CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CS

COBOL-IT® Compiler Suite Enterprise Edition

Compiler & Runtime Reference Manual
Version 4.1

@ COBOLT Page 1

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

Acknowledgment

This documentation is derived from COBOL-IT Source code, parts of which are derived from
OpenCOBOL.

Copyright (C) 2002-2007 Keisuke Nishida
Copyright (C) 2007 Roger While
Copyright (C) 2008-2020 COBOL-IT

In 2008, COBOL-IT forked its own compiler branch, with the intention of developing a fully
featured product and offering professional support to the COBOL user industry.

Permissin is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions, except that this permission notice may be stated in a
translation approved by the Free Software Foundation.

Conventions used in the General Format diagrams:
Brackets [] identify syntax elements that are supported but not required.

Curly Braces{ } identify alternative syntax elements. Among syntax elements described
within stacked curly braces, only one of the entries may be selected.

Ellipses (...) indicate (optional) repetition. If the syntax element is a required element, then
it will be surrounded by curly braces.

Copyright 2008-2020 COBOL-IT S.A.R.L. All rights reserved. Reproduction of
this document in whole or in part, for any purpose, without COBOL-IT's
express written consent is forbidden.

COBOL-IT® Developer Studio, COBOL-IT® Sort (CitSORT®), COBOL-IT® MF Command Line Emulator
(CItEMUL®), COBOL-IT® Lib Optimizer are registered trademarks of COBOL-IT, S.A.R.L All rights reserved.

The CitSQL® family: COBOL-IT® Precompiler for MySQL, COBOL-IT® Precompiler for PostgreSQL. COBOL-IT®
Precompiler for Microsoft SQL Server, are registered trademarks of COBOL-IT. All rights reserved.

@ COBOLT Page 2

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COBOL-IT® Precompiler for MySQL, COBOL-IT® Precompiler for PostgreSQL. COBOL-IT® Precompiler for
Microsoft SQL Server are licensed by COBOL-IT under exclusive license with the Raincode Company.

Third-Party software components embedded in the SOFTWARE and Services and submitted
to specific licenses:

VBISAM

* Copyright (C) 2003 Trevor van Bremen

* Copyright (C) 2008-2020 COBOL-IT

* License: LGPL

GMP (GNU Multiprecision Library)
* Copyright 1991, 1996, 1999, 2000, 2007 Free Software Foundation, Inc.
* License: LGPL

GNU LIBICONV
The libiconv libraries and their header files are under LGPL.

Microsoft and Windows are registered trademarks of the Microsoft Corporation. UNIX is a
registered trademark of the Open Group in the United States and other countries. Other brand and
product names are trademarks or registered trademarks of the holders of those trademarks.

Contact Information:

