties to Ant by adding them to the ANT_
OPTS environment variable. Do not include them in the sourceanalyzer command.

Note: You must translate any JSP files, configuration files, or any other non-Java source files that
are part of the application in a separate step.

To use the Ant integration, make sure that the sourceanalyzer executable is in the PATH
environment variable.

Prepend your Ant command-line with the sourceanalyzer command as follows:

sourceanalyzer -b <build_id> [<sca_options>] ant [<ant_options>]

For example, to translate a Java project and exclude a file from the translation:

sourceanalyzer -b MyProjectA -logfile MyProjectA.log -exclude src/module-
info.java ant

Integrating with Bazel
You can translate projects written in Java or Python that are built with Bazel. When the build runs,
Fortify Static Code Analyzer translates the source files as they are compiled. See the Fortify Software
System Requirements document for supported Bazel versions.

Make sure the following requirements are met before you run the Fortify Static Code Analyzer Bazel
integration:

 l Your Bazel build runs without errors.
 l The sourceanalyzer executable is included in the PATH environment variable.

After the build is complete, always run the Fortify Static Code Analyzer analysis phase with the
same version of Fortify Static Code Analyzer that is included in the PATH environment variable.

To run the translation phase for the configured Java or Python, go to the Bazel workspace directory,
and then run the Fortify Static Code Analyzer command with the target you want to build. Prepend
the Bazel build command line with the sourceanalyzer command as follows:

sourceanalyzer -b <build_id> <sca_options> bazel build <target>

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 123 of 228

Note: If you have multiple Fortify Static Code Analyzer installations, make sure that the version
you want to use for your Bazel projects is defined before all other Fortify Static Code Analyzer
versions included in the PATH environment variable.

Bazel build integration examples

Translate a project for a specific target:

sourceanalyzer -b MyProjectA bazel build //proja:my-prj

Translate target abc in package proja/abc:

sourceanalyzer -b MyProjectA bazel build //proja/abc

or

sourceanalyzer -b MyProjectA bazel build //proja/abc:abc

Translate all targets in the package proja/abc:

sourceanalyzer -b MyProjectA bazel build //proja/abc:all

Translate all targets within the projb/ directory:

sourceanalyzer -b MyProjectB bazel build //projb/...

Specify a specific JDK version for the translation:

sourceanalyzer -b MyProjectC -jdk 17 bazel build //projc:my-java-prj

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-
APP\src\main\java\com\example\HelpContent.java bazel build //projc:my-java-
prj

Specify Python project dependencies for the translation:

sourceanalyzer -b MyProjectD -python-path /usr/local/lib/python3.6/ bazel
build //projd:my-python-app

Fortify Static Code Analyzer Bazel integration does not support multiple targets and related actions
such as excluding targets.

See also

"Java command-line options" on page 51

"Python command-line options" on page 77

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 124 of 228

Integrating with CMake
On non-Windows systems, you can translate projects that are built with CMake by incorporating a
JSON compilation database in the Fortify Static Code Analyzer command. This is only supported for
Makefile and Ninja generators (see the CMake Reference Documentation for more information).

To integrate Fortify Static Code Analyzer with a CMake build:

 1. Generate a compile_commands.json file for your CMake project.

Add -DCMAKE_EXPORT_COMPILE_COMMANDS=yes to the cmake configure command. For
example:

 cmake -G Ninja -DCMAKE_EXPORT_COMPILE_COMMANDS=yes

 2. Include the JSON compilation database in your sourceanalyzer command as follows:

sourceanalyzer -b <build_id> compile_commands.json

Integrating with Gradle
Fortify Static Code Analyzer provides translation integration with projects that are built with Gradle.
You can either integrate without modifying your build script or you can use the Fortify Static Code
Analyzer Gradle plugin.

Using Gradle integration

You can translate projects that are built with Gradle without any modification of the build.gradle
file. When the build runs, Fortify Static Code Analyzer translates the source files as they are compiled.
Alternatively, you can use the Fortify Static Code Analyzer Gradle Plugin to perform the analysis from
within your Gradle build script (see "Using the Gradle plugin" on page 127).

See the Fortify Software System Requirements document for platforms and languages supported
specifically for Gradle integration. Any files in the project in unsupported languages for Gradle
integration are not translated (with no error reporting). These files are therefore not analyzed, and
any existing potential vulnerabilities can go undetected.

To integrate Fortify Static Code Analyzer into your Gradle build, make sure that the
sourceanalyzer executable is included in the PATH environment variable. Always use the
sourceanalyzer executable from the system PATH for all Gradle commands to build the project.

Note: If you have multiple Fortify Static Code Analyzer installations, make sure that the version
you want to use for your Gradle projects is defined before all other Fortify Static Code Analyzer
versions included in the PATH environment variable.

Prepend the Gradle command line with the sourceanalyzer command as follows:

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 125 of 228

sourceanalyzer -b <build_id> <sca_options> gradle [<gradle_options>]
<gradle_tasks>

Gradle integration examples

sourceanalyzer -b MyProject gradle clean build
 sourceanalyzer -b MyProject gradle --info assemble

If your build file name is different than build.gradle, then include the build file name with the --
build-file option as shown in the following example:

 sourceanalyzer -b MyProject gradle --build-file sample.gradle clean
assemble

You can also use the Gradle Wrapper (gradlew) as shown in the following example:

sourceanalyzer -b MyProject gradlew [<gradle_options>]

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProject -exclude src\test*** gradlew build

If your application uses XML or property configuration files, translate these files with a separate
sourceanalyzer command. Use the same build ID that you used for the project files. The following
are examples:

sourceanalyzer -b MyProject <path_to_xml_files>
 sourceanalyzer -b MyProject <path_to_properties_files>

After Fortify Static Code Analyzer translates the project with gradle or gradlew, you can then perform
the analysis phase and save the results in an FPR file as shown in the following example:

sourceanalyzer -b MyProject -scan -f MyResults.fpr

See also

"Using the Gradle plugin" on the next page

Troubleshooting Gradle integration

If you use configuration caching (--configuration-cache option) in your Gradle build with Fortify
Static Code Analyzer Gradle integration, the build reports the following messages:

Configuration cache problems found in this build.

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 126 of 228

You also might see a failure message such as the following:

FAILURE: Build failed with an exception...

You can safely ignore this failure message with respect to the Fortify Static Code Analyzer translation
because the project is translated. You can verify that the project is translated using the -show-files
option. For example:

sourceanalyzer -b mybuild -show-files

Using the Gradle plugin

The Fortify Static Code Analyzer installation includes a Gradle plugin located in <sca_install_
dir>/plugins/gradle. To use the Fortify Static Code Analyzer Gradle Plugin, you need to first
configure the plugin for your Java or Kotlin project and then use the plugin to analyze your project.
The Gradle plugin provides three Fortify Static Code Analyzer tasks for the analysis: sca.clean,
sca.translate, and sca.scan. See the Fortify Software System Requirements document for platforms
and languages supported specifically for Fortify Static Code Analyzer Gradle plugin.

Note: If you have multiple Fortify Static Code Analyzer installations, make sure that the version
you want to use for your Gradle projects is defined before all other Fortify Static Code Analyzer
versions included in the PATH environment variable.

To configure the Fortify Static Code Analyzer Gradle Plugin:

 1. Edit the Gradle settings file to specify the path to the plugin:
 l Groovy DSL (settings.gradle):

pluginManagement {
 repositories {
 gradlePluginPortal()
 maven {
 url = uri("file://<sca_plugin_path>")
 }
 }
 }

 l Kotlin DSL (settings.gradle.kts):

pluginManagement {
 repositories {
 maven(url = uri("file://<sca_plugin_path>"))
 gradlePluginPortal()
 }
 }

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 127 of 228

 2. Add entries to the build script as shown in the following examples:
 l Groovy DSL (build.gradle):

id 'com.fortify.sca.plugins.gradlebuild' version '24.4'

and

SCAPluginExtension {
 buildId = "MyProject"
 options = ["-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose"]
 }

or the following example entry excludes files from the translation:

SCAPluginExtension {
 buildId = "MyProject"
 options = ["-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose", "-exclude", "src/test/**/*"]
 }

 l Kotlin DSL (build.gradle.kts):

plugins {
 id ("com.fortify.sca.plugins.gradlebuild") version "24.4"
 ...
 }

and

SCAPluginExtension {
 buildId = "MyProject"
 options = listOf("-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose")
 }

or the following example entry excludes files from the translation:

SCAPluginExtension {
 buildId = "MyProject"
 options = listOf("-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose", "-exclude", "src/test/**/*")
 }

 3. Save and close the Gradle settings and Gradle build files.

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 128 of 228

Analyze a Java or Kotlin project with following command sequence:

 l To remove all existing Fortify Static Code Analyzer temporary files for an existing Java or Kotlin
project build, run the following:

gradlew sca.clean

 l To run the translation phase for the configured Java or Kotlin project, run the following:

gradlew sca.translate

 l To analyze the configured Java or Kotlin project, run the following:

gradlew sca.scan

This task runs successfully if Fortify Static Code Analyzer has already translated the project using
the Fortify Static Code Analyzer Gradle Plugin.

Working with Java or Kotlin projects that have subprojects

If you have a Java or Kotlin multi-project build (with subprojects), then you must configure the Fortify
Static Code Analyzer Gradle plugin using an allprojects block. This is shown in the following
examples.

Groovy DSL (build.gradle)

allprojects {
 apply plugin: "com.fortify.sca.plugins.gradlebuild"
 SCAPluginExtension {
 buildId = "MyProject"
 options = ["-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose"]
 ...
 }
 }

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 129 of 228

Kotlin DSL (build.gradle.kts):

allprojects {
 apply(plugin = "com.fortify.sca.plugins.gradlebuild")
 SCAPluginExtension {
 buildId = "MyProject"
 options = listOf("-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose")
 ...
 }
 }

See also

"Using Gradle integration" on page 125

Integrating with Maven
Fortify Static Code Analyzer includes a Maven plugin that provides a way to add the following
capabilities to your Maven project builds:

 l Fortify Static Code Analyzer clean, translate, scan
 l Fortify Static Code Analyzer export mobile build session (MBS) for a Fortify Static Code Analyzer

translated project
 l Send translated code to Fortify ScanCentral SAST
 l Upload results to Fortify Software Security Center

You can use the plugin directly or integrate its functionality into your build process.

Installing and updating the Fortify Maven Plugin

The Fortify Maven Plugin is located in <sca_install_dir>/plugins/maven. This directory
contains a binary and a source version of the plugin in both zip and tarball archives. To install the
plugin, extract the version (binary or source) that you want to use, and then follow the instructions in
the included README.TXT file. Perform the installation in the directory where you extracted the
archive.

For information about supported versions of Maven, see the Fortify Software System Requirements
document.

If you have a previous version of the Fortify Maven Plugin installed, then install the latest version.

Uninstalling the Fortify Maven Plugin

To uninstall the Fortify Maven Plugin, manually delete all files from the <maven_local_
repo>/repository/com/fortify/ps/maven/plugin directory.

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 130 of 228

Testing the Fortify Maven Plugin installation

After you install the Fortify Maven Plugin, use one of the included sample files to be sure your
installation works properly.

To test the Fortify Maven Plugin using the Eightball sample file:

 1. Add the directory that contains the sourceanalyzer executable to the path environment
variable.

For example:

export set PATH=$PATH:/<sca_install_dir>/bin

or

set PATH=%PATH%;<sca_install_dir>/bin

 2. Type sourceanalyzer -version to test the path setting.
Fortify Static Code Analyzer displays the version information if the path setting is correct.

 3. Navigate to the sample Eightball directory: <root_dir>/samples/EightBall.
 4. Type the following command:

mvn com.fortify.sca.plugins.maven:sca-maven-plugin:<ver>:clean

where <ver> is the version of the Fortify Maven Plugin you are using. If the version is not
specified, Maven uses the latest version of the Fortify Maven Plugin installed in the local
repository.

Note: To see the version of the Fortify Maven Plugin, open the pom.xml file that you
extracted in <root_dir> in a text editor. The Fortify Maven Plugin version is specified in the
<version> element.

 5. If the command in step 4 completed successfully, then the Fortify Maven Plugin is installed
correctly. The Fortify Maven Plugin is not installed correctly if you get the following error
message:

[ERROR] Error resolving version for plugin
'com.fortify.sca.plugins.maven:sca-maven-plugin' from the repositories

Check the Maven local repository and try to install the Fortify Maven Plugin again.

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 131 of 228

Using the Fortify Maven Plugin

There are two ways to perform an analysis on a maven project:

 l As a Maven Plugin

In this method, you perform the analysis tasks as goals with the mvn command. For example, use
the following command to translate source code:

mvn com.fortify.sca.plugins.maven:sca-maven-plugin:24.4.0:translate

For example, use the following command to translate source code and exclude test files:

mvn -Dfortify.sca.exclude=“**/Test/*.java”
com.fortify.sca.plugins.maven:sca-maven-plugin:24.4.0:translate

To analyze your code this way, see the documentation included with the Fortify Maven Plugin. The
following table describes where to find the documentation after you install the Fortify Maven
Plugin.

Package type Documentation location

Binary <root_dir>/docs/index.html

Source <root_dir>/sca-maven-plugin/target/site/index.html

 l In a Fortify Static Code Analyzer build integration

In this method, prepend the maven command used to build your project with the sourceanalyzer
command and any Fortify Static Code Analyzer options. To analyze your files as part of a Fortify
Static Code Analyzer build integration:

 a. Clean out the previous build:

sourceanalyzer -b MyProject -clean

 b. Translate the code:

sourceanalyzer -b MyProject [<sca_options>] [<mvn_command_with_
options>]

Examples:

sourceanalyzer -b MyProject mvn package

sourceanalyzer -b MyProject -exclude "**/Test/*.java" mvn clean
install

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 132 of 228

See "Command-line interface" on page 134 for descriptions of available Fortify Static Code
Analyzer options.

 c. Run the scan and save the results in an FPR file as shown in the following example:

sourceanalyzer -b MyProject [<sca_scan_options>] -scan -f
MyResults.fpr

User Guide
Chapter 17: Integrating the analysis into a build

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 133 of 228

Chapter 18: Command-line interface
This chapter describes general Fortify Static Code Analyzer command-line options and how to specify
source files for analysis. Command-line options that are specific to a language are described in the
chapter for that language.

This section contains the following topics:

Translation options 134

Analysis options 136

Output options 139

Other options 142

Directives 144

Specifying files and directories 146

Translation options
The following table describes the translation options.

Translation option Description

-b <build_id> Specifies a build ID. Fortify Static Code Analyzer uses a build ID to
track the files that are compiled and combined as part of a build, and
then later, to scan those files.

Equivalent property name:

com.fortify.sca.BuildID

-disable-language
<languages>

Specifies a colon-separated list of languages to exclude from the

translation phase. The valid language values are abap,
actionscript, apex, cfml, cobol, configuration, cpp, dart,
dotnet, golang, java, javascript, jsp, kotlin, objc, php, plsql,
python, ruby, scala, sql, swift, tsql, typescript, and vb.

Equivalent property name:

com.fortify.sca.DISabledLanguages

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 134 of 228

Translation option Description

-enable-language
<languages>

Specifies a colon-separated list of languages to translate. The valid

language values are abap, actionscript, apex, cfml, cobol,
configuration, cpp, dart, dotnet, golang, java, javascript,
jsp, kotlin, objc, php, plsql, python, ruby, scala, sql, swift,
tsql, typescript, and vb.

Equivalent property name:

com.fortify.sca.EnabledLanguages

-exclude
<file_specifiers>

Specifies the files to exclude from the translation. Files excluded from
translation are also not scanned. Separate multiple file paths with
semicolons (Windows) or colons (non-Windows). The following

example excludes all Java files in any Test subdirectory.

sourceanalyzer -b MyProject –cp "**/*.jar" "**/*"
-exclude "**/Test/*.java"

See "Specifying files and directories" on page 146 for more
information on how to use file specifiers.

Equivalent property name:

com.fortify.sca.exclude

-encoding <encoding_
name>

Specifies the source file encoding type. Fortify Static Code Analyzer
enables you to scan a project that contains differently encoded
source files. To work with a multi-encoded project, you must specify

the -encoding option in the translation phase, when Fortify Static
Code Analyzer first reads the source code file. Fortify Static Code
Analyzer remembers this encoding in the build session and
propagates it into the FVDL file.

Valid encoding names are from the java.nio.charset.Charset.

Typically, if you do not specify the encoding type, Fortify Static Code

Analyzer uses file.encoding from the
java.io.InputStreamReader constructor with no encoding
parameter. In a few cases (for example with the ActionScript parser),

Fortify Static Code Analyzer defaults to UTF-8 encoding.

Equivalent property name:

com.fortify.sca.InputFileEncoding

-nc When specified before a compiler command line, Fortify Static Code

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 135 of 228

Translation option Description

Analyzer translates the source file but does not run the compiler.

-noextension-type
<file_type>

Specifies the file type for source files that have no extension. The

valid file type values are ABAP, ACTIONSCRIPT, APEX, APEX_OBJECT,
APEX_TRIGGER, ARCHIVE, ASPNET, ASP, ASPX, BITCODE, BSP,
BYTECODE, CFML, COBOL, CSHARP, DART, DOCKERFILE, FLIGHT,
GENERIC, GO, HOCON, HTML, INI, JAVA, JAVA_PROPERTIES,
JAVASCRIPT, JSP, JSPX, KOTLIN, MSIL, MXML, OBJECT, PHP, PLSQL,
PYTHON, RUBY, RUBY_ERB, SCALA, SWIFT, SWC, SWF, TLD, SQL, TSQL,
TYPESCRIPT, VB, VB6, VBSCRIPT, VISUAL_FORCE, VUE, and XML.

-disable-compiler-
resolution

Specifies to include build script files that have the same name as a
build tool (such as gradlew) during translation as source files.

Equivalent property name:

com.fortify.sca.DisableCompilerName

-project-root Specifies the directory to store intermediate files generated in the
translation and analysis phases. Fortify Static Code Analyzer makes
extensive use of intermediate files located in this project root
directory. In some cases, you can achieve better performance for
analysis by making sure this directory is on local storage rather than
on a network drive.

Equivalent property name:

com.fortify.sca.ProjectRoot

Analysis options
The following table describes the analysis options.

Analysis option Description

-b <build_id> Specifies the build ID used in a prior translation command.

Equivalent property name:

com.fortify.sca.BuildID

-scan Causes Fortify Static Code Analyzer to perform a security analysis for
the specified build ID.

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 136 of 228

Analysis option Description

-scan-policy
<policy_name> |

-sc <policy_name>

Specifies a scan policy for the analysis. The valid policy names are

classic, security, and devops. For more information, see "Applying a
scan policy to the analysis" on page 46.

Equivalent property name:

com.fortify.sca.ScanPolicy

-analyzers
<analyzer_list>

Specifies the analyzers you want to enable with a colon- or comma-

separated list of analyzers. The valid analyzer names are buffer,
content, configuration, controlflow, dataflow, nullptr,
semantic, and structural. You can use this option to disable
analyzers that are not required for your security requirements.

Equivalent property name:

com.fortify.sca.DefaultAnalyzers

-p <level> |
-scan-precision
<level>

Uses speed dial to scan the project with a scan precision level. The lower
the scan precision level, the faster the scan performance. The valid

values are 1, 2, 3, and 4. For more information, see "Configuring scan
speed with speed dial" on page 160.

Equivalent property name:

com.fortify.sca.PrecisionLevel

-project-root Specifies the directory to store intermediate files generated in the
translation and analysis phases. Fortify Static Code Analyzer makes
extensive use of intermediate files located in this project root directory.
In some cases, you can achieve better performance for analysis by
making sure this directory is on local storage rather than on a network
drive.

Equivalent property name:

com.fortify.sca.ProjectRoot

-project-template
<file>

Specifies the issue template file to use for the scan. This only affects
scans on the local machine. If you upload the FPR to Fortify Software
Security Center, it uses the issue template assigned to the application
version.

Equivalent property name:

com.fortify.sca.ProjectTemplate

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 137 of 228

Analysis option Description

-quick Quickly scan the project for critical- and high-priority issues using the

fortify-sca-quickscan.properties file, which provides a less in-
depth analysis. By default, quick scan disables the Buffer Analyzer and
the Control Flow Analyzer. In addition, it applies the Quick View filter set.
For more information, see "Quick scan" on page 159.