The Lawn

22-30 Old Bath Road

Newbury, Berkshire, RG14 1QN
United Kingdom

Tel: +44-0-1635-565-200

@ COBOLT Page 3

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

ACKNOWLEDGMENT ..o e e e e e e e e e e e eaa e e eaas 2
COMPILER & RUNTIME REFERENCE oo 19
The COBOL COMPIIEE: CODC ...vveiiie ittt te st e te s e e et e besae st e s neenee e ensestesaeareaneaneas 19
INFOIMALIONAL FIAGS ... vveviieiie ittt et e e e e te s te s tesbeeReeReess e s e e se e besbe et e aseaneeneeeeseeseenrenneaneas 19
—Check-codepage <COUEPAGE-IU>ciiiieieiiite sttt e s e e e e e e st e bestesteeseeneeeeseenbesrearenneans 19
11| T OSSOSO TP TP U PP POURUTPOPRPO 20
IISE-COUBPAGE ...ttt bbb bt b et bbb bt bbbt E e b b e bbb e e Rt e bR bRt bbb r st nr s 20
e LS] Y[R PSRRI 20
e LS 10Ty aTo) TSRS PRRRPRR 20
e LS 1St V=T PRSPPI 20
V=] 651 0 TN USSP 20
Y =TT Lo = o T3S 20
e TSRO 20
RO R PP UTR PP PPPPP 21
Eota Lo (=T o F: 1o TR oo Lo [T o= Vo[- o ST 21
B oto] 01] R L 11 =SSR 21
SCONSTANT "KEYTVAIUB™ ...ttt e et e st e te e be e s e e s e e sRe e s teesaeenteeneeeseeeseeste e teesteeneesneeaneenneennis 21
S0 (=] 11 o [OOSR PR PP ORUPRPRP 21
—debugdb [=<DEDUGDB-NAMES]... ..ot bbb bbb bbbttt b 22
SUMIP-CONTIG 1ttt bbb b bt b bbbt b bbbt bbb bt e bt b et b et b 22
=] £ R 1= OSSPSR 22
X R=) 1=] TS [0 DS PRR 22
L Lo TS TT TP PT PR P TP VRTURPRORRON 23
LIPSO ST T TP U TP TP PRVRTURURORON 23
o JF ST PP TOPRPROP 23
Lo R o oo =T g T 4= ST 23
e 1R 1 >TSS 23
[T To e [Tt o o] fo T =V 15 | SRS 23
L1 P T OO P TP PP PPRTPPPOPRTPP 23
-MAKESYN "OlAVAIUETNEWVAIUE" ...ttt bbb bbbt 23
20 SFIIES | QAII> bbbt bbbt bbbt bbbt bbbt bbbttt 24
-preprocessS=<CMD> [INPUL FITE]oriiiiee bbbt 24
AV o = T o [TSRO 24
-SOUICE-COAEPAYE <COUBPAGE-IU>viiitiiiiictiitet ettt sttt sttt e bt e st e e e s e st e s et e s beseeseebe s essetenneneene e 24
(0 0 [Lol SO PT PR RUU T PRVRTURURORON 25
SSYSINZKINPUE FILES ..ot e et e s te e s te e s te e beeateeabesteeste e beesteaneeaneesreeareennis 25
—sysout=<output file> [,S/L [,MiN [MaX]]] .. c.eeoeeieiieiieiieie ettt ettt 25
e 1 Lo o 1 USSR 26
SUSE-EXEFN SINAIMIES ...ttt b bbbt h et e et e e bt bt s bt bt bt e bt e s e e b et sbesbe b eneas 27
SUSE-EXESIN SINAIMEDS ...ttt ettt e st e et e e be e s tees e e eRe e ebeesaeenbeemeeemeeeaeenteenbeenteeneesreeaneeaneennis 27
1 ettt ettt te e et on et Rt e Rt ekt eateeR b e oA et R eeeE e e ARt e Rt oA Rt eR et eR £ e ARt e Rt oA Eeen et eReeeReeeEe e ARt e EeenteeReeeReeaReenEeenteeneeareeareenneenis 27
SRS RRS 27
o [0 B 0T (=1 D o 1 TR 27
O RESOTSRTRS 28
e IR) T SRS 28
USSR 28
TSR 28
-1 <path>[,ext1,ext2,..extn][@<LibName>] | <command-file>cccoiiiiiiiiiiii e 29
e IR o [T 1=To1 (0] VSO TT PRSPPI 29
LS] =TSSR 29
Yl RS - U [=] T TS PO U PP U TP TOPPUPT 29
O T LT © 17RO 29
R R [T7=T1 (0] 2RSSR 30
ORI 30
A Lo O O o] ST TP ST PP P RSP PTPRPRPRPRORON 30

@ COBOLIT —

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Gu
Gu
Gu

Gu
Co

AT I L T o OSSPSR 30
idelines for Searching and Locating COPY FilEScuiiiiiiiiiiie st 31
idelines for enforcing bouNdS-ChECKINGccviiiiiiiicc e st re e 34
idelines for optimizing PEIrfOrMANCEccoiiiiie bbbt e s 35
2O COMPIIET FIAGS. ...ttt bbbt bbb bbb bbbt bbbt bt bbbttt b e 35
Optimizations enabled with the —O comMPiIler flag..........ccoiiiiiiii e 35
(010 T O o IS 174 S = I 2 C R 36
THE CALL SEAIEMENToiiiee ittt sttt s et e st e ke b e bt e b e eme e st e e e b e sbeebeebeeneeseene et sbesbesneereenes 37
The PERFORM SEAIEMENT......cuiiiiieieiieiee ittt sttt a ettt eese e st et et e sbeebeebeen e et enbe st sbesbesneereenes 37
RESOIVING FIlE INAMES ...ttt e et st eese e s et e e st e st e s beeRe e s e et e eeseesbesteaneeseenseseeneenrenneaneas 37
Removing debug-oriented COMPIIEr TIAgSccviiiiiiceec e e eneas 38
Optimizing compiler flags Set by defaUltcvoieieici e enes 39
idelines fOr USE Of -PrePrOCESST=CMU.......civiiie e iiiie ettt sttt st se e e e st e bestesteere e st e eenteneesnesreaneans 39
g L1 L=T e B - T S 41
A) o SR 41
SFACCEPI-WITN-AULO ...t bbb bbb e bbb bbb bbb 41
SFACCEPI-WITN-UPTALE ...ttt bbb bbb bbb bbb bt 42
SFAIIGN=-8. bbb R h £ R R R b bt bRt b bt nn et 42
SFAII-EXEEINAI-CAILL.......eoe ettt bR R re Rt e et et renre e eneas 42
SFAIT-EXEEINAISTINK ..ottt bR et r e n et et E e Re R e Re e Rt e et e tenreerenreeneas 42
B L Lo Lo BT U ET=To B [] o =SSP 42
SFASAD0-TIKE ...t b bR Rt eE R R Rt R b e bt e b bbbt eneas 42
B - LU (0 [T o)Y] o ST 43
SFAULOIOCK ...ttt bbbt bbb e et Rt b e E e Rt et n e e e bbb bt eneas 43
B - LU (S o LY ST 43
00 o OO RRTTOSR R RRT 43
-TDINAry-DYIEOrder-Dig-BNUIAN ..o 43
TDINAIY-DYLE-0ITEI-NALIVEoieite bbbttt bbb e e 43
10T ET] o | AT OSSOSO P RO PP TOURTUPRPRP 43
STDIN-0PE-SIFICT .t bbb bbb bbb 43
—TCAIT-COMPS-8S-COMP ...ttt bbbt bbb bbbt bbb bbb bbbt bbb 44
0= UL 01T or: T PSPPSR 44
B (0% 11 o] o] ST 44
B (o 1L RN o oL oF: -SSR 44
B (o =T LT T T o S RT 44
LG 1016 B 1 T OSSO U RO U TP PRUR PRI 45
LR 1= T 1o SO SOTU T RTU RSSO T PURURURORRON 45
B (0] 1= 03 (00) ST 45
0] 0SSOSR 45
STOMIP-TINIING .t bbb bbb e bbb bbbt 45
01001 0 o] o) SO OO ORUTPRTRP 45
010 1o 13T 45
SFCOMPAL-TISPIAY-TO-TNT ..ot bbb bbb bbb bbb et 46
B (o0 0] TV =] 4 ST 46
B (o0 0] oTU Y G o] 1 (U oSSR 46
SFCONEINUATION-TING ...t b e b bbbt b e ee e bt s bt bt b e e bt e e e b e besbesbesbeeneas 46
B (oo o)Vt [=] £ TU] |t L= To [T g o SRS 46
B (o0 0Vt ol =10 o Tot SRS 46
L (010])V 1 T SO ST 47
STCOPY-PANIAI-TEPIACE ...t b bbbt 47
L 011 PSSR 47
TCtrEE-TIRIU-NUMDEIING ...ttt bbbttt n bbb s 47
-Fetree-NO-TU-QUAITTICALION. ..o bbbttt ne e 47
(o101 T T Tod 0o [OSSPSR 47
SFABBUGAD ..o b bR b e Rt bbb et et e 48
SFBIUG-EXEC. .ttt bbbt E Rt R e e bbb Rt Rt bt Rt e b e bbb R eneas 48
SFAEDUGGING-TINE ... ettt bbbttt e b e e bt bt bbb e n e e st e b e bbb neeneas 48
ST OBIUG-PAISET ...ttt bbbt bRt Rt Rt et eR b e R bt R e R bbb e bbb neeneas 48