Equivalent property name:

com.fortify.sca.QuickScanMode

-filter <file> Specifies a results filter file. For more information, see "Filtering the
analysis" on page 178.

Equivalent property name:

com.fortify.sca.FilterFile

-bin <binary> |
-binary-name
<binary>

Specifies a subset of source files to scan. Only the source files that were
linked in the named binary at build time are included in the scan. You can
use this option multiple times to specify the inclusion of multiple binaries
in the scan.

Equivalent property name:

com.fortify.sca.BinaryName

-disable-default-
rule-type
<type>

Disables all rules of the specified type in the default Rulepacks. You can
use this option multiple times to specify multiple rule types.

The <type> parameter is the XML tag minus the suffix Rule. For
example, use DataflowSource for DataflowSourceRule elements. You
can also specify specific sections of characterization rules, such as

Characterization:Control flow, Characterization:Issue, and
Characterization:Generic.

The <type> parameter is case-insensitive.

-no-default-issue-
rules

Disables rules in default Rulepacks that lead directly to issues. Fortify
Static Code Analyzer still loads rules that characterize the behavior of
functions.

Note: This is equivalent to disabling the following rule types:
DataflowSink, Semantic, Controlflow, Structural, Configuration,
Content, Statistical, Internal, and Characterization:Issue.

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 138 of 228

Analysis option Description

Equivalent property name:

com.fortify.sca.NoDefaultIssueRules

-no-default-rules Disables loading of rules from the default Rulepacks. Fortify Static Code
Analyzer processes the Rulepacks for description elements and language
libraries, but processes no rules.

Equivalent property name:

com.fortify.sca.NoDefaultRules

-no-default-
source-rules

Disables source rules in the default Rulepacks.

Note: Characterization source rules are not disabled.

Equivalent property name:

com.fortify.sca.NoDefaultSourceRules

-no-default-sink-
rules

Disables sink rules in the default Rulepacks.

Note: Characterization sink rules are not disabled.

Equivalent property name:

com.fortify.sca.NoDefaultSinkRules

-rules <file> |
<dir>

Specifies a custom Rulepack or directory. You can use this option
multiple times to specify multiple Rulepack files. If you specify a
directory, Fortify Static Code Analyzer includes all the files in the

directory with the .bin and .xml extensions.

Equivalent property name:

com.fortify.sca.RulesFile

Output options
The following table describes the output options. Apply all these options during the analysis phase
(with the -scan option). You can specify the build-label, build-project, and build-version
options during the translation phase and they are overridden if specified again for the analysis phase.

Output option Description

-f <file> |
-output-file

Specifies the file to which analysis results are written. If you do not
specify an output file, Fortify Static Code Analyzer writes the output to

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 139 of 228

Output option Description

<file> the terminal.

Equivalent property name:

com.fortify.sca.ResultsFile

-format <format> Controls the output format. Valid options are fpr, fvdl, fvdl.zip,
text, and auto. The default is auto, which selects the output format
based on the file name extension of the file provided with the -f option.

The FVDL is an XML file that contains the detailed Fortify Static Code
Analyzer analysis results. This includes vulnerability details, rule
descriptions, code snippets, command-line options used in the scan, and
any scan errors or warnings.

The FPR is a package of the analysis results that includes the FVDL file
as well as extra information such as a copy of the source code used in the
scan, the external metadata, and custom rules (if applicable). Fortify

Audit Workbench is automatically associated with the .fpr extension.

Note: If you use result certification, you must specify the fpr format.
See the OpenText™ Fortify Audit Workbench User Guide for
information about result certification.

You can prevent some information from being included in the FPR or
FVDL file to improve scan time or output file size. See other options in
this table and see "Optimizing FPR files" on page 163.

Equivalent property name:

com.fortify.sca.Renderer

-append Appends results to the file specified with the -f option. The resulting
FPR file contains the issues from the earlier scan as well as issues from
the current scan. The build information and program data (lists of
sources and sinks) sections are also merged. To use this option, the

output file format must be fpr or fvdl. For information on the -format
output option, see the description in this table.

The engine data, which includes Fortify Software Security
Content information, command-line options, system properties,
warnings, errors, and other information about the execution of Fortify
Static Code Analyzer (as opposed to information about the program
being analyzed), is not merged. Because engine data is not merged with

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 140 of 228

Output option Description

the -append option, OpenText does not certify results generated with -
append.

If this option is not specified, Fortify Static Code Analyzer adds any new

findings to the FPR file, and labels the older result as previous findings.

In general, only use the -append option when it is impossible to analyze
an entire application at once.

Equivalent property name:

com.fortify.sca.OutputAppend

-build-label
<label>

Specifies a label for the project to include in the analysis results. You can
include this option during the translation or the analysis phase. Fortify
Static Code Analyzer does not use this label for code analysis.

Equivalent property name:

com.fortify.sca.BuildLabel

-build-project
<project_name>

Specifies a name for the project to include in the analysis results. You can
include this option during the translation or the analysis phase. Fortify
Static Code Analyzer does not use this name for code analysis.

Equivalent property name:

com.fortify.sca.BuildProject

-build-version
<version>

Specifies a version for the project to include in the analysis results. You
can include this option during the translation or the analysis phase.
Fortify Static Code Analyzer does not use this version for code analysis.

Equivalent property name:

com.fortify.sca.BuildVersion

-disable-source-
bundling

Excludes source files from the analysis results file.

Equivalent property name:

com.fortify.sca.FPRDisableSourceBundling

-fvdl-no-
descriptions

Excludes the Fortify Software Security Content descriptions from the
analysis results file.

Equivalent property name:

com.fortify.sca.FVDLDisableDescriptions

-fvdl-no-
enginedata

Excludes engine data from the analysis results file. The engine data

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 141 of 228

Output option Description

includes Fortify Software Security Content information, command-line
options, system properties, warnings, errors, and other information about
the Fortify Static Code Analyzer execution.

Equivalent property name:

com.fortify.sca.FVDLDisableEngineData

-fvdl-no-progdata Excludes program data from the analysis results file. This removes the
taint source information from the Functions view in Fortify Audit
Workbench.

Equivalent property name:

com.fortify.sca.FVDLDisableProgramData

-fvdl-no-snippets Excludes the code snippets from the analysis results file.

Equivalent property name:

com.fortify.sca.FVDLDisableSnippets

Other options
The following table describes other options.

Other option Description

@<file> Reads command-line options from the specified file.

Note: By default, this file uses the JVM system encoding. You can
change the encoding by using the

com.fortify.sca.CmdlineOptionsFileEncoding property
specified in the fortify-sca.properties file. For more
information about this property, see "Translation and analysis phase
properties" on page 186.

-h |
-? |
-help

Prints a summary of the command-line options.

-debug Includes debug information in the Static Code Analyzer Support log file,
which is only useful for Customer Support to help troubleshoot.

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 142 of 228

Other option Description

Equivalent property name:

com.fortify.sca.Debug

-debug-verbose This is the same as the -debug option, but it includes more details,
specifically for parse errors.

Equivalent property name:

com.fortify.sca.DebugVerbose

-debug-mem Includes performance information in the Static Code Analyzer Support
log.

Equivalent property name:

com.fortify.sca.DebugTrackMem

-verbose Sends verbose status messages to the console and to the Static Code
Analyzer Support log file.

Equivalent property name:

com.fortify.sca.Verbose

-logfile <file> Specifies the log file that Fortify Static Code Analyzer creates.

Equivalent property name:

com.fortify.sca.LogFile

-clobber-log Directs Fortify Static Code Analyzer to overwrite the log file for each run
of sourceanalyzer. Without this option, Fortify Static Code Analyzer
appends information to the log file.

Equivalent property name:

com.fortify.sca.ClobberLogFile

-quiet Disables the command-line progress information.

Equivalent property name:

com.fortify.sca.Quiet

-version |
-v

Displays the Fortify Static Code Analyzer version and versions of various
independent modules included with Fortify Static Code Analyzer (all
other functionality is contained in Fortify Static Code Analyzer).

-autoheap Enables automatic allocation of memory based on the physical memory
available on the system. This is the default memory allocation setting.

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 143 of 228

Other option Description

-Xmx<size>M | G Specifies the maximum amount of memory Fortify Static Code Analyzer
uses.

Heap sizes between 32 GB and 48 GB are not advised due to internal
JVM implementations. Heap sizes in this range perform worse than at 32
GB. The JVM optimizes heap sizes smaller than 32 GB. If your scan
requires more than 32 GB, then you need 64 GB or more. As a guideline,
assuming no other memory intensive processes are running, do not
allocate more than 2/3 of the available memory.

When you specify this option, make sure that you do not allocate more
memory than is physically available, because this degrades performance.
As a guideline, and the assumption that no other memory intensive
processes are running, do not allocate more than 2/3 of the available
memory.

Note: Specifying this option overrides the default memory allocation

obtained with the -autoheap option.

Directives
Use only one directive at a time and do not use any directive in conjunction with translation or
analysis commands. Use the directives described in the following table to list information about
previous translation commands.

Directive Description

-clean Deletes all Fortify Static Code Analyzer intermediate files and build
records. If you specify a build ID, only files and build records that relate
to that build ID are deleted.

-show-binaries Displays all objects created but not used in the production of any other
binaries. If fully integrated into the build, it lists all the binaries
produced.

-show-build-ids Displays a list of all known build IDs.

-show-build-tree When you scan with the -bin option, displays all files used to create
the binary and all files used to create those files in a tree layout. If the

-bin option is not present, the tree is displayed for each binary.

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 144 of 228

Directive Description

Note: This option can generate an extensive amount of
information.

-show-build-warnings Use with the -b option to display any errors and warnings that
occurred in the translation phase on the console.

Note: Fortify Audit Workbench also displays these errors and
warnings in the results Certification tab.

-show-files Displays the files included in the specified build ID. When the -bin
option is present, displays only the source files that went into the
binary.

-show-loc Use with the -b option to display the number of lines in the translated
code.

LIM license directives

Fortify Static Code Analyzer provides directives to manage the usage of your LIM license. You can
store or clear the LIM license pool credentials. You can also request (and release) a detached lease for
offline analysis if the specified license pool permits detached leases.

Note: By default, Fortify Static Code Analyzer requires an HTTPS connection to the LIM server
and you must have a trusted certificate. For more information, see "Adding trusted certificates"
on page 40.

Use the directives described in the following table for a license managed by the LIM.

LIM directive Description

-store-license-pool-
credentials "<lim_
url>|<lim_pool_
name>|<lim_pool_
pwd>|<proxy_
url>|<proxy_
user>|<proxy_pwd>"

Stores your LIM license pool credentials so that Fortify Static Code
Analyzer uses the LIM for licensing. The proxy information is optional.
Fortify Static Code Analyzer stores the pool password and the proxy

credentials provided with this directive in the fortify-
sca.properties file as encrypted data. If your license pool
credentials change after you have installed Fortify Static Code
Analyzer, you can run this directive again to save the new credentials.

Example:

sourceanalyzer -store-license-pool-credentials

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 145 of 228

LIM directive Description

 "https://<ip_address>:<port>|TeamA|mypassword"

Associated property names:

com.fortify.sca.lim.Url
com.fortify.sca.lim.PoolName
com.fortify.sca.lim.PoolPassword
com.fortify.sca.lim.ProxyUrl
com.fortify.sca.lim.ProxyUsername
com.fortify.sca.lim.ProxyPassword

-clear-license-pool-
credentials

Removes the LIM license pool credentials from the fortify-
sca.properties file. If your license pool credentials change, you can
remove them with this directive, and then use the -store-license-
pool-credentials directive to save the new credentials.

-request-detached-
lease <duration>

Requests a detached lease from the LIM license pool for exclusive use
on this system for the specified duration (in minutes). This enables
you to run Fortify Static Code Analyzer even when disconnected from
your corporate intranet.

Note: To use this directive, the license pool must be configured to
allow detached leases.

-release-detached-
lease

Releases a detached lease back to the license pool.

Specifying files and directories
File specifiers are expressions that allow you to pass a long list of files or a directory to Fortify Static
Code Analyzer using wildcard characters. Fortify Static Code Analyzer recognizes two types of
wildcard characters: a single asterisk character (*) matches part of a file name, and double asterisk
characters (**) recursively matches directories. You can specify one or more files, one or more file
specifiers, or a combination of files and file specifiers.

<files> | <file_dir_specifiers>

Windows and many Linux shells automatically expand parameters that contain the asterisk character
(*), so you must enclose file-specifier expressions in quotes. Also, on Windows, you can use the
backslash character (\) as the directory separator instead of the forward slash (/).

Note: File specifiers do not apply to C, C++, or Objective-C++.

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 146 of 228

The following table describes examples of file and directory specifiers.

File / Directory Specifier Description

<dir>

"<dir>/**/*"

Matches all files in the named directory and any
subdirectories or the named directory when used for a
directory parameter.

"<dir>/**/Example.java" Matches any file named Example.java found in the named
directory or any subdirectories.

"<dir>/*.java"

"<dir>/*.jar"

Matches any file with the specified extension found in the
named directory.

"<dir>/**/*.kt"

"<dir>/**/*.jar"

Matches any file with the specified extension found in the
named directory or any subdirectories.

"<dir>/**/beta/**" Matches all directories and files found in the named directory

that have beta in the path, including beta as a file name.

"<dir>/**/classes/" Matches all directories and files with the name classes
found in the named directory and any subdirectories.

"**/test/**" Matches all files in the current directory tree that have a

test element in the path, including test as a file name.

"**/webgoat/*" Matches all files in any webgoat directory in the current
directory tree.

Matches:

 l /src/main/java/org/owasp/webgoat
 l /test/java/org/owasp/webgoat

Does not match (assignments directory does not match)

 l /test/java/org/owasp/webgoat/assignments

User Guide
Chapter 18: Command-line interface

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 147 of 228

Chapter 19: Command-line tools
Fortify Static Code Analyzer command-line tools enable you to manage Fortify Software Security
Content, perform post-installation configurations, and monitor scans. These tools are located in
<sca_install_dir>/bin. The tools for Windows are provided as .bat or .cmd files. The following
table describes the command-line tools installed with Fortify Static Code Analyzer.

Note: By default, log files for Fortify Static Code Analyzer tools are written to the following
directory:

 l Windows: C:\Users\<username>\AppData\Local\Fortify\<tool_name>-
<version>\log

 l Non-Windows: <userhome>/.fortify/<tool_name>-<version>/log

Tool Description
More
information

fortifyupdate Compares installed security content to the current version
and makes any required updates

"About updating
Fortify Software
Security Content"
on the next page

FPRUtility With this tool you can:

 l Merge audited projects

 l Verify FPR signatures

 l Display information from an FPR file

 l Combine or split source code files and audit projects into
FPR files

 l Alter an FPR

OpenText™
Fortify Static
Code Analyzer
Applications and
Tools Guide

scapostinstall This tool enables you to migrate properties files from a
previous version of Fortify Static Code Analyzer, specify a
locale, and specify a proxy server for security content
updates and for Fortify Software Security Center.

"Running the
post-install tool"
on page 37

SCAState Provides state analysis information on the JVM during the
analysis phase

"Checking the
scan status with
SCAState" on
page 152

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 148 of 228

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440

This section contains the following topics:

About updating Fortify Software Security Content 149

Checking the scan status with SCAState 152

About updating Fortify Software Security Content
You can use the fortifyupdate command-line tool to download the latest Fortify Secure Coding
Rulepacks and metadata from OpenText.

The fortifyupdate tool gathers information about the existing security content in your Fortify Static
Code Analyzer installation and contacts the Fortify Rulepack update server with this information. The
server returns new or updated security content, and removes any obsolete security content from your
Fortify Static Code Analyzer installation. If your installation is current, a message is displayed to that
effect.

Updating Fortify Software Security Content

Use the fortifyupdate command-line tool to either download security content or import a local copy of
the security content. This tool is located in the <sca_install_dir>/bin directory.

The default read timeout for this tool is 180 seconds. To change the timeout setting, add the
rulepackupdate.SocketReadTimeoutSeconds property in the server.properties
configuration file. For more information, see the OpenText™ Fortify Static Code Analyzer Applications
and Tools Guide.

The basic command-line syntax for fortifyupdate is shown in the following example:

fortifyupdate [<options>]

To update your Fortify Static Code Analyzer installation with the latest Fortify Secure Coding
Rulepacks and external metadata from the Fortify Rulepack update server, type the following
command:

fortifyupdate

To update security content from the local system:

fortifyupdate -import <my_local_rules>.zip

To update security content from a Fortify Software Security Center server using credentials:

fortifyupdate -url <ssc_url> -sscUser <username> -sscPassword <password>

User Guide
Chapter 19: Command-line tools

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 149 of 228

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440

fortifyupdate command-line options

The following table describes the fortifyupdate options.

fortifyupdate option Description

-acceptKey Specifies to accept the public key. When this is
specified, you are not prompted to provide a public key.
Use this option to accept the public key if you update
Fortify Software Security Content from a non-standard

location with the -url option.

-acceptSSLCertificate Specifies to use the SSL certificate provided by the
server.

-import <file>.zip Imports the ZIP file that contains security content. By

default, Rulepacks are imported into the <sca_
install_dir>/Core/config/rules directory.

-coreDir <dir> Specifies a core directory where fortifyupdate stores
the update. If this is not specified, the fortifyupdate
performs the update in the <sca_install_dir>.

Important! Make sure that you copy the contents

of the <sca_install_dir>/config/keys folder
and paste it to a config/keys folder in this
directory before you run fortifyupdate.

-includeMetadata Specifies to only update external metadata.

-includeRules Specifies to only update Rulepacks.

-locale <locale> Specifies a locale. English is the default if no security
content exists for the specified locale. The valid values
are:

 l en (English)
 l es (Spanish)
 l ja (Japanese)
 l ko (Korean)
 l pt_BR (Brazilian Portuguese)

User Guide
Chapter 19: Command-line tools

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 150 of 228

fortifyupdate option Description

 l zh_CN (Simplified Chinese)
 l zh_TW (Traditional Chinese)

Note: The values are not case-sensitive.

Alternatively, you can specify a default locale for

security content updates in the fortify.properties
configuration file. For more information, see the
OpenText™ Fortify Static Code Analyzer Applications
and Tools Guide.

-proxyhost <host> Specifies a proxy server network name or IP address.

-proxyport <port> Specifies a proxy server port number.

-proxyUsername
<username>

Specifies a user name if the proxy server requires
authentication.

-proxyPassword
<password>

Specifies the password if the proxy server requires
authentication.

-showInstalledRules Displays the currently installed Rulepacks including any
custom rules and custom metadata.

-showInstalledExternalMetadata Displays the currently installed external metadata.

-url <url> Specifies a URL from which to download the security
content. The default URL is

https://update.fortify.com or the value set for
the rulepackupdate.server property in the
server.properties configuration file.

For more information about the server.properties
configuration file, see the OpenText™ Fortify Static
Code Analyzer Applications and Tools Guide.

You can download the security content from a Fortify
Software Security Center server by providing a Fortify
Software Security Center URL.

Specify one of the following types of credentials if you update security content from Fortify

Software Security Center with the -url option:

User Guide
Chapter 19: Command-line tools

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 151 of 228

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440

fortifyupdate option Description

 -sscUsername

 -sscPassword

Specifies a Fortify Software Security Center user
account by user name and password.

 -sscAuthToken Specifies a Fortify Software Security
Center authentication token of type
UnifiedLoginToken, CIToken, or ToolsConnectToken.

Checking the scan status with SCAState
Use the SCAState tool to see up-to-date state analysis information during the analysis phase.

To check the state:

 1. Start a scan.

 2. Open another command window.

 3. Type the following at the command prompt:

SCAState [<options>]

See also

"SCAState command-line options" below

SCAState command-line options

The following table describes the SCAState options.

SCAState option Description

-a |
--all

Displays all available information.

-debug Displays information that is useful to debug SCAState behavior.

-ftd |
--full-thread-dump

Prints a thread dump for every thread.

-h |
--help

Displays the help information for the SCAState tool.

-hd <filename> |
--heap-dump <filename>

Specifies the file to which the heap dump is written. The file is
interpreted relative to the remote scan’s working directory; this is

User Guide
Chapter 19: Command-line tools

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 152 of 228

SCAState option Description

not necessarily the same directory where you are running
SCAState.

-liveprogress Displays the ongoing status of a running scan. This is the default.
If possible, this information is displayed in a separate terminal
window.

-nogui Causes the Fortify Static Code Analyzer state information to
display in the current terminal window instead of in a separate
window.

-pi |
--program-info

Displays information about the source code being scanned,
including how many source files and functions it contains.

-pid <process_id> Specifies the currently running Fortify Static Code
Analyzer process ID. Use this option if there are multiple Fortify
Static Code Analyzer processes running simultaneously.

To obtain the process ID on Windows systems:

 1. Open a command window.

 2. At the command prompt, type tasklist.

A list of processes is displayed.

 3. Find the java.exe process in the list and note its PID.

To find the process ID on Linux systems:

 l At the command prompt, type ps aux | grep
sourceanalyzer.

-progress Displays scan information up to the point at which the command is
issued. This includes the elapsed time, the current phase of the
analysis, and the number of results already obtained.

-properties Displays configuration settings (this does not include sensitive
information such as passwords).

-scaversion Displays the Fortify Static Code Analyzer version number for the
sourceanalyzer that is currently running.

-td |
--thread-dump

Prints a thread dump for the main scanning thread.

User Guide
Chapter 19: Command-line tools

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 153 of 228

SCAState option Description

-timers Displays information from the timers and counters that are
instrumented in Fortify Static Code Analyzer.

-version Displays the SCAState version.

-vminfo Displays the following statistics that JVM standard MXBeans
provides: ClassLoadingMXBean, CompilationMXBean,
GarbageCollectorMXBeans, MemoryMXBean,
OperatingSystemMXBean, RuntimeMXBean, and ThreadMXBean.

<none> Displays scan progress information (this is the same as -
progress).

Note: Fortify Static Code Analyzer writes Java process information to the location of the TMP
system environment variable. On Windows systems, the TMP system environment variable
location is C:\Users\<username>\AppData\Local\Temp. If you change this TMP system
environment variable to point to a different location, SCAState cannot locate the
sourceanalyzer Java process and does not return the expected results. To resolve this issue,
change the TMP system environment variable to match the new TMP location. OpenText
recommends that you run SCAState as an administrator on Windows.

User Guide
Chapter 19: Command-line tools

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 154 of 228

Chapter 20: Improving performance
This chapter provides guidelines and tips to optimize memory usage and performance when
analyzing different types of codebases with Fortify Static Code Analyzer.

This section contains the following topics:

Antivirus software 155

Hardware considerations 156

Sample scans 157

Tuning options 158

Quick scan 159

Configuring scan speed with speed dial 160

Breaking down codebases 161

Limiting analyzers and languages 162

Optimizing FPR files 163

Monitoring long running scans 167

Antivirus software
The use of antivirus software can negatively impact Fortify Static Code Analyzer performance. If you
notice long scan times, OpenText recommends that you temporarily exclude the internal Fortify Static
Code Analyzer files from your antivirus software scan. You can also do the same for the directories
where the source code resides, however the performance impact on the analysis is less than with the
internal directories.

By default, Fortify Static Code Analyzer creates internal files in the following location:

 l Windows: c:\Users\<username>\AppData\Local\Fortify\sca<version>
 l Non-Windows: <userhome>/.fortify/sca<version>

where <version> is the version of Fortify Static Code Analyzer you are using.

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 155 of 228

Hardware considerations
The variety of source code makes accurate predictions of memory usage and scan times impossible.
The factors that affect memory usage and performance consists of many different factors including:

 l Code type
 l Codebase size and complexity
 l Ancillary languages used (such as JSP, JavaScript, and HTML)
 l Number of vulnerabilities
 l Type of vulnerabilities (analyzer used)

OpenText developed the following set of "best guess" hardware recommendations based on real-
world application scan results. The following table lists these recommendations based on the
complexity of the application. In general, increasing the number of available cores might improve scan
times.

Application
complexity CPU cores

RAM

(GB) Description

Simple 4 16 A standalone system that runs on a server or desktop
such as a batch job or a command-line tool.

Medium 8 32 A standalone system that works with complex
computer models such as a tax calculation system or a
scheduling system.

Complex 16 128 A three-tiered business system with transactional
data processing such as a financial system or a
commercial website.

Very Complex 32 256 A system that delivers content such as an application
server, database server, or content management
system.

Note: TypeScript and JavaScript scans increase the analysis time significantly. If the total lines of
code in an application consist of more than 20% TypeScript or JavaScript, use the next highest
recommendation.

The Fortify Software System Requirements document describes the system requirements. However,
for large and complex applications, Fortify Static Code Analyzer requires more capable hardware. This
includes:

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 156 of 228

 l Disk I/O—Fortify Static Code Analyzer is I/O intensive and therefore the faster the hard drive, the
more savings on the I/O transactions. OpenText recommends a 7,200 RPM drive, although a
10,000 RPM drive (such as the WD Raptor) or an SSD drive is better.

 l Memory—See "Memory tuning" on page 170 for more information about how to determine the
amount of memory required for optimal performance.

 l CPU—OpenText recommends a 2.1 GHz or faster processor.

Sample scans
These sample scans were performed using Fortify Static Code Analyzer version 24.4.0 on dedicated
virtual machines. These scans were run with Fortify Software Security Content 24.4. The following
table shows the scan times you can expect for several common open-source projects.

Language Project name
Translation time

(mm:ss)

Analysis
(scan)

time
(mm:ss) Total issues LOC

System
configuration

.NET (C#) SharpZipLib 01:43 02:08 789 41,773 Windows VM
with 8 CPUs
and 32 GB of
RAM

C/C++ nasm 0.98.38 00:36 04:15 761 35,960 Linux VM with
8 CPUs and
32 GB of RAM Java WebGoat 8 00:36 01:00 253 23,412

Java WordPress for
Android

00:14 01:33 534 35,167

JavaScript three.js 06:00 16:00 280 678,332

PHP CakePHP 00:19 02:53 4,572 136,463

PHP phpBB 3 00:37 01:58 1,325 206,733

Python 3 numpy-1.13.3 02:16 08:00 216 562,731

Swift MediaBrowser 00:20 01:45 10 17,611 macOS VM with
4 CPUs and
16 GB of RAM

TypeScript rxjs-7.8.1 29:00 06:00 86 248,558 Linux VM with
8 CPUs and
32 GB of RAM

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 157 of 228

Tuning options
Fortify Static Code Analyzer can take a long time to process complex projects. The time is spent in
different phases:

 l Translation
 l Analysis

Fortify Static Code Analyzer can produce large analysis result files (FPRs), which can take a long time
to audit and upload to Fortify Software Security Center. This is referred to as the following phase:

 l Audit/Upload

The following table lists tips on how to improve performance in the different time-consuming phases.

Phase Option Description More information

Translation -export-build-
session
-import-build-
session

Translate and scan on
different machines

"Mobile build sessions" on
page 44

Analysis -quick Run a quick scan "Quick scan" on the next page

Analysis -scan-
precision

Set the scan precision "Configuring scan speed with
speed dial" on page 160

Analysis -bin Scan the files related to
a binary

"Breaking down codebases" on
page 161

Analysis -Xmx<size>M | G Set maximum heap size "Memory tuning" on page 170

Analysis -Xss<size>M | G Set stack size for each
thread

"Memory tuning" on page 170

Analysis

Audit/Upload

-filter <file> Apply a filter using a
filter file

"Using filter files" on page 163

Analysis

Audit/Upload

-disable-
source-
bundling

Exclude source files
from the FPR file

"Excluding source code from the
FPR" on page 164

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 158 of 228

Quick scan
Quick scan mode provides a way to quickly scan your projects for critical- and high-priority issues.
Fortify Static Code Analyzer performs the scan faster by reducing the depth of the analysis. It also
applies the Quick View filter set. Quick scan settings are configurable. For more details about the
configuration of quick scan mode, see "fortify-sca-quickscan.properties" on page 213.

Quick scans are a great way to get many applications through an assessment so that you can quickly
find issues and begin remediation. The performance improvement you get depends on the complexity
and size of the application. Although the scan is faster than a full scan, it does not provide as robust a
result set. OpenText recommends that you run full scans whenever possible.

Limiters

The depth of the Fortify Static Code Analyzer analysis sometimes depends on the available resources.
Fortify Static Code Analyzer uses a complexity metric to trade off these resources with the number of
vulnerabilities that it can find. Sometimes, this means giving up on a particular function when it does
not look like Fortify Static Code Analyzer has enough resources available.

Fortify Static Code Analyzer enables the user to control the “cutoff” point by using Fortify Static Code
Analyzer limiter properties. The different analyzers have different limiters. You can run a predefined
set of these limiters using a quick scan. See the "fortify-sca-quickscan.properties" on page 213 for
descriptions of the limiters.

To enable quick scan mode, use the -quick option with -scan option. With quick scan mode enabled,
Fortify Static Code Analyzer applies the properties from the <sca_install_
dir>/Core/config/fortify-sca-quickscan.properties file, in addition to the standard <sca_
install_dir>/Core/config/fortify-sca.properties file. You can adjust the limiters that
Fortify Static Code Analyzer uses by editing the fortify-sca-quickscan.properties file. If you
modify fortify-sca.properties, it also affects quick scan behavior. OpenText recommends that
you do performance tuning in quick scan mode, and leave the full scan in the default settings to
produce a highly accurate scan. For description of the quick scan mode properties, see "Properties
files" on page 184.

Using quick scan and full scan
 l Run full scans periodically—A periodic full scan is important as it might find issues that quick

scan mode does not detect. Run a full scan at least once per software iteration. If possible, run a full
scan periodically when it will not interrupt the development workflow, such as on a weekend.

 l Compare quick scan with a full scan—To evaluate the accuracy impact of a quick scan, perform a
quick scan and a full scan on the same codebase. Open the quick scan results in Fortify Audit
Workbench and merge it into the full scan. Group the issues by New Issue to produce a list of
issues detected in the full scan but not in the quick scan.

 l Quick scans and Fortify Software Security Center—To avoid overwriting the results of a full
scan, by default Fortify Software Security Center ignores uploaded FPR files scanned in quick scan

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 159 of 228

mode. However, you can configure a Fortify Software Security Center application version so that
FPR files scanned in quick scan are processed. For more information, see analysis results
processing rules in the OpenText™ Fortify Software Security Center User Guide.

Configuring scan speed with speed dial
You can configure the speed and depth of the scan by specifying a precision level for the analysis
phase. You can use these precision levels to adjust the scan time to fit for example, into a pipeline and
quickly find a set of vulnerabilities while the developer is still working on the code. Although scans
with the speed dial settings are faster than a full scan, it does not provide as robust a result set.
OpenText recommends that you run full scans whenever possible.

The precision level controls the depth and precision of the scan by associating configuration
properties with each level. The configuration properties files for each level are in the <sca_install_
dir>/Core/config/scales directory. There is one file for each level: (level-<precision_
level>.properties). You can modify the settings in these files to create your own specific
precision levels.

Notes:

 l By default, Fortify Software Security Center blocks uploaded analysis results that were created
with a precision level less than four. However, you can configure your Fortify Software Security
Center application version so that uploaded audit projects scanned with these precision levels
are processed.

 l If you merge a speed dial scan with a full scan, this might remove issues from previous scans
that still exist in your application (and would be detected again with a full scan).

To specify the speed dial setting for a scan, include the -scan-precision (or -p) option in the scan
phase as shown in the following example:

sourceanalyzer -b MyProject -scan -scan-precision <level> -f MyResults.fpr

Note: You cannot use the speed dial setting and the -quick option in the same scan command.

The following table describes the four precision levels.

Precision
level Description

1 This is the quickest scan and is recommended to scan a few files. By default, a scan
with this precision level disables the Buffer Analyzer, Control Flow Analyzer,
Dataflow Analyzer, and Null Pointer Analyzer.

2 By default, a scan with this precision level enables all analyzers. The scan runs
quicker by performing with reduced limiters. This results in fewer issues detected.

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 160 of 228

Precision
level Description

3 This precision level improves intermediate development scan speeds by up to 50%
(with a reduction in reported issues). Specifically, this level improves the scan time
for typed languages such as Java and C/C++.

4 This is equivalent to a full scan.

You can also specify the scan precision level with the com.fortify.sca.PrecisionLevel property
in the fortify-sca.properties file. For example:

com.fortify.sca.PrecisionLevel=1

Breaking down codebases
It is more efficient to break down large projects into independent modules. For example, if you have a
portal application that consists of several modules that are independent of each other or have few
interactions, you can translate and scan the modules separately. The caveat to this is that you might
lose dataflow issue detection if some interactions exist.

For C/C++, you might reduce the scan time by using the –bin option with the –scan option. You need
to pass the binary file as the parameter (such as -bin <filename>.exe -scan or -bin
<filename>.dll -scan). Fortify Static Code Analyzer finds the related files associated with the
binary and scans them. This is useful if you have several binaries in a makefile.

The following table lists some useful Fortify Static Code Analyzer command-line options to break
down codebases.

Option Description

-bin <binary> Specifies a subset of source files to scan. Only the source files that were
linked in the named binary at build time are included in the scan. You can
use this option multiple times to specify the inclusion of multiple binaries
in the scan.

-show-binaries Displays all objects that were created but not used in the production of
any other binaries. If fully integrated into the build, it lists all the binaries
produced.

-show-build-tree When used with the -bin option, displays all files used to create the
binary and all files used to create those files in a tree layout. If the -bin
option is not present, Fortify Static Code Analyzer displays the tree for
each binary.

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 161 of 228

Limiting analyzers and languages
Occasionally, you might find that a significant amount of the scan time is spent either running one
analyzer or analyzing a particular language. It is possible that this analyzer or language is not
important to your security requirements. You can limit the specific analyzers that run and the specific
languages that Fortify Static Code Analyzer translates.

Disabling analyzers

To disable specific analyzers, include the -analyzers option to Fortify Static Code Analyzer at scan
time with a comma- or colon-separated list of analyzers to enable. The valid parameter values for the
-analyzers option are buffer, content, configuration, controlflow, dataflow, nullptr,
semantic, and structural.

For example, to run a scan that only includes the Dataflow, Control Flow, and Buffer analyzers, use the
following scan command:

sourceanalyzer -b MyProject -analyzers dataflow:controlflow:buffer -scan -f
MyResults.fpr

You can also do the same thing by setting com.fortify.sca.DefaultAnalyzers in the Fortify
Static Code Analyzer property file <sca_install_dir>/Core/config/fortify-
sca.properties. For example, to achieve the equivalent of the previous scan command, set the
following in the properties file:

com.fortify.sca.DefaultAnalyzers=dataflow:controlflow:buffer

Disabling languages

To disable specific languages, include the -disable-language option in the translation phase,
which specifies a list of languages that you want to exclude. The valid language values are abap,
actionscript, apex, cfml, cobol, configuration, cpp, dart, dotnet, golang, java,
javascript, jsp, kotlin, objc, php, plsql, python, ruby, scala, sql, swift, tsql, typescript,
and vb.

For example, to perform a translation that excludes SQL and PHP files, use the following command:

sourceanalyzer -b MyProject <src_files> -disable-language sql:php

You can also disable languages by setting the com.fortify.sca.DISabledLanguages property in
the Fortify Static Code Analyzer properties file <sca_install_dir>/Core/config/fortify-
sca.properties. For example, to achieve the equivalent of the previous translation command, set
the following in the properties file:

com.fortify.sca.DISabledLanguages=sql:php

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 162 of 228

Optimizing FPR files
This chapter describes how to handle performance issues related to the audit results (FPR) file. These
topics describe how to reduce the scan time, reduce FPR file size, and tips for opening large FPR files.

Using filter files

You can use a file to filter out specific vulnerability instances, rules, and vulnerability categories from
the analysis results. If you determine that a certain issue category or rule is not relevant for a
particular scan, you can stop Fortify Static Code Analyzer from adding them to the FPR. Using a filter
file can reduce both the scan time and analysis results file size.

For example, if you scan a simple program that just reads a specified file, you might not want to see
path manipulation issues, because these are not likely planned as part of the functionality. To filter
out path manipulation issues, create a file that contains a single line:

Path Manipulation

Save this file as filter.txt. Use the -filter option in the analysis phase as shown in the following
example:

sourceanalyzer -b MyProject -scan -filter filter.txt -f MyResults.fpr

The analysis output in MyResults.fpr does not include any issues with the category Path
Manipulation. For more information and an example of a filter file, see "Excluding issues with filter
files" on page 178.

Using filter sets

Filters in an issue template determine how the results from Fortify Static Code Analyzer are shown. In
addition to filters, filter sets enable you to have a selection of filters used at any one time. Each FPR
has an issue template associated with it. You can use filter sets to reduce the number of issues based
on conditions you specify with filters in an issue template. This can dramatically reduce the size of an
FPR.

To do this, use Fortify Audit Workbench to create a filter in a filter set, and then run the Fortify Static
Code Analyzer scan with the filter set and the containing issue template. For more information and a
basic example of how to create a filter set, see "Using filter sets to exclude issues" on page 182.

Note: Although filtering issues with a filter set can reduce the size of the FPR, they do not usually
reduce the scan time. Fortify Static Code Analyzer examines the filter set after it calculates the
issues to determine whether to write them to the FPR file. The filters in a filter set determine the
rule types that Fortify Static Code Analyzer loads.

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 163 of 228

Excluding source code from the FPR

You can reduce the size of the FPR file by excluding the source code information from the FPR. This is
especially valuable for large source files or codebases. Typically, you do not get a scan time reduction
for small source files using this method.

There are properties you can use to prevent Fortify Static Code Analyzer from including source code
in the FPR. You can set either property in the <sca_install_dir>/Core/config/fortify-
sca.properties file or specify an option on the command line. The following table describes these
settings.

Property name Description

com.fortify.sca.
FPRDisableSourceBundling=true

Command-Line Option:

-disable-source-bundling

Excludes source code from the FPR.

com.fortify.sca.
FVDLDisableSnippets=true

Command-Line Option:

–fvdl-no-snippets

Excludes code snippets from the FPR.

The following command-line example uses both options to exclude both the source code and code
snippets from the FPR:

sourceanalyzer -b MyProject -disable-source-bundling
 -fvdl-no-snippets -scan -f MySourcelessResults.fpr

Reducing the FPR file size

There are a few ways to reduce the size of FPR files. The quickest way to do this without affecting
results is to exclude the source code from the FPR as described in "Excluding source code from the
FPR" above. You can also reduce the size of a merged FPR with the FPRUtility (see the OpenText™
Fortify Static Code Analyzer Applications and Tools Guide).

There are a few other properties that you can use to select what is excluded from the FPR. You can
set these properties in the <sca_install_dir>/Core/config/fortify-sca.properties file or
specify an option on the command line for the analysis (scan) phase.

Property name Description

com.fortify.sca.
FPRDisableMetatable

Excludes the metatable from the FPR. Fortify Audit
Workbench uses the metatable to map information

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 164 of 228

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440

Property name Description

=true

Command-Line Option:

-disable-metatable

in Functions view.

com.fortify.sca.
FVDLDisableDescriptions
=true

Command-Line Option:

-fvdl-no-descriptions

Excludes rule descriptions from the FPR. If you do
not use custom descriptions, the descriptions in the
Fortify Taxonomy (https://vulncat.fortify.com) are
used.

com.fortify.sca.
FVDLDisableEngineData
=true

Command-Line Option:

-fvdl-no-enginedata

Excludes engine data from the FPR. This is useful if
your FPR contains many warnings when you open
the file in Fortify Audit Workbench.

Note: If you exclude engine data from the FPR,
you must merge the FPR with the current audit
project locally before you upload it to Fortify
Software Security Center. Fortify Software
Security Center cannot merge it on the server
because the FPR does not contain the Fortify
Static Code Analyzer version.

com.fortify.sca.
FVDLDisableProgramData
=true

Command-Line Option:

-fvdl-no-progdata

Excludes the program data from the FPR. This
removes the Taint Sources information from the
Functions view in Fortify Audit Workbench. This
property typically only has a minimal effect on the
overall size of the FPR file.