COBOLIT s

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

0 [=ToT T g o] o) 4 - S SSRRO 48
0 TEST: T OO 48
0 5T 0] =120 [0TSR 48
STAISPIAY-TDIM ...t b bbb bbbt b bbb 49
L0 AT Zot o =T PRSPPI 49
SFEDCAIC-CNAISEL ... ettt bbbt b et et e b e et b e bRt Re Rt e ee et e beeaeereeneeneas 49
SFEMUIALE-VIMS ..ottt ettt bttt E e e bt et e s e et e eb e e ke sbeebeebeenbeee et e benbeereaneeneas 49
SFEXCIUSIVEIOCK ...ttt et bttt b e e bt et e et e eb e e ke s beeb e e beeneeee st e nbesbeeteaneaneas 49
o) oot 0T PRSPPI 49
Lo L a0 R To ol VUSSR 49
Lo Lo Bt Yo T Tod 11T PSSP 50
S AST- IGUIALIVE-MOVE ... ettt e R e s e et e e e st e besbeeReeRe e st e e e e e beneeareaneeneas 50
151 T o ST 50
(070 L =T OSSPSR 50
e (0 [0 LT OO 51
LR T (OB (=] o | PRSPPI 51
STTOIU-COPY-TOWET ... b bbb bbbt bbb bbbt bbb bbb 52
TT O COPY-UPPET .ttt bbbt bbb bbb R e b bt b bbb ne b 52
1 0]] OSSO OO T RO TOURUTPRPRP 52
LR TG T BT U o L WSROI 52
SFFUNCHIONS-A11 ...ttt bbbt bt bbb e b e eb e bt s bt eb e e bt e n b e b e b e besbeeb e s bt eneas 52
SFFUNCHIONS-AH-TNIIINSIC ..ot b ettt b e bt b e s bt bt bt e bt et e e et nbesbesbeeneas 52
0 ST 52
0 oo o1 o S PTS 52
B 0o o) o ISP 52
B 0 oo o o ST 53
STGCOS-MOUE ...t e bbb bt b bbb R R bR b b et bbb et 53
TGN XD bbb E bR bR bR R b b bRt b bt ne et 53
STGIODAI-TYPEUET ...ttt b e bbb bttt 53
SFIDM-TISTING-MACTO ...t b bbb bbbt b bbbt b bt b e 53
SFIOM-MEINTIAME ..ottt e et e st et e s beebeereeneeree st e eesrenteareeneas 53
TS NIC bbb bbb bR b b bRt bbbt 53
B] 0] o] 1] ol RS RT 53
SFINCIUTE-MAIN ...ttt b e b bbbt bt e bt e R e e b e eb e b e sb e eb e e bt eb b e e e b e besbeebeebeeneas 53
B] Lol aa] o] LC] (T o1l o SRS 54
B] L0 Lot o] o T4 12 ST 54
LA 1= o RO SRTTRRR 55
B 1] VLA E= =0) OSSR 55
STKEEP-COPY-SLAIEMENT ...ttt bbb bbbt b bbbt b bbbttt 55
LT o] (B (o 1T 4 OO TTTROTRTTTOORTTPRTRP 55
STKBEPD-UNUSEU. ...t b bbb bbb bbbt bbbt bbb bbb et b ettt 55
STHINE-SEO=T0S ...ttt bbb bR b h e E b bR bbbt bbbttt 55
STHINKEONTY bbb bbb bbb b bbb e bbb bbbt 55
B 1T T o] (o= ST 55
B [oT0) 2o 4] 1 1T 1 SRS 55
B e o= T o v o TSRS 56
L1 UL SO PO PR U TP URURURORON 56
B L= o o =Tt SRS 56
SFMAINTIAME-VD Lttt bbbttt et e e bt bt s be e bt e b e e st e eeeb e besbesbesneeneas 56
STMAKESYN-PAICR-PIEPIOCESS. ...ttt b bbb bbb ettt 56
0= LU= L oo USRS 56
110110 T PSRRI 56
0107000 00T PSRRI 56
SFMIF-COMPAL-PAISEL ...ttt bbbt bt b et b bbb bbb e st et 56
] o (g B ot T =T B o T TR 56
SFMT-FHE-0PLIONAL ...ttt bttt e b e b e bbbt b e bt e e e b et b sbesneeneas 57
L1010 | SO R OSSPSR 57
- NOSTNUMCOMPAIE ...t bbbttt e b e e b e b e s b bt e b e e bt e s e et e besbesbesneeneas 57