Opening large FPR files

To reduce the time required to open a large FPR file in Fortify Audit Workbench, you can set some
properties in the <sca_install_dir>/Core/config/fortify.properties file. For more
information about these properties, see the OpenText™ Fortify Static Code Analyzer Applications and
Tools Guide. The following table describes the properties you can use to reduce the time to open
large FPR files.

Property name Description

com.fortify.
model.DisableProgramInfo=true

Disables use of the code navigation features
in Fortify Audit Workbench.

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 165 of 228

https://vulncat.fortify.com/
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440

Property name Description

com.fortify.
model.IssueCutOffStartIndex
=<num> (inclusive)

com.fortify.
model.IssueCutOffEndIndex
=<num> (exclusive)

Sets the start and end index for issue cutoff.

The IssueCutOffStartIndex property is
inclusive and IssueCutOffEndIndex is
exclusive so that you can specify a subset of
issues you want to see. For example, to see
the first 100 issues, specify the following:

com.fortify.model.
 IssueCutOffStartIndex=0

com.fortify.model.
 IssueCutOffEndIndex=101

Because the IssueCutOffStartIndex is 0
by default, you do not need to specify this
property.

com.fortify.
model.IssueCutOffByCategoryStartIndex=
<num> (inclusive)

com.fortify.
model.IssueCutOffByCategoryEndIndex=
<num> (exclusive)

Sets the start index for issue cutoff by
category. These two properties are similar to
the previous cutoff properties except these
are specified for each category. For example,
to see the first five issues for every category,
specify the following:

com.fortify.model.
 IssueCutOffByCategoryEndIndex=6

com.fortify.
model.MinimalLoad=true

Minimizes the data loaded from the FPR. This
also restricts usage of the Functions view and
might prevent Fortify Audit Workbench from
loading the source from the FPR.

com.fortify.
model.MaxEngineErrorCount=
<num>

Specifies the number of Fortify Static Code
Analyzer reported warnings to load from the
FPR. For projects with many scan warnings,
reducing this number from a default of 3000
can speed up the load time of large FPR files.

com.fortify.
model.ExecMemorySetting

Specifies the JVM heap memory size for
Fortify Audit Workbench to start external
command-line tools such as iidmigrator and
fortifyupdate.

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 166 of 228

Monitoring long running scans
When you run Fortify Static Code Analyzer, large and complex scans can often take a long time to
complete. During the scan it is not always clear what is happening. While OpenText recommends that
you provide your debug logs to the Customer Support team, there are a couple of ways to see what
Fortify Static Code Analyzer is doing and how it is performing in real-time.

Using the SCAState tool

The SCAState command-line tool enables you to see up-to-date state analysis information during the
analysis phase. The SCAState tool is located in the <sca_install_dir>/bin directory. In addition
to a live view of the analysis, it also provides a set of timers and counters that show where Fortify
Static Code Analyzer spends its time during the analysis phase. For more information about how to
use SCAState, see the "Checking the scan status with SCAState" on page 152.

Using JMX tools

You can use tools to monitor Fortify Static Code Analyzer with JMX technology. These tools can
provide a way to track Fortify Static Code Analyzer performance over time. For more information
about these tools, see the full Oracle documentation available at: http://docs.oracle.com.

Note: These are third-party tools and OpenText does not provide or support them.

Using JConsole

JConsole is an interactive monitoring tool that complies with the JMX specification. The disadvantage
of JConsole is that you cannot save the output.

To use JConsole, you must first set some additional JVM parameters. Set the following environment
variable:

export SCA_VM_OPTS="-Dcom.sun.management.jmxremote
 -Dcom.sun.management.jmxremote.port=9090
 -Dcom.sun.management.jmxremote.ssl=false
 -Dcom.sun.management.jmxremote.authenticate=false"

After the JMX parameters are set, start a Fortify Static Code Analyzer scan. During the scan, start
JConsole to monitor Fortify Static Code Analyzer locally or remotely with the following command:

jconsole <host_name>:9090

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 167 of 228

http://docs.oracle.com/

Using Java VisualVM

Java VisualVM offers the same capabilities as JConsole. It also provides more detailed information on
the JVM and enables you to save the monitor information to an application snapshot file. You can
store these files and open them later with Java VisualVM.

Similar to JConsole, before you can use Java VisualVM, you must set the same JVM parameters
described in "Using JConsole" on the previous page.

After the JVM parameters are set, start the scan. You can then start Java VisualVM to monitor the
scan either locally or remotely with the following command:

jvisualvm <host_name>:9090

User Guide
Chapter 20: Improving performance

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 168 of 228

Chapter 21: Troubleshooting
This section contains the following topics:

Exit codes 169

Memory tuning 170

Scanning complex functions 172

Issue non-determinism 174

Locating the log files 175

Configuring log files 175

Reporting issues and requesting enhancements 177

Exit codes
The following table describes the possible Fortify Static Code Analyzer exit codes.

Exit
code Description

0 Success

1 Generic failure

2 Invalid input files

(this might indicate that an attempt was made to translate a file that has an extension
that Fortify Static Code Analyzer does not support)

3 Process timed out

4 Analysis completed with numbered warning messages written to the console and/or to
the log file

5 Analysis completed with numbered error messages written to the console and/or to the
log file

6 Scan phase was unable to generate issue results

7 Unable to detect a valid license or the LIM license expired at run time

By default, Fortify Static Code Analyzer only returns exit codes 0, 1, 2, 3, or 7.

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 169 of 228

You can extend the default exit code options by setting the com.fortify.sca.ExitCodeLevel
property in the <sca_install_dir>/Core/Config/fortify-sca.properties file.

The valid values are:

 l nothing—Returns any of the default exit codes (0, 1, 2, 3, or 7).
 l warnings—Returns exit codes 4 and 5 in addition to the default exit codes.
 l errors—Returns exit code 5 in addition to the default exit codes.
 l no_output_file—Returns exit code 6 in addition to the default exit codes.

Memory tuning
The amount of physical RAM required for a scan depends on the complexity of the code. By default,
Fortify Static Code Analyzer automatically allocates the memory it uses based on the physical
memory available on the system. This is generally sufficient. As described in "Output options" on
page 139, you can adjust the Java heap size with the -Xmx command-line option.

This section describes suggestions for what you can do if you encounter OutOfMemory errors during
the analysis.

Note: You can set the memory allocation options discussed in this section to run for all scans by
setting the SCA_VM_OPTS environment variable.

Java heap exhaustion

Java heap exhaustion is the most common memory problem that might occur during Fortify Static
Code Analyzer scans. It is caused by allocating too little heap space to the Java virtual machine that
Fortify Static Code Analyzer uses to scan the code. You can identify Java heap exhaustion from the
following symptom.

Symptom

One or more of these messages appears in the Fortify Static Code Analyzer log file and in the
command-line output:

There is not enough memory available to complete analysis. For details on
making more memory available, please consult the user manual.
 java.lang.OutOfMemoryError: Java heap space
 java.lang.OutOfMemoryError: GC overhead limit exceeded

Resolution

To resolve a Java heap exhaustion problem, allocate more heap space to the Fortify Static Code
Analyzer Java virtual machine when you start the scan. To increase the heap size, use the -Xmx
command-line option when you run the Fortify Static Code Analyzer scan. For example, -Xmx1G
makes 1 GB available. Before you use this parameter, determine the maximum allowable value for
Java heap space. The maximum value depends on the available physical memory.

User Guide
Chapter 21: Troubleshooting

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 170 of 228

Heap sizes between 32 GB and 48 GB are not advised due to internal JVM implementations. Heap
sizes in this range perform worse than at 32 GB. Heap sizes smaller than 32 GB are optimized by the
JVM. If your scan requires more than 32 GB, then you need 64 GB or more. As a guideline, assuming
no other memory intensive processes are running, do not allocate more than 2/3 of the available
memory.

If the system is dedicated to running Fortify Static Code Analyzer, you do not need to change it.
However, if the system resources are shared with other memory-intensive processes, subtract an
allowance for those other processes.

Note: You do not need to account for other resident but not active processes (while Fortify Static
Code Analyzer is running) that the operating system might swap to disk. Allocating more physical
memory to Fortify Static Code Analyzer than is available in the environment might cause
“thrashing,” which typically slows down the scan along with everything else on the system.

Native heap exhaustion

Native heap exhaustion is a rare scenario where the Java virtual machine can allocate the Java
memory regions on startup, but is left with so few resources for its native operations (such as garbage
collection) that it eventually encounters a fatal memory allocation failure that immediately terminates
the process.

Symptom

You can identify native heap exhaustion by abnormal termination of the Fortify Static Code Analyzer
process and the following output on the command line:

A fatal error has been detected by the Java Runtime Environment:
 #
 # java.lang.OutOfMemoryError: requested ... bytes for GrET ...

Because this is a fatal Java virtual machine error, it is usually accompanied by an error log created in
the working directory with the file name hs_err_pidNNN.log.

Resolution

Because the problem is a result of overcrowding within the process, the resolution is to reduce the
amount of memory used for the Java memory regions (Java heap). Reducing this value should reduce
the crowding problem and allow the scan to complete successfully.

Stack overflow

Each thread in a Java application has its own stack. The stack holds return addresses,
function/method call arguments, and so on. If a thread tends to process large structures with
recursive algorithms, it might need a large stack for all those return addresses. With the JVM, you can
set that size with the -Xss option.

User Guide
Chapter 21: Troubleshooting

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 171 of 228

Symptoms

This message typically appears in the Fortify Static Code Analyzer log file, but might also appear in
the command-line output:

java.lang.StackOverflowError

Resolution

The default stack size is 16 MB. To increase the stack size, pass the -Xss option to the
sourceanalyzer command. For example, -Xss32M increases the stack to 32 MB.

Scanning complex functions
During a Fortify Static Code Analyzer scan, the Dataflow Analyzer might encounter a function for
which it cannot complete the analysis and reports the following message:

Function <name> is too complex for <analyzer> analysis and will be skipped
(<identifier>)

where:

 l <name> is the name of the source code function
 l <analyzer> is the name of the analyzer
 l <identifier> is the type of complexity, which is one of the following:

 l l: Too many distinct locations

 l m: Out of memory

 l s: Stack size too small

 l t: Analysis taking too much time

 l v: Function visits exceed the limit

The depth of analysis Fortify Static Code Analyzer performs sometimes depends on the available
resources. Fortify Static Code Analyzer uses a complexity metric to trade off these resources against
the number of vulnerabilities that it can find. Sometimes, this means giving up on a particular function
when Fortify Static Code Analyzer does not have enough resources available. This is normally when
you see the "Function too complex" messages.

When you see this message, it does not necessarily mean that Fortify Static Code Analyzer completely
ignored the function in the program. For example, the Dataflow Analyzer typically visits a function
many times before completing the analysis, and might not have run into this complexity limit in the
previous visits. In this case, the results include everything learned from the previous visits.

You can control the "give up" point using Fortify Static Code Analyzer properties called limiters.
Different analyzers have different limiters.

The following sections provide a discussion of a resolution for this issue.

User Guide
Chapter 21: Troubleshooting

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 172 of 228

Dataflow Analyzer limiters

There are three types of complexity identifiers for the Dataflow Analyzer:

 l l: Too many distinct locations
 l m: Out of memory
 l s: Stack size too small
 l v: Function visits exceed the limit

To resolve the issue identified by s, increase the stack size for by setting -Xss to a value greater than
16 MB.

To resolve the complexity identifier of m, increase the physical memory for Fortify Static Code
Analyzer.

To resolve the complexity identifier of l, you can adjust the following limiters in the Fortify Static
Code Analyzer property file <sca_install_dir>/Core/config/fortify-sca.properties or on
the command line.

Property name Default value

com.fortify.sca.
limiters.MaxTaintDefForVar

1000

com.fortify.sca.
limiters.MaxTaintDefForVarAbort

4000

com.fortify.sca.
limiters.MaxFieldDepth

4

The MaxTaintDefForVar limiter is a dimensionless value expressing the complexity of a function,
while MaxTaintDefForVarAbort is the upper bound for it. Use the MaxFieldDepth limiter to
measure the precision when the Dataflow Analyzer analyzes any given object. Fortify Static Code
Analyzer always tries to analyze objects at the highest precision possible.

If a given function exceeds the MaxTaintDefForVar limit at a given precision, the Dataflow Analyzer
analyzes that function with lower precision (by reducing the MaxFieldDepth limiter). When you
reduce the precision, it reduces the complexity of the analysis. When the precision cannot be reduced
any further, Fortify Static Code Analyzer then proceeds with analysis at the lowest precision until
either it finishes, or the complexity exceeds the MaxTaintDefForVarAbort limiter. In other words,
Fortify Static Code Analyzer tries harder at the lowest precision to get at least some results from the
function. If Fortify Static Code Analyzer reaches the MaxTaintDefForVarAbort limiter, it gives up
on the function entirely and you get the "Function too complex" warning.

To resolve the complexity identifier of v, you can adjust the property
com.fortify.sca.limiters.MaxFunctionVisits. This property sets the maximum number of
times the taint propagation analyzer visits functions. The default is 50.

User Guide
Chapter 21: Troubleshooting

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 173 of 228

Control Flow and Null Pointer analyzer limiters

There are two types of complexity identifiers for both Control Flow and Null Pointer analyzers:

 l m: Out of memory
 l t: Analysis taking too much time

Due to the way that the Dataflow Analyzer handles function complexity, it does not take an indefinite
amount of time. Control Flow and Null Pointer analyzers, however, can take an exceptionally long time
when analyzing complex functions. Therefore, Fortify Static Code Analyzer provides a way to abort
the analysis when this happens, and then you get the "Function too complex" message with a
complexity identifier of t.

To change the maximum amount of time these analyzers spend to analyze functions, you can adjust
the following property values in the Fortify Static Code Analyzer property file <sca_install_
dir>/Core/config/fortify-sca.properties or on the command line.

Property name Description Default value

com.fortify.sca.
CtrlflowMaxFunctionTime

Sets the time limit (in milliseconds) for Control
Flow analysis on a single function.

600000
(10 minutes)

com.fortify.sca.
NullPtrMaxFunctionTime

Sets the time limit (in milliseconds) for Null
Pointer analysis on a single function.

300000
(5 minutes)

To resolve the complexity identifier of m, increase the physical memory for Fortify Static Code
Analyzer.

Note: If you increase these limiters or time settings, it makes the analysis of complex functions
take longer. It is difficult to characterize the exact performance implications of a particular value
for the limiters/time, because it depends on the specific function in question. If you never want to
see the "Function too complex" warning, you can set the limiters/time to an extremely high value,
however it can cause unacceptable scan time.

Issue non-determinism
Running in parallel analysis mode might introduce issue non-determinism. If you experience any
problems, contact Customer Support, and disable parallel analysis mode. Disabling parallel analysis
mode results in sequential analysis, which can be substantially slower but provides deterministic
results across multiple scans.

To disable parallel analysis mode:

 1. Open the fortify-sca.properties file located in the <sca_install_dir>/Core/config
directory in a text editor.

User Guide
Chapter 21: Troubleshooting

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 174 of 228

 2. Change the value for the com.fortify.sca.MultithreadedAnalysis property to false.

com.fortify.sca.MultithreadedAnalysis=false

Locating the log files
By default, Fortify Static Code Analyzer creates log files in the following location:

 l Windows: C:\Users\<username>\AppData\Local\Fortify\sca<version>\log
 l Non-Windows: <userhome>/.fortify/sca<version>/log

where <version> is the version of Fortify Static Code Analyzer that you are using.

The following table describes the Fortify Static Code Analyzer default log files.

File names Description

sca.log

scaX.log

The standard log provides a log of informational
messages, warnings, and errors that occurred in the run of
sourceanalyzer.

sca_FortifySupport.log

scaX_FortifySupport.log

The Static Code Analyzer Support log provides:

 l The same log messages as the standard log file, but
with additional details

 l Additional detailed messages that are not included in
the standard log file

This log file is helpful to Customer Support or the
development team to troubleshoot any issues.

If you encounter warnings or errors that you cannot resolve, provide the Static Code Analyzer
Support log file to Customer Support.

Configuring log files
You can configure the information that Fortify Static Code Analyzer writes to the log files by setting
logging properties (see "Logging properties" on page 212). You can configure the following log file
settings:

 l The location and name of the log file

Property: com.fortify.sca.LogFile

User Guide
Chapter 21: Troubleshooting

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 175 of 228

 l Log level (see "Understanding log levels" below)

Property: com.fortify.sca.LogLevel
 l Whether to overwrite the log files for each run of sourceanalyzer

Property: com.fortify.sca.ClobberLogFile

Command-line option: -clobber-log

Understanding log levels

The log level you select gives you all log messages equal to and greater than it. The following table
lists the log levels in order from least to greatest. For example, the default log level of INFO includes
log messages with the following levels: INFO, WARN, ERROR, and FATAL. You can set the log level
with the com.fortify.sca.LogLevel property in the <sca_install_
dir>/Core/config/fortify-sca.properties file or on the command-line using the -D option.

Log level Description

DEBUG Includes information that Customer Support or the development team can use
to troubleshoot an issue

INFO Basic information about the translation or scan process

WARN Information about issues where the translation or scan did not stop, but might require
your attention for accurate results

ERROR Information about an issue that might require attention

FATAL Information about an error that caused the translation or scan to abort

User Guide
Chapter 21: Troubleshooting

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 176 of 228

Reporting issues and requesting enhancements
Feedback is critical to the success of this product. To request enhancements or patches, or to report
issues, visit Customer Support at https://www.microfocus.com/support.

Include the following information when you contact customer support:

 l Product: Fortify Static Code Analyzer
 l Version number of Fortify Static Code Analyzer and any independent Fortify Static Code Analyzer

modules: To determine the version numbers, run the following:

sourceanalyzer -version

 l Platform: (for example, Red Hat Enterprise Linux <version>)
 l Operating system: (such as Linux)

To request an enhancement, include a description of the feature enhancement.

To report an issue, provide enough detail so that support can duplicate the issue. The more
descriptive you are, the faster support can analyze and resolve the issue. Also include the log files, or
the relevant portions of them, from when the issue occurred.

User Guide
Chapter 21: Troubleshooting

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 177 of 228

https://www.microfocus.com/support

Appendix A: Filtering the analysis
This section describes two methods of filtering out vulnerabilities from the analysis results (FPR)
during the scan phase. You can use a filter file to remove issues based on specific vulnerability
instances, rules, and vulnerability categories. You can also use a filter set (created in Fortify Audit
Workbench) to remove issues that are hidden from view in an issue template.

Caution! OpenText recommends that you only use filter files if you are an advanced user. Do not
use filter files for standard audits, because auditors typically want to see and evaluate all issues
that Fortify Static Code Analyzer finds.

This section contains the following topics:

Excluding issues with filter files 178

Using filter sets to exclude issues 182

Excluding issues with filter files
You can create a file to filter out particular vulnerability instances, rules, and vulnerability categories
when you run the sourceanalyzer command. You specify the file with the -filter analysis option.

A filter file is a text file that you can create with any text editor. You specify only the filter items that
you do not want in this file.

Note: The filter types described in this section apply to both filter files and scan policy files (see
"Applying a scan policy to the analysis" on page 46).

The following table lists the available filter types and provides examples for each.

Filter type Notes Examples

Category A category only covers all
subcategories

Note: Fortify Static Code
Analyzer applies category filters
in the initialization phase before
any analysis has taken place.

Poor Error Handling

J2EE Bad Practices: Leftover
Debug Code

Instance ID An instance ID of a specific issue

Note: Fortify Static Code

6291C6A33303ED270C269917AA8A1005

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 178 of 228

Filter type Notes Examples

Analyzer applies instance
ID filters after the analysis
phase.

Rule ID A rule ID that leads to the reporting
of a specific issue

Note: Fortify Static Code
Analyzer applies rule ID filters in
the initialization phase before
any analysis has taken place.

823FE039-A7FE-4AAD-B976-
9EC53FFE4A59

Priority1 The priority values in ascending

order are low, medium, high, and
critical.

priority <= low

priority < medium

Taint flags Enclose taint flag expressions in

parentheses. Use the logical &&, ||,
and ! operators to specify an
expression. For a list of taint flags,
see OpenText™ Fortify Static Code
Analyzer Custom Rules Guide.

(SYSTEMINFO || EXCEPTIONINFO)

(WEB || (DATABASE && PRIVATE))

(NETWORK && !XSS)

Impact1 impact < 0.5

Likelihood1 likelihood <= 1.5

Confidence1 confidence < 1.8

Probability1 probability <= 1.2

Accuracy1 accuracy <= 1.0

1For the priority and metadata filters, use less than (<) or less than or equal to (<=).

See also

"Filter file example" on the next page

User Guide
Appendix A: Filtering the analysis

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 179 of 228

Filter file example

As an example, the following output is from a scan of the EightBall.java sample. This sample
project is included in the Fortify_SCA_Samples_<version>.zip archive in the
basic/eightball directory.

The following commands are executed to produce the analysis results:

sourceanalyzer -b eightball EightBall.java
 sourceanalyzer -b eightball -scan

User Guide
Appendix A: Filtering the analysis

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 180 of 228

The following results show five detected issues:

[F7A138CDE5235351F6A4405BA4AD7C53 : low : Unchecked Return Value : semantic
]
 EightBall.java(12) : Reader.read()

 [6291C6A33303ED270C269917AA8A1005 : high : Path Manipulation : dataflow]
 EightBall.java(12) : ->new FileReader(0)
 EightBall.java(8) : <=> (filename)
 EightBall.java(8) : <->Integer.parseInt(0->return)
 EightBall.java(6) : <=> (filename)
 EightBall.java(4) : ->EightBall.main(0)

 [176CC0B182267DD538992E87EF41815F : critical : Path Manipulation : dataflow
]
 EightBall.java(12) : ->new FileReader(0)
 EightBall.java(6) : <=> (filename)
 EightBall.java(4) : ->EightBall.main(0)

 [E4B3ACF92911ED6D98AAC15876739EC7 : high : Unreleased Resource : Streams :
controlflow]

 EightBall.java(12) : start -> loaded : new FileReader(...)
 EightBall.java(14) : loaded -> end_of_scope : end scope : Resource
leaked

 EightBall.java(12) : start -> loaded : new FileReader(...)
 EightBall.java(12) : java.io.IOException thrown
 EightBall.java(12) : loaded -> loaded : throw
 EightBall.java(12) : loaded -> end_of_scope : end scope : Resource
leaked : java.io.IOException thrown

 [BB9F74FFA0FF75C9921D0093A0665BEB : low : J2EE Bad Practices : Leftover
Debug Code : structural]
 EightBall.java(4)

The following is an example filter file that performs the following:

 l Remove all results related to the J2EE Bad Practice category
 l Remove the Path Manipulation based on its instance ID
 l Remove any dataflow issues that were generated from a specific rule ID

#This is a category to filter from scan output
J2EE Bad Practices

User Guide
Appendix A: Filtering the analysis

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 181 of 228

#This is an instance ID of a specific issue to be filtered
 #from scan output
6291C6A33303ED270C269917AA8A1005

#This is a specific Rule ID that leads to the reporting of a
 #specific issue in the scan output: in this case the
 #dataflow sink for a Path Manipulation issue.
823FE039-A7FE-4AAD-B976-9EC53FFE4A59

To test the filtered output, copy the above text and paste it into a file with the name test_
filter.txt.

To apply the filtering in the test_filter.txt file, execute the following command:

sourceanalyzer -b eightball -scan -filter test_filter.txt

The filtered analysis produces the following results:

[176CC0B182267DD538992E87EF41815F : critical : Path Manipulation : dataflow
]
 EightBall.java(12) : ->new FileReader(0)
 EightBall.java(6) : <=> (filename)
 EightBall.java(4) : ->EightBall.main(0)

 [E4B3ACF92911ED6D98AAC15876739EC7 : high : Unreleased Resource : Streams :
controlflow]

 EightBall.java(12) : start -> loaded : new FileReader(...)
 EightBall.java(14) : loaded -> end_of_scope : end scope : Resource
leaked

 EightBall.java(12) : start -> loaded : new FileReader(...)
 EightBall.java(12) : java.io.IOException thrown
 EightBall.java(12) : loaded -> loaded : throw
 EightBall.java(12) : loaded -> end_of_scope : end scope : Resource
leaked : java.io.IOException thrown

Using filter sets to exclude issues
You can use filter sets in an issue template created in Fortify Audit Workbench to filter issues from
the analysis results. When you apply a filter set that hides issues from view during the analysis phase,
Fortify Static Code Analyzer does not write the hidden issues to the FPR. To do this, use Fortify Audit
Workbench to create a filter set, and then run the Fortify Static Code Analyzer scan with the filter set
and the issue template, which contains the filter set. For more detailed instructions about how to

User Guide
Appendix A: Filtering the analysis

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 182 of 228

create filters and filter sets in Fortify Audit Workbench, see the OpenText™ Fortify Audit Workbench
User Guide.

The following example describes the basic steps for how to create and use a filter in an issue template
to remove issues from an FPR:

 1. Suppose you use OWASP Top 10 2021, and you only want to see issues categorized within this
standard. In Fortify Audit Workbench, create a new filter set called OWASP_Filter

 2. In Fortify Audit Workbench, create a visibility filter in the OWASP_Filter filter set:

If [OWASP Top 10 2021] does not contain A Then hide issue

This filter looks through the issues and if an issue does not map to an OWASP Top 10 2021
category with ‘A’ in the name, then it hides it. Because all OWASP Top 10 2021 categories start
with ‘A’ (A01, A02, …, A10), then any category without the letter ‘A’ is not in the OWASP Top 10
2021. The filter hides the issues from view in Fortify Audit Workbench, but they are still in the
FPR.

 3. In Fortify Audit Workbench, export the issue template to a file called IssueTemplate.xml.
 4. Using Fortify Static Code Analyzer, specify the filter set in the analysis phase with the following

command:

sourceanalyzer -b MyProject -scan -project-template IssueTemplate.xml
 -Dcom.fortify.sca.FilterSet=OWASP_Filter -f MyFilteredResults.fpr

Although filtering issues with a filter set can reduce the size of the FPR, it does not usually reduce the
scan time. Fortify Static Code Analyzer examines the filter set after it calculates the issues to
determine whether to write them to the FPR file. The filters in a filter set determine the rule types that
Fortify Static Code Analyzer loads.

User Guide
Appendix A: Filtering the analysis

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 183 of 228

Appendix B: Configuration options
The Fortify Static Code Analyzer installer places a set of properties files on your system. Properties
files contain configurable settings for Fortify Static Code Analyzer runtime analysis, output, and
performance.

This section contains the following topics:

Properties files 184

fortify-sca.properties 186

fortify-sca-quickscan.properties 213

fortify-rules.properties 216

Properties files

The properties files are located in the <sca_install_dir>/Core/config directory. The installed
properties files contain default values. OpenText recommends that you consult with your project
leads before you make changes to the properties in the properties files. You can modify any of the
properties in the configuration file with any text editor. You can also specify the property on the
command line with the -D option.

The following table lists the Fortify Static Code Analyzer properties files. Property files for the Fortify
Static Code Analyzer applications and tools are described in the OpenText™ Fortify Static Code
Analyzer Applications and Tools Guide.

Properties file name Description More information

fortify-
sca.properties

Defines the Fortify Static Code Analyzer
configuration properties.

"fortify-sca.properties"
on page 186

fortify-sca-
quickscan.properties

Defines the configuration properties
applicable for a Fortify Static Code
Analyzer quick scan.

"fortify-sca-
quickscan.properties"
on page 213

fortify-
rules.properties

Defines the configuration properties that
determine rule behavior.

"fortify-
rules.properties" on
page 216

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 184 of 228

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2440

Properties file format

In the properties file, each property consists of a pair of strings: the first string is the property name
and the second string is the property value.

com.fortify.sca.fileextensions.htm=HTML

As shown above, the property sets the translation to use for .htm files. The property name is
com.fortify.sca.fileextensions.htm and the value is set to HTML.

Note: When you specify a path for Windows systems as the property value, you must escape any
backslash character (\) with a backslash (for example:
com.fortify.sca.ASPVirtualRoots.Library=C:\\WebServer\\CustomerA\\inc).

Disabled properties are commented out of the properties file. To enable these properties, remove the
comment symbol (#) and save the properties file. In the following example, the
com.fortify.sca.LogFile property is disabled in the properties file and is not part of the
configuration:

default location for the log file
 #com.fortify.sca.LogFile=${com.fortify.sca.ProjectRoot}/sca/log/sca.log

Precedence of setting properties

Fortify Static Code Analyzer uses properties settings in a specific order. You can override any
previously set properties with the values that you specify. Keep this order in mind when making
changes to the properties files.

The following table lists the order of precedence for Fortify Static Code Analyzer properties.

Order Property specification Description

1 Command line with the -
D option

Properties specified on the command line have the highest
priority and you can specify them in any scan.

2 Fortify Static Code
Analyzer quick scan
configuration file

Note: You can specify either quick scan or a scan
precision level. Therefore, these property settings both
have second priority.

Properties specified in the quick scan configuration file

(fortify-sca-quickscan.properties) have the
second priority, but only if you include the -quick option
to enable quick scan mode.

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 185 of 228

Order Property specification Description

Fortify Static Code
Analyzer scan precision
property files

Properties specified in the scan precision property files

have the second priority, but only if you include the -scan-
precision option to enable scan precision.

3 Fortify Static Code
Analyzer configuration
file

Properties specified in the Fortify Static Code Analyzer

configuration file (fortify-sca.properties) have the
lowest priority. Edit this file to change the property values
on a more permanent basis for all scans.

Fortify Static Code Analyzer also relies on some properties that have internally defined default values.

fortify-sca.properties

The following sections describe the properties available for use in the fortify-sca.properties
file. See "fortify-sca-quickscan.properties" on page 213 for additional properties that you can use in
this properties file. Each property description includes the value type, the default value, the
equivalent command-line option (if applicable), and an example.

Translation and analysis phase properties

The properties for the fortify-sca.properties file in the following table are general properties
that apply to the translation and/or analysis (scan) phase.

Property name Description

Translation and scan

com.fortify.sca.
BuildID

Specifies the build ID of the build.

Value type: String

Default: (none)

Command-line option: -b

com.fortify.sca.
CmdlineOptionsFileEncod
ing

Specifies the encoding of the command-line options file provided with @<filename> (see
"Other options" on page 142). You can use this property, for example, to specify Unicode
file paths in the options file. Valid encoding names are from the

java.nio.charset.Charset

Note: This property is only valid in the fortify-sca.properties file and does not
work in the fortify-sca-quickscan.properites file or with the -D option.

Value type: String

Default: JVM system default encoding

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 186 of 228

Property name Description

Example: com.fortify.sca.CmdlineOptionsFileEncoding=UTF-8

com.fortify.sca.
DISabledLanguages

Specifies a colon-separated list of languages to exclude from the translation phase. The

valid language values are abap, actionscript, apex, cfml, cobol, configuration,
cpp, dart, dotnet, golang, java, javascript, jsp, kotlin, objc, php, plsql, python,
ruby, scala, sql, swift, tsql, typescript, and vb.

Value type: String

Default: (none)

Command-line option: -disable-language

com.fortify.sca.
EnabledLanguages

Specifies a colon-separated list of languages to translate. The valid language values are

abap, actionscript, apex, cfml, cobol, configuration, cpp, dart, dotnet, golang,
java, javascript, jsp, kotlin, objc, php, plsql, python, ruby, scala, sql, swift,
tsql, typescript, and vb.

Value type: String

Default: All languages in the specified source are translated unless explicitly excluded

with the com.fortify.sca.DISabledLanguages property.

Command-line option: -enable-language

com.fortify.sca.
DisableCompilerName

If set to true, Fortify Static Code Analyzer includes build script files that have the same
name as a build tool (such as gradlew) during translation as source files.

Value type: Boolean

Default: false

Command-line option: -disable-compiler-resolution

com.fortify.sca.
ProjectRoot

Specifies the directory to store intermediate files generated in the translation and analysis
phases. Fortify Static Code Analyzer makes extensive use of intermediate files located in
this project root directory. In some cases, you achieve better performance for analysis by
making sure this directory is on local storage rather than on a network drive.

Value type: String (path)

Default (Windows): ${win32.LocalAppdata}/Fortify

Note: ${win32.LocalAppdata} is a variable that points to the Windows Local
Application Data shell folder.

Default (non-Windows): $home/.fortify

Command-line option: -project-root

Example: com.fortify.sca.ProjectRoot=
C:\Users\<username>\AppData\Local\

Translation

com.fortify.sca.
fileextensions.java

Specifies how to translate specific file name extensions of languages that do not require

build integration. The valid extension types are ABAP, ACTIONSCRIPT, APEX, APEX_
OBJECT, APEX_TRIGGER, ARCHIVE, ASPNET, ASP, ASPX, BITCODE, BSP, BYTECODE, CFML,

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 187 of 228

Property name Description

com.fortify.sca.
fileextensions.cs

com.fortify.sca.
fileextensions.js

com.fortify.sca.
fileextensions.py

com.fortify.sca.
fileextensions.rb

com.fortify.sca.
fileextensions.aspx

com.fortify.sca.
fileextensions.php

Note: This is a partial list.
For the complete list, see
the properties file.

COBOL, CSHARP, DART, DOCKERFILE, FLIGHT, GENERIC, GO, HOCON, HTML, INI, JAVA, JAVA_
PROPERTIES, JAVASCRIPT, JSP, JSPX, KOTLIN, MSIL, MXML, OBJECT, PHP, PLSQL, PYTHON,
RUBY, RUBY_ERB, SCALA, SWIFT, SWC, SWF, TLD, SQL, TSQL, TYPESCRIPT, VB, VB6,
VBSCRIPT, VISUAL_FORCE, VUE, and XML.

Value type: String (valid language type)

Default: See the fortify-sca.properties file for the complete list.

Examples:

com.fortify.sca.fileextensions.java=JAVA
com.fortify.sca.fileextensions.cs=CSHARP
com.fortify.sca.fileextensions.js=TYPESCRIPT
com.fortify.sca.fileextensions.py=PYTHON
com.fortify.sca.fileextensions.swift=SWIFT
com.fortify.sca.fileextensions.razor=ASPNET
com.fortify.sca.fileextensions.php=PHP
com.fortify.sca.fileextensions.tf=HCL

You can also specify a value of oracle:<path_to_script> to programmatically supply
a language type. Provide a script that accepts one command-line parameter of a file name
that matches the specified extension. The script must write the valid Fortify Static Code
Analyzer file type (see previous list) to stdout and exit with a return value of zero. If the
script returns a non-zero return code or the script does not exist, the file is not translated
and Fortify Static Code Analyzer writes a warning to the log file.

Example:

com.fortify.sca.fileextensions.jsp=
oracle:<path_to_script>

com.fortify.sca.
compilers.javac=
com.fortify.sca.
util.compilers.JavacCom
piler

com.fortify.sca.
compilers.c++=
com.fortify.sca.
util.compilers.GppCompi
ler

com.fortify.sca.
compilers.make=
com.fortify.sca.
util.compilers.Touchles
sCompiler

com.fortify.sca.
compilers.mvn=
com.fortify.sca.
util.compilers.MavenAda
pter

Specifies custom-named compilers.

Value type: String (compiler)

Default: See the Compilers section in the fortify-sca.properties file for the
complete list.

Example:

To tell Fortify Static Code Analyzer that “my-gcc” is a gcc compiler:

com.fortify.sca.
compilers.my-gcc=
com.fortify.sca.util.compilers.
GccCompiler

Notes:

 l Compiler names can begin or end with an asterisk (*), which matches zero or more
characters.

 l Execution of clang/clang++ is not supported with the gcc/g++ command names.

You can specify the following: com.fortify.sca.compilers.g++=
com.fortify.sca.util.compilers.GppCompiler

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 188 of 228

Property name Description

Note: This is a partial list.
For the complete list,
see the properties file.

com.fortify.sca.
UseAntListener

If set to true, Fortify Static Code Analyzer includes

com.fortify.dev.ant.SCAListener in the compiler options.

Value type: Boolean

Default: false

com.fortify.sca.
exclude

Specifies one or more files to exclude from translation. Separate multiple files with
semicolons (Windows) or colons (non-Windows). See "Specifying files and directories" on
page 146 for more information on how to use file specifiers.

Note: Fortify Static Code Analyzer only uses this property during translation without
build integration. When you integrate with most compilers or build tools, Fortify
Static Code Analyzer translates all source files that the compiler or build tool
processes even if they are specified with this property. However, the Fortify Static

Code Analyzer xcodebuild and MSBuild integrations do support the -exclude
option.

Value type: String

Default: Not enabled

Command-line option: -exclude

Example: com.fortify.sca.exclude=file1.x;file2.x

com.fortify.sca.
InputFileEncoding

Specifies the source file encoding type. Fortify Static Code Analyzer allows you to scan a
project that contains differently encoded source files. To work with a multi-encoded

project, you must specify the -encoding option in the translation phase, when Fortify
Static Code Analyzer first reads the source code file. Fortify Static Code Analyzer
remembers this encoding in the build session and propagates it into the FVDL file.

Typically, if you do not specify the encoding type, Fortify Static Code Analyzer uses

file.encoding from the java.io.InputStreamReader constructor with no encoding
parameter. In a few cases (for example with the ActionScript parser), Fortify Static Code

Analyzer defaults to UTF-8.

Value type: String

Default: (none)

Command-line option: -encoding

Example:

com.fortify.sca.InputFileEncoding=UTF-16

com.fortify.sca.
RegExecutable

On Windows platforms, specifies the path to the reg.exe system utility. Specify the paths
in Windows syntax, not Cygwin syntax, even when you run Fortify Static Code Analyzer
from within Cygwin. Escape backslashes with an additional backslash.

Value type: String (path)

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 189 of 228

Property name Description

Default: reg

Example:

com.fortify.sca.RegExecutable=
C:\\Windows\\System32\\reg.exe

com.fortify.sca.
xcode.TranslateAfterErr
or

Specifies whether the xcodebuild touchless adapter continues translation if the
xcodebuild subprocess exited with a non-zero exit code. If set to false, translation stops
after encountering a non-zero xcodebuild exit code and the Fortify Static Code Analyzer
touchless build halts with the same exit code. If set to true, the Fortify Static Code
Analyzer touchless build executes translation of the build file identified prior to the
xcodebuild exit, and Fortify Static Code Analyzer exits with an exit code of zero (unless
some other error also occurs).

Regardless of this setting, if xcodebuild exits with a non-zero code, then the xcodebuild
exit code, stdout, and stderr are written to the log file.

Value type: Boolean

Default: false

Scan

com.fortify.sca.
AddImpliedMethods

If set to true, Fortify Static Code Analyzer generates implied methods when it encounters
implementation by inheritance.

Value type: Boolean

Default: true

com.fortify.sca.
alias.Enable

If set to true, enables alias analysis.

Value type: Boolean

Default: true

com.fortify.sca.
analyzer.controlflow.En
ableTimeOut

Specifies whether to enable Control Flow Analyzer timeouts.

Value type: Boolean

Default: true

com.fortify.sca.
BinaryName

Specifies a subset of source files to scan. Only the source files that were linked in the
named binary at build time are included in the scan.

Value type: String (path)

Default: (none)

Command-line option: -bin or -binary-name

com.fortify.sca.
DefaultAnalyzers

Specifies a comma- or colon-separated list of the types of analysis to perform. The valid

values for this property are buffer, content, configuration, controlflow,
dataflow, , nullptr, semantic, and structural.

Value type: String

Default: This property is commented out and all analysis types are used in scans.

Command-line option: -analyzers

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 190 of 228

Property name Description

com.fortify.sca.
DisableFunctionPointers

If set to true, disables function pointers during the scan.

Value type: Boolean

Default: false

com.fortify.sca.
EnableAnalyzer

Specifies a comma- or colon-separated list of analyzers to use for a scan in addition to the

default analyzers. The valid values for this property are buffer, content,
configuration, controlflow, dataflow, nullptr, semantic, and structural.

Value type: String

Default: (none)

com.fortify.sca.
ExitCodeLevel

Extends the default exit code options. See "Exit codes" on page 169 for a description of
the exit codes and the valid values for this property.

com.fortify.sca.
FilterFile

Specifies the path to a filter file for the scan. See "Excluding issues with filter files" on
page 178 for more information.