COBOLIT Pagea

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

e L1 T OO RRTRRR 57
EMFoEIATIVETIIE ...t b et n et bbb e 57
LA [OL [V ToR T T o 1 YOS 58
ST NIOTUIE-UPPEICASE ...t bbbt bbb bbb bbbt e bbbt b ettt 58
L LR[LY e 1L E=To L1 =T RSSO 58
STNI0-CBI-BITOM-PIOC ...t bbbt b bbb bbbt bbbttt b bbbt b s 58
STN0-TEAIPALN ... bbb e b et bbbt 58
T IOSE I bbb bR E R R R R R bR R b b e Rt bbbt et 58
L1101 0 oSSR SST TP 58
L1 o T o OSSPSR 58
L1l oo] o -SSP 58
SFNUMVAI-VAIIIALE ...ttt bbbttt b et b et e n et nb e b s 58
0] 0 o] PSSRSO 59
e 00 (o] [T PRSPPI 59
0 01T 1 T4= 4401V TSP SSSRRI 59
STOPHIMIZE-MOVE-CAIL. ..ot bbbttt bbbttt e ettt 59
STOPHEIONAI-TIIE ..t e bbb bbb bbb bbb bbbt 59
ST DBITOIIN-0SVS ...ttt bbbt b bt b bbb bbb e b et b bt b et 59
T DEPIO UL TINE .t b et bbb bbb bbb bbb bbb bbbt 60
STDIINEEI-CIIT .t bbb bbbt bbbt bbb bbbt b et 61
1L (0 1 T ST 61
BT L (0 (T 111 & T = SRS 61
BT\) VY7 |- SRR 61
-fraw-picO-display (INTerNal USE ONIY)oovviiiee ettt e ae e e e e reenas 61
B 2216 B 1] (o ot 0] Y2 SRR 61
B 2216 Y1 =T ST 61
=101 000 (s PSPPSR 61
=101 0100 (Y PSPPSR 61
TrECOIT-OEPENAING-IS0 ...ttt bbb bbbkt b bbbt b bbb nn et be s 62
STTEOION0 ... E b E b e E bR bR R R bbbt e Rt b bt b e b 62
Trelativefile-DIgENMIAN.co i bbbttt 62
TTEPIACE-BUUITIVEo b bbb bbb bbb bbb 62
B 2001 T) USRS 62
B 01U oSSR 62
B LT LT o 01 (Lot TSRS 62
B TV 1o [To] o SR 62
B TV 1o [T Vo] o] T oL ST 63
B s L 1 01 T 1= SRS 63
STSBQUENTIAI-TINE. ...ttt bbb bbb bbbt b bbbt 63
e 1T LE T 1L 10 (o] (oo SRS 63
SFSNAE-AI1-HETAUIL.ottt e e e st et e saeeReere e Rt e e et e eeneeereeneeneas 63
SFSNArE-Al1-MANUIOCK ...ttt e e e st et e saesteeseene e e et e eeneeeneaneenens 64
e YT AT o] OO OUR TR URUTRTRP 64
B [0 =T ool oSSR 64
511 1 (=T Uo L oSSR PSRN 65
LT[0 L= 0= LSRR 65
B] o[- Vol ST 65
SFSOUICE=IOCALION ...t bbbt bttt b e eb e bt s bt bt e bt e bt e s e e nb e besbeebesbeeneas 65
SFSPIIE-AEDUG-MAIK. ... ettt b e bbbt bt e et e e e bt be b e sbesneeneas 65
51 0 Lo 1= ol PSRRI 65
51 X ot o7 || PSSR 65
TS CE-COMPAIE-TOW......ee bbb bt bbbt b bbbt n ettt b ne b s 65
S [0 =Tot 0T (o o]) - 1[I SSSRRS 66
TS NEAX-ONIY bbbt bbb bR R b e R R R bbbt b e n et e 66
LA T0 Y - SRSRS 66
L= (oL SO U RS TTPRTRRURRO 66
L= (oL £SO R OSSP PURR PRSI 66
SFEFACE-UPON-SYSOUL ...ttt bbbt et b bbbt b e e bt e bt e Rt e b e eb e b e ebeeb e e b e ens e s b e b e sbesbeebesneeneas 66

@|/COBOLT .