Value type: String (path)

Default: (none)

Command-line option: -filter

com.fortify.sca.
FilteredInstanceIDs

Specifies a comma-separated list of IIDs to be filtered out using a filter file.

Value type: String

Default: (none)

Example:

com.fortify.sca.FilteredInstanceIDs=CA4E1623A2424919B98EC19FCA279FFA,
4418B3DC072647158B3758E6183C14CD

com.fortify.sca.
hoa.Enable

If set to true, higher-order analysis is enabled.

Value type: Boolean

Default: true

com.fortify.sca.
LowSeverityCutoff

Specifies the cutoff level for severity suppression. Fortify Static Code Analyzer ignores
any issues found with a lower severity value than the one specified for this property.

Value type: Number

Default: 1.0

com.fortify.sca.
MaxPassthroughChainDept
h

Specifies the length of a taint path between input and output parameters in a function call.

Value type: Integer

Default: 4

com.fortify.sca.
MultithreadedAnalysis

Specifies whether Fortify Static Code Analyzer runs in parallel analysis mode.

Value type: Boolean

Default: true

com.fortify.sca. Specifies a comma-separated list of languages for which to run higher-order analysis.

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 191 of 228

Property name Description

Phase0HigherOrder.Langu
ages

Valid values are python, swift, ruby, javascript, and typescript.

Value type: String

Default: python,ruby,swift,javascript,typescript

com.fortify.sca.
Phase0HigherOrder.Timeo
ut.Hard

Specifies the total time (in seconds) for higher-order analysis. When the analyzer reaches
the hard timeout limit, it exits immediately.

OpenText recommends this timeout limit in case some issue causes the analysis to run too
long. OpenText recommends that you set the hard timeout to about 50% longer than the
soft timeout, so that either the fixpoint pass limiter or the soft timeout occurs first.

Value type: Number

Default: 2700

com.fortify.sca.
PrecisionLevel

Specifies the scan precision. Scans with a lower precision level are performed faster. The

valid values are 1, 2, 3, and 4.

Value type: Number

Default: (none)

Command-line option: -scan-precision | -p

com.fortify.sca.
ProjectTemplate

Specifies the issue template file to use for the scan. This only affects scans on the local
machine. If you upload the FPR to Fortify Software Security Center, it uses the issue
template assigned to the application version.

Value type: String

Default: (none)

Command-line option: -project-template

Example:

com.fortify.sca.ProjectTemplate=
test_issuetemplate.xml

com.fortify.sca.
QuickScanMode

If set to true, Fortify Static Code Analyzer performs a quick scan. Fortify Static Code

Analyzer uses the settings from fortify-sca-quickscan.properties, instead of the
fortify-sca.properties configuration file.

Value type: Boolean

Default: (not enabled)

Command-line option: -quick

com.fortify.sca.
ScanPolicy

Specifies the scan policy for prioritizing reported vulnerabilities (see "Applying a scan

policy to the analysis" on page 46). The valid scan policy values are classic, security,
and devops.

Value type: String

Default: security

Command-line option: -sc or -scan-policy

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 192 of 228

Property name Description

com.fortify.sca.
SuppressLowSeverity

If set to true, Fortify Static Code Analyzer ignores low severity issues found in a scan.

Value type: Boolean

Default: true

com.fortify.sca.
ThreadCount

Specifies the number of threads for parallel analysis mode. Add this property only if you
need to reduce the number of threads used because of a resource constraint. If you
experience an increase in scan time or problems with your scan, a reduction in the number
of threads used might solve the problem.

Value type: Integer

Default: (number of available processor cores)

com.fortify.sca.
TypeInferenceFunctionTi
meout

The amount of time (in seconds) that type inference can spend to analyze a single
function. Unlimited if set to zero or is not specified.

Value type: Long

Default: 60

com.fortify.sca.
TypeInferenceLanguages

Comma- or colon-separated list of languages that use type inference. This setting
improves the precision of the analysis for dynamically-typed languages.

Value type: String

Default: javascript,python,ruby,typescript

com.fortify.sca.
TypeInferencePhase0Time
out

Specifies the total amount of time (in seconds) that type inference can spend in phase 0
(the interprocedural analysis). Unlimited if set to zero or is not specified.

Value type: Long

Default: 300

com.fortify.sca.
UniversalBlacklist

Specifies a colon-separated list of functions to hide from all analyzers.

Value type: String

Default: .*yyparse.*

Regex analysis properties

The properties for the fortify-sca.properties file in the following table apply to regular
expression analysis.

Property name Description

com.fortify.sca.
regex.Enable

If set to true, regular expression analysis is enabled.

Value type: Boolean

Default: true

com.fortify.sca.
regex.ExcludeBinaries

If set to true, binary files are excluded from a regular expression analysis.

Value type: Boolean

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 193 of 228

Property name Description

Default: true

com.fortify.sca.
regex.MaxSize

Specifies the maximum size (in megabytes) for files that are scanned in a regular expression
analysis. Files that exceed this file size maximum are excluded from a regular expression
analysis.

Value type: Number

Default: 10

See also

"Regular expression analysis" on page 47

LIM license properties

The properties for the fortify-sca.properties file in the following table apply to licensing with
the LIM.

Property name Description

com.fortify.sca.
lim.Url

Specifies the LIM server API URL. Do not edit this value directly with a text editor. Use
the command-line option to change this value.

Value type: String

Default: (none)

Command-line option: -store-license-pool-credentials

Example: https://<ip_address>:<port>

com.fortify.sca.
lim.PoolName

Specifies the LIM license pool name. Do not edit this value directly with a text editor.
Use the command-line option to change this value.

Value type: String

Default: (none)

Command-line option: -store-license-pool-credentials

com.fortify.sca.
lim.PoolPassword

Specifies the LIM license pool password (encrypted). Do not edit this value directly
with a text editor. Use the command-line option to change this value.

Value type: String

Default: (none)

Command-line option: -store-license-pool-credentials

com.fortify.sca.
lim.ProxyUrl

Specifies the proxy server used to connect to the LIM server.

Value type: String

Default: (none)

Examples:

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 194 of 228

Property name Description

http://proxy.example.com:8080
https://proxy.example.com

Command-line option: -store-license-pool-credentials

com.fortify.sca.
lim.ProxyUsername

Specifies an encrypted user name for proxy authentication to connect to the LIM
server. Do not edit this value directly with a text editor. Use the command-line option
to change this value.

Value type: String

Default: (none)

Command-line option: -store-license-pool-credentials

com.fortify.sca.
lim.ProxyPassword

Specifies an encrypted password for proxy authentication to connect to the LIM
server. Do not edit this value directly with a text editor. Use the command-line option
to change this value.

Value type: String

Default: (none)

Command-line option: -store-license-pool-credentials

com.fortify.sca.
lim.RequireTrustedSSLCert

If set to true, any attempt to connect to the LIM server without a trusted certificate
fails. If this property is set to false, a warning message displays for any attempt to
connect to the LIM server without a trusted certificate.

Value type: Boolean

Default: true

com.fortify.sca.
lim.WaitForInitialLicense

If set to true and LIM license pool credentials are stored, Fortify Static Code Analyzer
waits for a LIM license to become available before starting a translation or scan. If this
property is set to false, Fortify Static Code Analyzer aborts if it cannot obtain a LIM
license.

Value type: Boolean

Default: true

See also

"LIM license directives" on page 145

Rule properties

The properties for the fortify-sca.properties file in the following table apply to rules (and
custom rules) and Rulepacks.

Property name Description

com.fortify.sca.
DefaultRulesDir

Sets the directory used to search for the OpenText provided encrypted rules files.

Value Type: String (path)

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 195 of 228

Property name Description

Default:

${com.fortify.Core}/config/rules

com.fortify.sca.
RulesFile

Specifies a custom Rulepack or directory. If you specify a directory, all of the files in the

directory with the .bin and .xml extensions are included.

Value Type: String (path)

Default: (none)

Command-line option: -rules

com.fortify.sca.
CustomRulesDir

Sets the directory used to search for custom rules.

Value Type: String (path)

Default:

${com.fortify.Core}/config/customrules

com.fortify.sca.
RulesFileExtensions

Specifies a list of file extensions for rules files. Any files in <sca_install_
dir>/Core/config/rules (or a directory specified with the -rules option) whose
extension is in this list is included. The .bin extension is always included, regardless of the
value of this property. The delimiter for this property is the system path separator.

Value Type: String

Default: .xml

com.fortify.sca.
NoDefaultRules

If set to true, rules from the default Rulepacks are not loaded. Fortify Static Code Analyzer
processes the Rulepacks for description elements and language libraries, but no rules are
processed.

Value Type: Boolean

Default: (none)

Command-line option: -no-default-rules

com.fortify.sca.
NoDefaultIssueRules

If set to true, disables rules in default Rulepacks that lead directly to issues. Fortify Static
Code Analyzer still loads rules that characterize the behavior of functions. This can be helpful
when creating custom issue rules.

Value Type: Boolean

Default: (none)

Command-line option: -no-default-issue-rules

com.fortify.sca.
NoDefaultSourceRules

If set to true, disables source rules in the default Rulepacks. This can be helpful when
creating custom source rules.

Note: Characterization source rules are not disabled.

Value Type: Boolean

Default: (none)

Command-line option: -no-default-source-rules

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 196 of 228

Property name Description

com.fortity.sca.
NoDefaultSinkRules

If set to true, disables sink rules in the default Rulepacks. This can be helpful when creating
custom sink rules.

Note: Characterization sink rules are not disabled.

Value Type: Boolean

Default: (none)

Command-line option: -no-default-sink-rules

Java and Kotlin properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of Java and Kotlin code.

Property name Description

com.fortify.sca.
JavaClasspath

Specifies the class path used to analyze Java or Kotlin source code. Separate multiple
paths with semicolons (Windows) or colons (non-Windows).

Value type: String (paths)

Default: (none)

Command-line option: -cp or -classpath

com.fortify.sca.
JdkVersion

Specifies the Java source code version for Java or Kotlin translation.

Value type: String

Default: 11

Command-line option: -jdk or -source

com.fortify.sca.
CustomJdkDir

Specifies a directory that contains a JDK version that is not included in the Fortify Static

Code Analyzer installation (<sca_install_dir>/Core/bootcp/).

Value type: String (path)

Default: (none)

Command-line option: -custom-jdk-dir

com.fortify.sca.
JavaSourcepath

Specifies a semicolon- (Windows) or colon-separated (non-Windows) list of Java or Kotlin
source file directories that are not included in the scan but are used for name resolution.
The source path is similar to class path, except it uses source files rather than class files for
resolution.

Value type: String (paths)

Default: (none)

Command-line option: -sourcepath

com.fortify.sca.
Appserver

Specifies the application server to process JSP files. The valid values are weblogic or
websphere.

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 197 of 228

Property name Description

Value type: String

Default: (none)

Command-line option: -appserver

com.fortify.sca.
AppserverHome

Specifies the application server's home directory. For WebLogic, this is the path to the

directory that contains server/lib. For WebSphere, this is the path to the directory that
contains the JspBatchCompiler script.

Value type: String (path)

Default: (none)

Command-line option: -appserver-home

com.fortify.sca.
AppserverVersion

Specifies the version of the WebLogic or WebSphere application server.

Value type: String

Default: (none)

Command-line option: -appserver-version

com.fortify.sca.
JavaExtdirs

Specifies directories to include implicitly on the class path for WebLogic and WebSphere
application servers.

Value type: String

Default: (none)

Command-line option: -extdirs

com.fortify.sca.
JavaSourcepathSearch

If set to true, Fortify Static Code Analyzer only translates Java source files that are
referenced by the target file list. Otherwise, Fortify Static Code Analyzer translates all files
included in the source path.

Value type: Boolean

Default: true

com.fortify.sca.
DefaultJarsDirs

Specifies semicolon- or colon-separated list of directories of commonly used JAR files. JAR

files located in these directories are appended to the end of the class path option (-cp).

Value type: String

Default: default_jars

com.fortify.sca.
DecompileBytecode

If set to true, Java bytecode is decompiled for the translation.

Value type: Boolean

Default: false

com.fortify.sca.
jsp.UseSecurityManager

If set to true, the JSP parser uses JSP security manager.

Value type: Boolean

Default: true

com.fortify.sca.
jsp.DefaultEncoding

Specifies the encoding for JSPs.

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 198 of 228

Property name Description

Value type: String (encoding)

Default: ISO-8859-1

com.fortify.sca.
jsp.LegacyDataflow

If set to true, enables additional filtering on JSP-related dataflow to reduce the amount of
spurious false positives detected.

Value type: Boolean

Default: false

Command-line option: -legacy-jsp-dataflow

com.fortify.sca.
KotlinJvmDefault

Specifies the generation of the DefaultImpls class for methods with bodies in Kotlin
interfaces. The valid values are:

 l disable—Specifies to generate the DefaultImpls class for each interface that
contains methods with bodies.

 l all—Specifies to generate the DefaultImpls class if an interface is annotated with
@JvmDefaultWithCompatibility.

 l all-compatibility—Specifies to generate the DefaultImpls class unless an
interface is annotated with @JvmDefaultWithoutCompatibility.

Value type: String

Default: disable

com.fortify.sca.
ShowUnresolvedSymbols

If set to true, displays any unresolved types, fields, and functions referenced in translated
Java source files at the end of the translation.

Value type: Boolean

Default: false

Command-line option: -show-unresolved-symbols

See also

"Translating Java code" on page 50

"Translating Kotlin code" on page 58

Visual Studio and MSBuild project properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of .NET projects and solutions.

Property name Description

WinForms.
TransformDataBindings

WinForms.
TransformMessageLoops

Sets various .NET options.

Value type: Boolean and String

Defaults and examples:

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 199 of 228

Property name Description

WinForms.
TransformChangeNotificationPattern

WinForms.
CollectionMutationMonitor.Label

WinForms.
ExtractEventHandlers

WinForms.TransformDataBindings=true

WinForms.TransformMessageLoops=true

WinForms.TransformChangeNotificationPattern=true

WinForms.CollectionMutationMonitor.Label=
WinFormsDataSource

WinForms.ExtractEventHandlers=true

com.fortify.sca.
ASPVirtualRoots.<virtual_path>

Specifies a semicolon-separated list of full paths to virtual roots used.

Value type: String

Default: (none)

Example:

com.fortify.sca.ASPVirtualRoots.Library=
c:\\WebServer\\CustomerTwo\\Stuff
com.fortify.sca.ASPVirtualRoots.Include=
c:\\WebServer\\CustomerOne\\inc

com.fortify.sca.
DisableASPExternalEntries

If set to true, disables ASP external entries in the scan.

Value type: Boolean

Default: false

See also

"Translating Visual Studio projects" on page 62

JavaScript and TypeScript properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of JavaScript and TypeScript code.

Property name Description

com.fortify.sca.
EnableDOMModeling

If set to true, Fortify Static Code Analyzer generates JavaScript code to model
the DOM tree that an HTML file generated during the translation phase and
identifies DOM-related issues (such as cross-site scripting issues). Enable this
property if the code you are translating includes HTML files that have
embedded or referenced JavaScript code.

Note: Enabling this property can increase the translation time.

Value type: Boolean

Default: false

com.fortify.sca.
DOMModeling.tags

If you set the com.fortify.sca.EnableDOMModeling property to true, you
can specify additional coma-separated HTML tags names for Fortify Static
Code Analyzer to include in the DOM modeling.

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 200 of 228

Property name Description

Value type: String

Default: body, button, div, form, iframe, input, head, html, and p.

Example:

com.fortify.sca.DOMModeling.tags=ul,li

com.fortify.sca.
JavaScript.src.domain.whitelist

Specifies trusted domain names where Fortify Static Code Analyzer can
download referenced JavaScript files for the scan. Delimit the URLs with
vertical bars.

Value type: String

Default: (none)

Example: com.fortify.sca.JavaScript.
src.domain.whitelist=
http://www.xyz.com|http://www.123.org

com.fortify.sca.
DisableJavascriptExtraction

If set to true, JavaScript code embedded in JSP, JSPX, PHP, and HTML files is
not extracted and not scanned.

Value type: Boolean

Default: false

com.fortify.sca.
EnableTranslationMinifiedJS

If set to true, enables translation for minified JavaScript files.

Value type: Boolean

Default: false

com.fortify.sca.
skip.libraries.ES6

com.fortify.sca.
skip.libraries.jQuery

com.fortify.sca.
skip.libraries.javascript

com.fortify.sca.
skip.libraries.typescript

Specifies a list of comma- or colon-separated JavaScript or TypeScript
technology library files that are not translated. You can use regular

expressions in the file names. Note that the regular expression '(-
\d\.\d\.\d)?' is automatically inserted before .min.js or .js for each file
name included in the com.fortify.sca.skip.libraries.jQuery property
value.

Value type: String

Defaults:

 l ES6: es6-shim.min.js,system-polyfills.js,
shims_for_IE.js

 l jQuery: jquery.js,jquery.min.js,
jquery-migrate.js,jquery-migrate.min.js,
jquery-ui.js,jquery-ui.min.js,
jquery.mobile.js,jquery.mobile.min.js,
jquery.color.js,jquery.color.min.js,
jquery.color.svg-names.js,
jquery.color.svg-names.min.js,
jquery.color.plus-names.js,
jquery.color.plus-names.min.js,
jquery.tools.min.js

 l javascript: bootstrap.js,
bootstrap.min.js,

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 201 of 228

Property name Description

typescript.js,
typescriptServices.js

 l typescript: typescript.d.ts,
typescriptServices.d.ts

com.fortify.sca.
follow.imports

If set to true, files included with an import statement are included in the
translation.

Value type: Boolean

Default: true

com.fortify.sca.
exclude.node.modules

If set to true, files in a node_modules directory are excluded from the analysis
phase.

Value type: Boolean

Default: true

com.fortify.sca.
exclude.unimported.node.modules

Specifies whether to exclude source code in a node_modules directory. If set to
true, only imported node_modules are included in the translation.

Note: This property is only applied if

com.fortify.sca.exclude.node.modules is set to false.

Value type: Boolean

Default: true

See also

"Translating JavaScript and TypeScript code" on page 71

Python properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of Python code.

Property name Description

com.fortify.sca.
PythonPath

Specifies a semicolon-separated (Windows) or colon-separated (non-Windows) list
of additional import directories. Fortify Static Code Analyzer does not respect
PYTHONPATH environment variable that the Python runtime system uses to find
import files. Use this property to specify the additional import directories.

Value type: String (path)

Default: (none)

Command-line option: -python-path

com.fortify.sca.
PythonVersion

Specifies the Python source code version to scan. The valid values are 2 and 3.

Value type: Number

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 202 of 228

Property name Description

Default: 3

Command-line option: -python-version

com.fortify.sca.
PythonNoAutoRootCalculation

If set to true, disables the automatic calculation of a common root directory of all
project files to use for importing modules and packages For more details, see
"Including imported modules and packages" on page 80.

Value type: Boolean

Default: false

Command-line option: -python-no-auto-root-calculation

com.fortify.sca.
DjangoTemplateDirs

Specifies semicolon-separated (Windows) or colon-separated (non-Windows) list of
directories for Django templates. Fortify Static Code Analyzer does not use the

TEMPLATE_DIRS setting from the Django settings.py file.

Value type: String (paths)

Default: (none)

Command-line option: -django-template-dirs

com.fortify.sca.
DjangoDisableAutodiscover

Specifies that Fortify Static Code Analyzer does not automatically discover Django
templates.

Value type: Boolean

Default: (none)

Command-line option: -django-disable-autodiscover

com.fortify.sca.
JinjaTemplateDirs

Specifies semicolon-separated (Windows) or colon-separated (non-Windows) list of
directories for Jinja2 templates.

Value type: String (paths)

Default: (none)

Command-line option: -jinja-template-dirs

com.fortify.sca.
DisableTemplateAutodiscover

Specifies that Fortify Static Code Analyzer does not automatically discover Django
or Jinja2 templates.

Value type: Boolean

Default: (none)

Command-line option: -disable-template-autodiscover

See also

"Translating Python code" on page 77

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 203 of 228

Go properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of Go code.

Property name Description

com.fortify.sca.
gotags

Specifies custom build tags for a Go project. This is equivalent to the -tags option for the go
command.