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

e LU To1=T: | OO 67
SFtrap-UNNANAIE-EXCEPLIONottt e e et e st et e s beeteereentesae st e s eesresrenneeneas 67
L R0 R 1T o USSR 67
STUNSEIING-USE-MNOVE ...t bbbt b bbbt b bbbt e bt b et b e bt bbb 68

e 018 TR 68
SFULFLBIE .ttt h ettt R e Rt Ee Rt Rt Rt et R e b e eRe Rt e Rt en e e te et e beeeeereeneeneas 68
T Lo L E= o (=] o o BSOSO PP OO TT PO PP 68
STVAITHAEE-ONIY ... bbbt bt b bbbt b bbbt bttt b et b 69
STVAIUE-OF-T0-PIIOMTLY ..t b bbb bbbt et b ettt 69
STVAIUB-SIZE-IS-AUL0vee ettt bbbt b etttk e bbbt bt n bt n bt neere e 69

e V7013 Ly OSSPSR 69
STVMIS-EITOT-NANAIET ...ttt bbbttt b bbb et et b st e e s e et st ne b s 69

B DO LS =LY = 1 SRS 69
Guidelines for handling Linkage SECtiON PAramMELEIScovevveiereiiiieeieiesiesese s e seeae et e seesre e e eseeeessesresresresnnanens 69
Guidelines for modifying default handling of the LOCK MODEccccooiiiiiiiiie e 70
Guidelings fOr USe OF CHECKPOINTSc.iiiiieiiitiiiee et b bbbt b et b bt b n e nrns 70
GUIAENES TOF USE OF PrOTIIEI.......iie ettt st et e e s e e e benbesaesbesneaneas 71
Dumping Profiling Data at the ModUuIe LEVEL ..o 71
Using the PRAGMA statement to produce Profiling REPOIS..........coiiiiiiiiiiiiiicnes e 72
Info profiling debugging COMMENT............coiiiiiii bbb 72
Attaching a program compiled with -fprofiling t0 @ runNiNg ProCeSSccveiiiieiie s 73
Guidelines for thread-Safe PrOGIAMS..........cviiie et e st e s te e be e beeseesreesreesreeaaeesteenteenseaneennee e 73
L0010]| L= YA - T OSSP 74
L U OO PR UT PR 75
AT L OO 75
FWVAICRAIC ..ttt bt bbbt h et b E e bR e R R e oA e bR R e Rt R e e Rt Rt e b et e bbbt eneas 75
1T/ oo |« TR RSR TR 75
SVVCAIT-PANAMS ...ttt b bbb b bt b bbb b bR b bR b bt bbb et b 75
SVVCONSTANT ...ttt h e e a bt e s h bt e e a b e e oAbt e e Rt e e e R bt e e R b e e oAbt e e R e e e R bt e e Re e b et e be e br e e ne e res 75
SWIMPIICTE-OETING ...t b bbb bbb b bbbttt b bt be s 75
VAT (0] 1 =LA T o PSPPSR 75
SV TINKBGE ..ttt bt bt bt bbb bR h R R Rk E £ E b bR R b b h b e b 75
FWVODSOIBLE ... bbbttt b bbbt b bt e et h b bR et Rt e bbb b bt eneas 75
VAT o L= Lo SRS 75
AT L= T T L To] o SO TP U RSP TT PRSPPI 75
VAT Sy T o 1Y 1o SRS 75
VAT ST o o[- o SRS 75
AT (=] T AT Lo] SO SO U RSP TP VRURURORON 75
SVVETUNCALE ...ttt h e e a e e s h bt e e a b e e oAbt e e ab e e oAbt eeab e e eh bt e e mb e e e s bt e e bt e et e e e be e e breene e beas 76
VA LA £ Ut g o OSSPSR 76
Compiler CoNFIGUIALION FIlE.........oiiiiii bbbttt b bbbt b e b 77
TT-0PELYES/NOT ..ottt b bbb b h kb bR R R E R b bR bbbt b bt b et 78
accept-but-ignore-compB-SigNEA:[YES/NOT.......cueuiiiiiiiriiieirie e bbbt e 78
oot or= o TV R TU Y (ol /=T 1) PSS 78
ACCEPL-WItN-UPUALE: [YES/NO] ... ve ittt ettt et e s e e bt e st e e be e be e s beesaesneesaeeabeeteenseenbensee e 78