Value type: String

Default: (none)

Command-line option: -gotags

com.fortify.sca.
GOPATH

Specifies the root directory of your project/workspace.

Value type: String

Default: (GOPATH system environment variable)

com.fortify.sca.
GOROOT

Specifies the location of the Go installation.

Value type: String

Default: (GOROOT system environment variable)

com.fortify.sca.
GOPROXY

Specifies one or more comma-separated proxy URLs. You can also specify direct or off.

Value type: String

Default: (GOPROXY system environment variable)

See also

"Translating Go code" on page 85

Ruby properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of Ruby code.

Property name Description

com.fortify.sca.
RubyLibraryPaths

Specifies one or more paths to directories that contain Ruby libraries.

Value type: String (path)

Default: (none)

Command-line option: -ruby-path

com.fortify.sca.
RubyGemPaths

Specifies one or more paths to RubyGems locations. Set this value if the project has associated
gems to scan.

Value type: String (path)

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 204 of 228

Property name Description

Default: (none)

Command-line option: -rubygem-path

See also

"Translating Ruby code" on page 91

COBOL properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of COBOL code.

Property name Description

com.fortify.sca.
CobolCopyDirs

Specifies one or more semicolon- or colon-separated directories where Fortify Static Code
Analyzer looks for copybook files.

Value type: String (path)

Default: (none)

Command-line option: -copydirs

com.fortify.sca.
CobolDialect

Specifies the COBOL dialect. The valid values for dialect are COBOL390 or MICROFOCUS.
The dialect value is case-insensitive.

Value type: String

Default: COBOL390

Command-line option: -dialect

com.fortify.sca.
CobolCheckerDirectives

Specifies one or more semicolon-separated COBOL checker directives.

Value type: String

Default: (none)

Command-line option: -checker-directives

com.fortify.sca.
CobolLegacy

If set to true, enables legacy COBOL translation.

Value type: Boolean

Default: false

Command-line option: -cobol-legacy

com.fortify.sca.
CobolFixedFormat

If set to true, specifies fixed-format COBOL to direct Fortify Static Code Analyzer to only
look for source code between columns 8-72 in all lines of code (legacy COBOL translation
only).

Value type: Boolean

Default: false

Command-line option: -fixed-format

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 205 of 228

Property name Description

com.fortify.sca.
CobolCopyExtensions

Specifies one or more semicolon- or colon-separated copybook file extensions (legacy
COBOL translation only).

Value type: String

Default: (none)

Command-line option: -copy-extensions

See also

"Translating COBOL code" on page 93

PHP properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of PHP code.

Property name Description

com.fortify.sca.
PHPVersion

Specifies the PHP version. For a list of valid versions, see the Fortify Software System
Requirements document.

Value type: String

Default: 8.2

Command-line option: -php-version

com.fortify.sca.
PHPSourceRoot

Specifies the PHP source root.

Value type: Boolean

Default: (none)

Command-line option: -php-source-root

See also

"Translating PHP code" on page 101

ABAP properties

The properties described in the following table apply to the translation of ABAP code.

Property name Description

com.fortify.sca.
AbapDebug

If set to true, Fortify Static Code Analyzer adds ABAP statements to debug messages.

Value type: Boolean

Default: (none)

com.fortify.sca. When Fortify Static Code Analyzer encounters an ABAP 'INCLUDE' directive, it looks in the named

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 206 of 228

Property name Description

AbapIncludes directory.

Value type: String (path)

Default: (none)

Flex and ActionScript properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of Flex and ActionScript code.

Property name Description

com.fortify.sca.
FlexLibraries

Specifies a semicolon-separated (Windows) or colon-separated (non-Windows) of libraries to "link"

to. This list must include flex.swc, framework.swc, and playerglobal.swc (which are usually
located in the frameworks/libs directory in your Flex SDK root). Use this property primarily to
resolve ActionScript.

Value type: String (path)

Default: (none)

Command-line option: -flex-libraries

com.fortify.sca.
FlexSdkRoot

Specifies the root location of a valid Flex SDK. The folder must contain a frameworks folder that

contains a flex-config.xml file. It must also contain a bin folder that contains an mxmlc
executable.

Value type: String (path)

Default: (none)

Command-line option: -flex-sdk-root

com.fortify.sca.
FlexSourceRoots

Specifies any additional source directories for a Flex project. Separate multiple directories with
semicolons (Windows) or colons (non-Windows).

Value type: String (path)

Default: (none)

Command-line option: -flex-source-root

ColdFusion (CFML) properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of CFML code.

Property name Description

com.fortify.sca.
CfmlUndefinedVariablesAreTainted

If set to true, Fortify Static Code Analyzer treats undefined variables in CFML
pages as tainted. This serves as a hint to the Dataflow Analyzer to watch out
for register-globals-style vulnerabilities. However, enabling this property

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 207 of 228

Property name Description

interferes with dataflow findings where a variable in an included page is
initialized to a tainted value in an earlier-occurring included page.

Value type: Boolean

Default: false

com.fortify.sca.
CaseInsensitiveFiles

If set to true, make CFML files case-insensitive for applications developed
using a case-insensitive file system and scanned on case-sensitive file
systems.

Value type: Boolean

Default: (not enabled)

com.fortify.sca.
SourceBaseDir

Specifies the base directory for ColdFusion projects.

Value type: String (path)

Default: (none)

Command-line option: -source-base-dir

See also

"Translating ColdFusion code" on page 112

SQL properties

The properties for the fortify-sca.properties file in the following table apply to the translation
of SQL code.

Property name Description

com.fortify.sca.
SqlLanguage

Specifies the SQL language variant. The valid SQL language type values are PLSQL (for Oracle
PL/SQL) and TSQL (for Microsoft T-SQL).

Value type: String

Default: TSQL

Command-line option: -sql-language

See also

"Analyzing SQL" on page 113

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 208 of 228

Output properties

The properties for the fortify-sca.properties file in the following table apply to the analysis
output.

Property name Description

com.fortify.sca.
ResultsFile

The file to which results are written.

Value type: String

Default: (none)

Command-line option: -f

Example: com.fortify.sca.ResultsFile=MyResults.fpr

com.fortify.sca.
Renderer

Controls the output format. The valid values are fpr, fvdl, text, and auto. The default
of auto selects the output format based on the extension of the file provided with the -
f option.

Value type: String

Default: auto

Command-line option: -format

com.fortify.sca.
OutputAppend

If set to true, Fortify Static Code Analyzer appends results to an existing results file.

Value type: Boolean

Default: false

Command-line option: -append

com.fortify.sca.
ResultsAsAvailable

If set to true, Fortify Static Code Analyzer prints results as they become available. This

is helpful if you do not specify the -f option (to specify an output file) and print to
stdout.

Value type: Boolean

Default: false

com.fortify.sca.
BuildLabel

Specifies a label for the scanned project. Fortify Static Code Analyzer does not use this
label but includes it in the results.

Value type: String

Default: (none)

Command-line option: -build-label

com.fortify.sca.
BuildProject

Specifies a name for the scanned project. Fortify Static Code Analyzer does not use this
name but includes it in the results.

Value type: String

Default: (none)

Command-line option: -build-project

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 209 of 228

Property name Description

com.fortify.sca.
BuildVersion

Specifies a version number for the scanned project. Fortify Static Code Analyzer does
not use this version number but it is included in the results.

Value type: String

Default: (none)

Command-line option: -build-version

com.fortify.sca.
MachineOutputMode

Output information in a format that scripts or Fortify Static Code Analyzer tools can use
rather than printing output interactively. Instead of a single line to display scan
progress, a new line is printed below the previous one on the console to display updated
progress.

Value type: Boolean

Default: (not enabled)

Command-line option: -machine-output

com.fortify.sca.
SnippetContextLines

Sets the number of lines of code to display surrounding an issue. Snippets always
include the two lines of code on each side of the line where the error occurs. By default,
five lines of code are displayed.

Value type: Number

Default: 2

com.fortify.sca.
FVDLDisableDescriptions

If set to true, excludes Fortify security content descriptions from the analysis results file
(FVDL).

Value type: Boolean

Default: false

Command-line option: -fvdl-no-descriptions

com.fortify.sca.
FVDLDisableEngineData

If set to true, excludes engine data from the analysis results file (FVDL).

Value type: Boolean

Default: false

Command-line option:-fvdl-no-enginedata

com.fortify.sca.
FVDLDisableLabelEvidence

If set to true, excludes label evidence from the analysis results file (FVDL).

Value type: Boolean

Default: false

com.fortify.sca.
FVDLDisableProgramData

If set to true, excludes the ProgramData section from the analysis results file (FVDL).

Value type: Boolean

Default: false

Command-line option: -fvdl-no-progdata

com.fortify.sca.
FVDLDisableSnippets

If set to true, excludes code snippets from the analysis results file (FVDL).

Value type: Boolean

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 210 of 228

Property name Description

Default: false

Command-line option: -fvdl-no-snippets

com.fortify.sca.
FVDLStylesheet

Specifies location of the style sheet for the analysis results.

Value type: String (path)

Default:

${com.fortify.Core}/resources/sca/fvdl2html.xsl

Mobile build session (MBS) properties

The properties for the fortify-sca.properties file in the following table apply to MBS files.

Property name Description

com.fortify.sca.
MobileBuildSessions

If set to true, Fortify Static Code Analyzer copies source files into the build session directory.

Value type: Boolean

Default: false

com.fortify.sca.
ExtractMobileInfo

If set to true, Fortify Static Code Analyzer extracts the build ID and the Fortify Static Code
Analyzer version number from the mobile build session.

Note: Fortify Static Code Analyzer does not extract the mobile build with this property.

Value type: Boolean

Default: false

See also

"Mobile build sessions" on page 44

Proxy properties

The properties for the fortify-sca.properties file in the following table apply to proxy settings.

Property name Description

com.fortify.sca.
https.proxyHost

Specifies a proxy host name.

Value type: String

Default: (none)

com.fortify.sca.
https.proxyPort

Specifies a proxy port number.

Value type: Number

Default: (none)

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 211 of 228

Logging properties

The properties for the fortify-sca.properties file in the following table apply to log files.

Property name Description

com.fortify.sca.
LogFile

Specifies the default log file name and location.

Value type: String (path)

Default:

${com.fortify.sca.ProjectRoot}/log/sca.log
and ${com.fortify.sca.ProjectRoot}/log/sca_FortifySupport.log

Command-line option: -logfile

com.fortify.sca.
LogLevel

Specifies the minimum log level for both log files. The valid values are DEBUG,
INFO, WARN, ERROR, and FATAL. For more information, see "Locating the log files"
on page 175 and "Configuring log files" on page 175.

Value type: String

Default: INFO

com.fortify.sca.
ClobberLogFile

If set to true, Fortify Static Code Analyzer overwrites the log file for each run of
sourceanalyzer.

Value type: Boolean

Default: false

Command-line option: -clobber-log

com.fortify.sca.
PrintPerformanceDataAfterScan

If set to true, Fortify Static Code Analyzer writes performance-related data to the
Static Code Analyzer Support log file after the scan is complete. This value is
automatically set to true when in debug mode.

Value type: Boolean

Default: false

See also

"Configuring log files" on page 175

Debug properties

The properties for the fortify-sca.properties file in the following table apply to debug settings.

Property name Description

com.fortify.sca.
Debug

Includes debug information in the Static Code Analyzer Support log file, which is only
useful for Customer Support to help troubleshoot.

Value type: Boolean

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 212 of 228

Property name Description

Default: false

Command-line option: -debug

com.fortify.sca.
DebugVerbose

This is the same as the com.fortify.sca.Debug property, but it includes more details,
specifically for parse errors.

Value type: Boolean

Default: (not enabled)

Command-line option: -debug-verbose

com.fortify.sca.
Verbose

If set to true, includes verbose messages in the Static Code Analyzer Support log file.

Value type: Boolean

Default: false

Command-line option: -verbose

com.fortify.sca.
DebugTrackMem

If set to true, additional performance information is written to the Static Code Analyzer
Support log.

Value type: Boolean

Default: (not enabled)

Command-line option: -debug-mem

com.fortify.sca.
CollectPerformanceData

If set to true, enables additional timers to track performance.

Value type: Boolean

Default: (not enabled)

com.fortify.sca.
Quiet

If set to true, disables the command-line progress information.

Value type: Boolean

Default: false

Command-line option: -quiet

com.fortify.sca.
MonitorSca

If set to true, Fortify Static Code Analyzer monitors its memory use and warns when JVM
garbage collection becomes excessive.

Value type: Boolean

Default: true

fortify-sca-quickscan.properties
Fortify Static Code Analyzer offers a less in-depth scan known as a quick scan. This option scans the
project in quick scan mode, using the property values in the fortify-sca-quickscan.properties
file. By default, a quick scan reduces the depth of the analysis and applies the Quick View filter set.
The Quick View filter set provides only critical and high priority issues.

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 213 of 228

Note: Properties in this file are only used if you specify the -quick option on the command line
for your scan.

The following table provides two sets of default values: the default value for quick scans and the
default value for normal scans. If only one default value is shown, the value is the same for both
normal scans and quick scans.

Property name Description

com.fortify.sca.
CtrlflowMaxFunctionTime

Sets the time limit (in milliseconds) for Control Flow analysis on a single
function.

Value type: Integer

Quick scan default: 30000

Default: 600000

com.fortify.sca.
DisableAnalyzers

Specifies a comma- or colon-separated list of analyzers to disable during a

scan. The valid analyzer names are buffer, content, configuration,
controlflow, dataflow, nullptr, semantic, and structural.

Value type: String

Quick scan default: controlflow:buffer

Default: (none)

com.fortify.sca.
FilterSet

Specifies the filter set to use. You can use this property with an issue
template to filter at scan-time instead of post-scan. See

com.fortify.sca.ProjectTemplate described in "Translation and
analysis phase properties" on page 186 to specify an issue template that
contains the filter set to use.

When set to Quick View, this property runs rules that have a potentially
high impact and a high likelihood of occurring and rules that have a
potentially high impact and a low likelihood of occurring. Filtered issues are
not written to the FPR and therefore this can reduce the size of an FPR. For
more information about filter sets, see the OpenText™ Fortify Audit
Workbench User Guide.

Value type: String

Quick scan default: Quick View

Default: (none)

com.fortify.sca.
FPRDisableMetatable

Disables the creation of the metatable, which includes information for the
Function view in Fortify Audit Workbench. This metatable enables right-click
on a variable in the source window to show the declaration. If C/C++ scans
take an extremely long time, setting this property to true can potentially
reduce the scan time by hours.

Value type: Boolean

Quick scan default: true

Default: false

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 214 of 228

Property name Description

Command-line option: -disable-metatable

com.fortify.sca.
FPRDisableSourceBundling

Disables source code inclusion in the FPR file. Prevents Fortify Static Code
Analyzer from generating marked-up source code files during a scan. If you
plan to upload FPR files that are generated as a result of a quick scan to

Fortify Software Security Center, you must set this property to false.

Value type: Boolean

Quick scan default: true

Default: false

Command-line option: -disable-source-bundling

com.fortify.sca.
NullPtrMaxFunctionTime

Sets the time limit (in milliseconds) for Null Pointer analysis for a single
function. The standard default is five minutes. If this value is set to a shorter
limit, the overall scan time decreases.

Value type: Integer

Quick scan default: 10000

Default: 300000

com.fortify.sca.
TrackPaths

Disables path tracking for Control Flow analysis. Path tracking provides more
detailed reporting for issues, but requires more scan time. To disable this for

JSP only, set it to NoJSP. Specify None to disable all functions.

Value type: String

Quick scan default: (none)

Default: NoJSP

com.fortify.sca.
limiters.ConstraintPredicateSize

Specifies the size limit for complex calculations in the Buffer Analyzer. Skips
calculations that are larger than the specified size value in the Buffer
Analyzer to improve scan time.

Value type: Integer

Quick scan default: 10000

Default: 500000

com.fortify.sca.
limiters.MaxChainDepth

Controls the maximum call depth through which the Dataflow Analyzer tracks
tainted data. Increase this value to increase the coverage of dataflow
analysis, which results in longer scan times.

Note: Call depth refers to the maximum call depth on a dataflow path
between a taint source and sink, rather than call depth from the

program entry point, such as main().

Value type: Integer

Quick scan default: 3

Default: 5

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 215 of 228

Property name Description

com.fortify.sca.
limiters.MaxFunctionVisits

Sets the number of times taint propagation analyzer visits functions.

Value type: Integer

Quick scan default: 5

Default: 50

com.fortify.sca.
limiters.MaxPaths

Controls the maximum number of paths to report for a single dataflow
vulnerability. Changing this value does not change the results that are found,
only the number of dataflow paths displayed for an individual result.

Note: OpenText does not recommend setting this property to a value

larger than 5 because it might increase the scan time.

Value type: Integer

Quick scan default: 1

Default: 5

com.fortify.sca.
limiters.MaxTaintDefForVar

Sets a complexity limit for the Dataflow Analyzer. Dataflow incrementally
decreases precision of analysis on functions that exceed this complexity
metric for a given precision level.

Value type: Integer

Quick scan default: 250

Default: 1000

com.fortify.sca.
limiters.MaxTaintDefForVarAbort

Sets a hard limit for function complexity. If complexity of a function exceeds
this limit at the lowest precision level, the analyzer skips analysis of the
function.

Value type: Integer

Quick scan default: 500

Default: 4000

fortify-rules.properties

This topic describes the properties available for use in the fortify-rules.properties file. Use
these properties to modify behavior of individual rules or provide information that can improve how
rules identify weaknesses.

Property name Description

com.fortify.sca.rules.
password_regex.global

The regular expression to match password identifiers across all languages unless a
language-specific rules property is set.

Value type: String

Default: (?i)(s|_)?(user|usr|member|admin|guest|login|default|

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 216 of 228

Property name Description

new|current|old|client|server|proxy|sqlserver|
my|mysql|mongo|mongodb|db|database|ldap|smtp|
email|email(_)?smtp)?(_|\.)?(pass(wd|word|phrase)|secret)

com.fortify.sca.rules
.password_regex.abap

Regular expression to match password identifiers in ABAP code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_
regex.actionscript

Regular expression to match password identifiers in ActionScript code. Setting this
property overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.apex

Regular expression to match password identifiers in Salesforce Apex code. Setting this
property overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.cfml

Regular expression to match password identifiers in ColdFusion (CFML) code. Setting this
property overrides the global regex password rules property.

Value type: String

Default: (none)

com.fortify.sca.rules.
password_regex.cobol

Regular expression to match password identifiers in COBOL code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.config

Regular expression to match password identifiers in XML. Setting this property overrides
the global regex password rules property. Do not use regular expression modifiers. The
value is case-insensitive.

Value type: String

Default: (s|_)?(user|usr|member|admin|guest|login|default|
new|current|old|client|server|proxy|sqlserver|
my|mysql|mongo|mongodb|db|database|ldap|smtp|
email|email(_)?smtp)?(_|\.)?pass(wd|word|phrase)

com.fortify.sca.rules.
password_regex.cpp

Regular expression to match password identifiers in C and C++ code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.dart

Regular expression to match password identifiers in Dart code. Setting this property
overrides the global regex password rules property.

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 217 of 228

Property name Description

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.dotnet

Regular expression to match password identifiers in .NET code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.docker

Regular expression to match password identifiers in Dockerfiles. Setting this property
overrides the global regex password rules property.

Value type: String

Default: .*pass(wd|word|phrase).*

com.fortify.sca.rules.
password_regex.golang

Regular expression to match password identifiers in Go code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.java

Regular expression to match password identifiers in Java code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_
regex.javascript

Regular expression to match password identifiers in JavaScript and TypeScript code.
Setting this property overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.json

Regular expression to match password identifiers in JSON. Setting this property overrides
the global regex password rules property.

Value type: String

Default: (?i).*pass(wd|word|phrase).*

com.fortify.sca.rules.
password_regex.jsp

Regular expression used to match password identifiers in JSP code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.objc

Regular expression to match password identifiers in Objective-C and Objective-C++ code.
Setting this property overrides the global regex password rules property.

Value type: String

Default: (?i)(s|_)?(user|usr|member|admin|guest|login|default|
new|current|old|client|server|proxy|sqlserver|
my|mysql|mongo|mongodb|db|database|ldap|smtp|

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 218 of 228

Property name Description

email|email(_)?smtp)?(_|\.)?(token|pin|pass(wd|word|phrase))

com.fortify.sca.rules.
password_regex.php

Regular expression to match password identifiers in PHP code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_
regex.powershell

Regular expression to match password identifiers in PowerShell files. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (?i)([a-z_]*|\{.*)(pass(wd|word|phrase)|pwd)(.*\}|[a-z_]*)

com.fortify.sca.rules.
password_
regex.properties

Regular expression to match password identifiers in Properties files. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.python

Regular expression to match password identifiers in Python code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.ruby

Regular expression to match password identifiers in Ruby code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.sql

Regular expression to match password identifiers in SQL code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.
password_regex.swift

Regular expression to match password identifiers in Swift code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (?i)(s|_)?(user|usr|member|admin|guest|login|default|
new|current|old|client|server|proxy|sqlserver|
my|mysql|mongo|mongodb|db|database|ldap|smtp|
email|email(_)?smtp)?(_|\.)?(token|pin|pass(wd|word|phrase))

com.fortify.sca.rules.
password_regex.vb

Regular expression to match password identifiers in VB6 code. Setting this property
overrides the global regex password rules property.

Value type: String

Default: (value for com.fortify.sca.rules.password_regex.global)

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 219 of 228

Property name Description

com.fortify.sca.rules.
password_regex.yaml

Regular expression to match password identifiers in YAML. Setting this property overrides
the global regex password rules property.

Value type: String

Default: (?i).*pass(wd|word|phrase).*

com.fortify.sca.rules.
key_regex.global

The regular expression to match key identifiers across all languages unless a language-
specific regex key rules property is set.

Value type: String

Default: (?i)((enc|dec)(ryption|rypt)?|crypto|secret|private)(_)?key

com.fortify.sca.rules.
key_regex.abap

Regular expression to match key identifiers in ABAP code. Setting this property overrides
the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.actionscript

Regular expression to match key identifiers in ActionScript code. Setting this property
overrides the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.cfml

Regular expression to match key identifiers in CFML code. Setting this property overrides
the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.cpp

Regular expression to match key identifiers in C and C++ code. Setting this property
overrides the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.golang

Regular expression to match key identifiers in Go code. Setting this property overrides the
global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.java

Regular expression to match key identifiers in Java code. Setting this property overrides
the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.javascript

Regular expression to match key identifiers in JavaScript and TypeScript code. Setting this
property overrides the global regex key rules property.

Value type: String

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 220 of 228

Property name Description

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.jsp

Regular expression to match key identifiers in JSP code. Setting this property overrides
the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.objc

Regular expression used to match key identifiers in Objective-C and Objective-C++ code.
Setting this property overrides the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.php

Regular expression to match key identifiers in PHP code. Setting this property overrides
the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.python

Regular expression to match key identifiers in Python code. Setting this property
overrides the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.ruby

Regular expression used to match key identifiers in Ruby code. Setting this property
overrides the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.sql

Regular expression to match key identifiers in SQL code. Setting this property overrides
the global regex key rules property.

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.swift

Regular expression used to match key identifiers in Swift code. Setting this property
overrides the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
key_regex.vb

Regular expression to match key identifiers in Visual Basic 6 code. Setting this property
overrides the global regex key rules property.

Value type: String

Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.
GCPFunctionName

Name of the serverless function called when no JSON/YAML cloud build config file exists.

Value type: String

Default: (none)

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 221 of 228

Property name Description

com.fortify.sca.rules.
GCPHttpTrigger

If set to true, the scanned cloud function is an HTTP trigger.

Value type: Boolean

Default: false

com.fortify.sca.rules.
enable_wi_correlation

If set to true and Fortify Static Code Analyzer scans an application with a supported
framework, produces a results file to be imported into OpenText™ Fortify WebInspect to
improve results.

Value type: Boolean

Default: false

User Guide
Appendix B: Configuration options

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 222 of 228

Appendix C: Fortify Java annotations
OpenText provides two versions of the Fortify Java annotations library.

 l Annotations with the retention policy set to CLASS (FortifyAnnotations-CLASS.jar).
With this version of the library, Fortify Java annotations are propagated to the bytecode during
compilation.

 l Annotations with the retention policy set to SOURCE (FortifyAnnotations-SOURCE.jar).
With this version of the library, Fortify Java annotations are not propagated to the bytecode after
the code that uses them is compiled.

If you use Fortify Software products to analyze bytecode of your applications (for example, with
OpenText™ Fortify on Demand assessments), then use the version with the annotation retention
policy set to CLASS. If you use Fortify Software products to analyze the source code of your
applications, you can use either version of the library. However, OpenText strongly recommends that
you use the library with a retention policy set to SOURCE.

Important! It is a security risk to leave Fortify Java annotations in production code because they
can leak information about potential security problems in the code. OpenText recommends that
you use annotations with the retention policy set to CLASS only for internalanalysis, and never
use them in your application production builds.

This section outlines the annotations available. A sample application is included in the Fortify_SCA_
Samples_<version>.zip archive in the advanced/javaAnnotations directory. A README.txt
file included in the directory describes the sample application, problems that might arise from it, and
how to fix these problems using Fortify Java annotations.

There are two limitations with Fortify Java annotations:

 l Each annotation can specify only one input and/or one output.
 l You can apply only one annotation of each type to the same target.

OpenText provides three main types of annotations:

 l "Dataflow annotations" on the next page
 l "Field and variable annotations" on page 226
 l "Other annotations" on page 227

You also can write rules to support your own custom annotations. Contact Customer Support for more
information.

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 223 of 228

Dataflow annotations
There are four types of Dataflow annotations, similar to Dataflow rules: Source, Sink, Passthrough, and
Validate. All are applied to methods and specify the inputs and/or outputs by parameter name or the
strings this and return. Additionally, you can apply the Dataflow Source and Sink annotations to
the function arguments.

Source annotations

The acceptable values for the annotation parameter are this, return, or a function parameter name.
For example, you can assign taint to an output of the target method.

@FortifyDatabaseSource("return")
String [] loadUserProfile(String userID) {
 ...
}

For example, you can assign taint to an argument of the target method.

void retrieveAuthCode(@FortifyPrivateSource String authCode) {
 ...
}

In addition to specific source annotations, OpenText provides a generic untrusted taint source called
FortifySource.

The following is a complete list of source annotations:

 l FortifySource
 l FortifyDatabaseSource
 l FortifyFileSystemSource
 l FortifyNetworkSource
 l FortifyPCISource
 l FortifyPrivateSource
 l FortifyWebSource

Passthrough annotations

Passthrough annotations transfer any taint from an input to an output of the target method. It can
also assign or remove taint from the output, in the case of FortifyNumberPassthrough and
FortifyNotNumberPassthrough. The acceptable values for the in annotation parameter are this

User Guide
Appendix C: Fortify Java annotations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 224 of 228

or a function parameter name. The acceptable values for the out annotation parameter are this,
return, or a function parameter name.

@FortifyPassthrough(in="a",out="return")
String toLowerCase(String a) {
 ...
}

Use FortifyNumberPassthrough to indicate that the data is purely numeric. Numeric data cannot
cause certain types of issues, such as cross-site scripting, regardless of the source. Using
FortifyNumberPassthrough can reduce false positives of this type. If a program decomposes
character data into a numeric type (int, int[], and so on), you can use FortifyNumberPassthrough.
If a program concatenates numeric data into character or string data, then use
FortifyNotNumberPassthrough.

The following is a complete list of passthrough annotations:

 l FortifyPassthrough
 l FortifyNumberPassthrough
 l FortifyNotNumberPassthrough

Sink annotations

Sink annotations report an issue when taint of the appropriate type reaches an input of the target
method. Acceptable values for the annotation parameter are this or a function parameter name.

@FortifyXSSSink("a")
void printToWebpage(int a) {
 ...
}

You can also apply the annotation to the function argument or the return parameter. In the following
example, an issue is reported when taint reaches the argument a.

void printToWebpage(int b, @FortifyXSSSink String a) {
 ...
}

The following is a complete list of the sink annotations:

 l FortifySink
 l FortifyCommandInjectionSink
 l FortifyPCISink
 l FortifyPrivacySink

User Guide
Appendix C: Fortify Java annotations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 225 of 228

 l FortifySQLSink
 l FortifySystemInfoSink
 l FortifyXSSSink

Validate annotations

Validate annotations remove taint from an output of the target method. Acceptable values for the
annotation parameter are this, return, or a function parameter name.

@FortifyXSSValidate("return")
String xssCleanse(String a) {
 ...
}

The following is a complete list of validate sink annotations:

 l FortifyValidate
 l FortifyCommandInjectionValidate
 l FortifyPCIValidate
 l FortifyPrivacyValidate
 l FortifySQLValidate
 l FortifySystemInfoValidate
 l FortifyXSSValidate

Field and variable annotations
You can apply these annotations to fields and (in most cases) variables.

Password and private annotations

Use password and private annotations to indicate whether the target field or variable is a password or
private data.

@FortifyPassword String x;
@FortifyNotPassword String pass;
@FortifyPrivate String y;
@FortifyNotPrivate String cc;

In the previous example, string x will be identified as a password and checked for privacy violations
and hardcoded passwords. The string pass will not be identified as a password. Without the

User Guide
Appendix C: Fortify Java annotations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 226 of 228

annotation, it might cause false positives. The FortifyPrivate and FortifyNotPrivate
annotations work similarly, only they do not cause privacy violation issues.

Non-negative and non-zero annotations

Use these annotations to indicate disallowed values for the target field or variable.

@FortifyNonNegative int index;
@FortifyNonZero double divisor;

In the previous example, an issue is reported if a negative value is assigned to index or zero is
assigned to divisor.

Other annotations

Check return value annotation

Use the FortifyCheckReturnValue annotation to add a target method to the list of functions that
require a check of the return values.

@FortifyCheckReturnValue
int openFile(String filename) {
 ...
}

Dangerous annotations

With the FortifyDangerous annotation, any use of the target function, field, variable, or class is
reported. Acceptable values for the annotation parameter are CRITICAL, HIGH, MEDIUM, or LOW.
These values indicat how to categorize the issue based on the Fortify Priority Order values).

@FortifyDangerous{"CRITICAL"}
public class DangerousClass {
 @FortifyDangerous{"HIGH"}
 String dangerousField;
 @FortifyDangerous{"LOW"}
 int dangerousMethod() {
 ...
 }
}

User Guide
Appendix C: Fortify Java annotations

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 227 of 228

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email.

Note: If you are experiencing a technical issue with our product, do not email the documentation
team. Instead, contact Customer Support at https://www.microfocus.com/support so they can
assist you.

If an email client is configured on this computer, click the link above to contact the documentation
team and an email window opens with the following information in the subject line:

Feedback on User Guide (Fortify Static Code Analyzer 24.4.0)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to fortifydocteam@opentext.com.

We appreciate your feedback!

OpenText™ Fortify Static Code Analyzer (24.4.0) Page 228 of 228

mailto:fortifydocteam@opentext.com?subject=Feedback on Fortify Static Code Analyzer User Guide (24.4.0)
https://www.microfocus.com/support

	Title page
	Contents
	Preface
	Contacting Customer Support
	For More Information
	About the Documentation Set
	Fortify Product Feature Videos

	Change log
	Chapter 1: Introduction
	Fortify Static Code Analyzer
	About the analyzers

	Licensing
	Renewing an expired license
	Fortify Software Security Content
	Fortify ScanCentral SAST
	Fortify Static Code Analyzer applications and tools
	Sample projects
	Related Documents
	All Products
	Fortify ScanCentral SAST
	Fortify Software Security Center
	Fortify Static Code Analyzer
	Fortify Static Code Analyzer Applications and Tools

	Chapter 2: Installing Fortify Static Code Analyzer
	About installing Fortify Static Code Analyzer
	Installing Fortify Static Code Analyzer
	Installing Fortify Static Code Analyzer silently
	Installing Fortify Static Code Analyzer in text-based mode on non‑Windows pla...
	Manually installing Fortify Software Security Content

	Using Docker to install and run Fortify Static Code Analyzer
	Creating a Dockerfile to install Fortify Static Code Analyzer
	Running the container
	Example Docker run commands for translation and scan

	About upgrading Fortify Static Code Analyzer
	About uninstalling Fortify Static Code Analyzer
	Uninstalling Fortify Static Code Analyzer
	Uninstalling Fortify Static Code Analyzer silently
	Uninstalling Fortify Static Code Analyzer in text-based mode on non-Windows p...

	Post-installation tasks
	Running the post-install tool
	Migrating properties files
	Specifying a locale
	Configuring Fortify Security Content updates
	Configuring the connection to Fortify Software Security Center
	Removing proxy server settings
	Adding trusted certificates

	Chapter 3: Analysis process overview
	Analysis process
	Parallel processing

	Translation phase
	Special considerations for the translation phase

	Mobile build sessions
	Mobile build session version compatibility
	Creating a mobile build session
	Importing a mobile build session

	Analysis phase
	Applying a scan policy to the analysis
	Regular expression analysis
	Higher-Order Analysis

	Translation and analysis phase verification

	Chapter 4: Translating Java code
	Java translation command-line syntax
	Java command-line options
	Java command-line examples

	Handling Java warnings
	Java translation warnings

	Translating Jakarta EE (Java EE) applications
	Translating Java files
	Translating JSP projects, configuration files, and deployment descriptors
	Jakarta EE (Java EE) translation warnings

	Translating Java bytecode
	Troubleshooting JSP translation and analysis issues
	Unable to translate some JSPs
	Increased issues count in JSP-related categories

	Chapter 5: Translating Kotlin code
	Kotlin command-line syntax
	Kotlin command-line options
	Kotlin command-line examples

	Kotlin and Java translation interoperability
	Translating Kotlin scripts

	Chapter 6: Translating Visual Studio projects
	Visual Studio Project translation prerequisites
	Visual Studio Project command-line syntax
	Handling special cases for translating Visual Studio projects
	Running translation from a script
	Translating plain .NET and ASP.NET projects
	Translating C/C++ and Xamarin projects
	Translating projects with settings containing spaces
	Translating a single project from a Visual Studio solution
	Analyzing projects that build multiple executable files

	Alternative ways to translate Visual Studio projects
	Alternative translation options for Visual Studio solutions
	Translating without explicitly running Fortify Static Code Analyzer

	Chapter 7: Translating C and C++ code
	C and C++ Code translation prerequisites
	C and C++ command-line syntax
	Scanning pre-processed C and C++ code
	C/C++ Precompiled Header Files

	Chapter 8: Translating JavaScript and TypeScript code
	Translating pure JavaScript projects
	Excluding dependencies
	Managing issue detection in NPM dependencies
	Examples of excluding NPM dependencies

	Translating JavaScript projects with HTML files
	Including external JavaScript or HTML in the translation

	Chapter 9: Translating Python code
	Python translation command-line syntax
	Python command-line options
	Python command-line examples

	Translating Python in a virtual environment
	Python virtual environment example
	Conda environment example

	Including imported modules and packages
	Including namespace packages
	Translating Django and Flask

	Chapter 10: Translating code for mobile platforms
	Translating Apple iOS projects
	iOS project translation prerequisites
	iOS code analysis command-line syntax

	Translating Android projects
	Android project translation prerequisites
	Android code analysis command-line syntax
	Filtering issues detected in Android layout files

	Chapter 11: Translating Go code
	Go command-line syntax
	Go command-line options
	Including custom Go build tags
	Resolving dependencies

	Chapter 12: Translating Dart and Flutter code
	Dart and Flutter translation prerequisites
	Dart and Flutter command-line syntax
	Dart and Flutter command-line examples

	Chapter 13: Translating Ruby code
	Ruby command-line syntax
	Ruby command-line options

	Adding libraries
	Adding gem paths

	Chapter 14: Translating COBOL code
	Preparing COBOL source and copybook files for translation
	COBOL command-line syntax
	Translating COBOL source files without file extensions
	Translating COBOL source files with arbitrary file extensions
	COBOL command-line options

	Using Legacy COBOL translation
	Legacy COBOL translation command-line options

	Chapter 15: Translating Salesforce Apex and Visualforce code
	Apex and Visualforce translation prerequisites
	Apex and Visualforce command-line syntax

	Chapter 16: Translating other languages and configurations
	Analyzing Solidity code
	Importing dependencies
	Managing compiler versions

	Translating PHP code
	PHP command-line options

	Translating ABAP code
	INCLUDE processing
	Importing the transport request
	Adding Fortify Static Code Analyzer to your Favorites list
	Running the Fortify ABAP Extractor
	Uninstalling the Fortify ABAP Extractor

	Translating Flex and ActionScript
	Flex and ActionScript command-line options
	ActionScript command-line examples
	Handling resolution warnings
	ActionScript warnings

	Translating ColdFusion code
	ColdFusion command-line syntax
	ColdFusion (CFML) command-line options

	Analyzing SQL
	PL/SQL command-line example
	T-SQL command-line example

	Translating Scala code
	Translating Infrastructure as Code (IaC)
	ARM translation command-line examples
	Bicep translation command-line examples
	AWS CloudFormation translation command-line examples
	HCL translation command-line examples

	Translating JSON
	Translating YAML
	Translating Dockerfiles
	Translating ASP/VBScript virtual roots
	Classic ASP command-line example
	VBScript command-line example

	Chapter 17: Integrating the analysis into a build
	Build integration
	Modifying a build script to start the analysis
	Integrating with Ant
	Integrating with Bazel
	Bazel build integration examples

	Integrating with CMake
	Integrating with Gradle
	Using Gradle integration
	Gradle integration examples

	Troubleshooting Gradle integration
	Using the Gradle plugin
	Working with Java or Kotlin projects that have subprojects

	Integrating with Maven
	Installing and updating the Fortify Maven Plugin
	Testing the Fortify Maven Plugin installation
	Using the Fortify Maven Plugin

	Chapter 18: Command-line interface
	Translation options
	Analysis options
	Output options
	Other options
	Directives
	LIM license directives

	Specifying files and directories

	Chapter 19: Command-line tools
	About updating Fortify Software Security Content
	Updating Fortify Software Security Content
	fortifyupdate command-line options

	Checking the scan status with SCAState
	SCAState command-line options

	Chapter 20: Improving performance
	Antivirus software
	Hardware considerations
	Sample scans
	Tuning options
	Quick scan
	Limiters
	Using quick scan and full scan

	Configuring scan speed with speed dial
	Breaking down codebases
	Limiting analyzers and languages
	Disabling analyzers
	Disabling languages

	Optimizing FPR files
	Using filter files
	Using filter sets
	Excluding source code from the FPR
	Reducing the FPR file size
	Opening large FPR files

	Monitoring long running scans
	Using the SCAState tool
	Using JMX tools
	Using JConsole
	Using Java VisualVM

	Chapter 21: Troubleshooting
	Exit codes
	Memory tuning
	Java heap exhaustion
	Native heap exhaustion
	Stack overflow

	Scanning complex functions
	Dataflow Analyzer limiters
	Control Flow and Null Pointer analyzer limiters

	Issue non-determinism
	Locating the log files
	Configuring log files
	Understanding log levels

	Reporting issues and requesting enhancements

	Appendix A: Filtering the analysis
	Excluding issues with filter files
	Filter file example

	Using filter sets to exclude issues

	Appendix B: Configuration options
	Properties files
	Properties file format
	Precedence of setting properties

	fortify-sca.properties
	Translation and analysis phase properties
	Regex analysis properties
	LIM license properties
	Rule properties
	Java and Kotlin properties
	Visual Studio and MSBuild project properties
	JavaScript and TypeScript properties
	Python properties
	Go properties
	Ruby properties
	COBOL properties
	PHP properties
	ABAP properties
	Flex and ActionScript properties
	ColdFusion (CFML) properties
	SQL properties
	Output properties
	Mobile build session (MBS) properties
	Proxy properties
	Logging properties
	Debug properties

	fortify-sca-quickscan.properties
	fortify-rules.properties

	Appendix C: Fortify Java annotations
	Dataflow annotations
	Source annotations
	Passthrough annotations
	Sink annotations
	Validate annotations

	Field and variable annotations
	Password and private annotations
	Non-negative and non-zero annotations

	Other annotations
	Check return value annotation
	Dangerous annotations

	Send Documentation Feedback