e Lo TS V=T 11) [SRS 78

Eo B T T o 1 B V=T T) PSS 79
All-XEEINAI-TINKIIYES/NO] ... bbbttt e e bbb e bt ebe e et et bt st beebeenes 79
Al10C-UNUSEd-TINKAGE: [YES/NOT ...ttt bttt bbbt be et et et sb e besbeebeens 79
ASA00-TTKE I[YES/NOT ...ttt b bbbt E bRt R bR bbbt n b nenn s 79
assign-clause: [COBOL2002 / mf /ibm / eXternal J......coooveiriiiiieerre e 79
AULO-TNITIAIIZEI[YES/NOT ..ttt bbb bbbt b bbbt b et b ettt een et 80
AULO-1080-SYMD:[YES/NO] ..ttt bbbtk bbbt bbbttt nenn s 80

T 0] (oot o] LR o OO OO STTTSURTRPR 80
oo o Y2 o OSSOSO PRPTSPRPPRPRR 80

(oI a BT o] o] o | YZ=ET 4 To] OSSR S T PRSP 80

(o TaRTo] o B g T o] V72T o) OSSPSR UR PP URRI 80

@|COBOUIT s

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

binary-byteorder: Native / DIg-EN0IANccoiiiiiiiec et sr e e enes 81
DINAIY-SIZE: 2-4-8] 1-2-4-8] 1--8....ue st eeeeeie ettt st et eese e s et e tesaesbeateene e e et e eentenrenneaneas 81
o T R LY (0 Tz L= =T 1L SO RS 81
Ditfield-first-i1S-1SD: [YES/NOTviieeiiieiieee bbb 82
Call-COMPS5-8S-COMP:LYES/NO] ..ttt b bbbt bbbt bbbttt b et 82
Call-IOWEICASE: [YBS/NO. ..ttt bbbt b bbbt bbbt b bbb bttt 82
CAII-OPE: [YES/NO] .ttt bbb bbbt b bbbt E b bR bbbt b et et 82
Call-UPPEICASE: [YES/NO]. . ettt ettt bbb bbb bbbt bbbt b bbbt 82
CArALTA-SIGN: [YES/NO T ettt b bbbt bbb bbb bbb bbbt b b ettt 83
LOod 110 B [T T /=17 410 USSP 83
C-data-init:[yes/N0] [INTErNAL USE ONIY J.ovviiiiieieicie ettt e e e e e e e eesresreaneeneas 83
Check-1iNKage-boUNd: [YES/NOT ... cuiiiie ittt e e st et e s eeeteereeneeae st e eesaesresneeneas 83
(o0 Tod g0 Lo L Rl V=17 Lo OSSR 83
(o T =571 PSSRSO 83
CMP-INTINEI[YES/N0] ¢ttt te st ete e st e e et et e s eesbeaEeeReeReen e e s e e ae et e seeeReeReensesee e e eenreareaneeneas 83
(0T oo o1 Y727 4o) TSSO TP SO PP OT U TS POURUTPRTRPO 84
CODOI-TINES: [YES/NOT ... ettt bbb bbb bbbt b bbbt bbbt b et b et b 84
(01T T o 1o e w00 LT T o[- o R ROR R 84
compb5-byteorder: [NAtiVe/DIg-ENAIANT ..ot 84
comPAt-diSplay-t0-INEIYES/NO]c.eiviieiiiiiec bbb bbbt 84
(o] g o1 F=Xt e o [o Y=Ly) ST 84
(o0 g o101 T o] g B Y251 1 [SRS 84
(o] g o1UL T o B € W ol Y=Y o) SRS 85
(o0 1Yo LR Ry YA 1] L=l ST Lo SRS 85
CONSEANTE: "KEYTVAIUB"ottt e st et et e e s e e s e e s te e s teesteenteeneeeaeenseente e teesteaseeaneeaneenneenns 85
CONMEINUALION-TING ..ot r et r et r et nn e nenn e nn s 85
COPY-Aefault-1eading:[YES/NO]c it bbbt 85
COPY-EXEC-TEPIACELYES/NO] ...ttt b et bbb bbbt b bbbt bttt b bbbt 86
COPY-PArtial-rePIACEI[YESINOT ..ottt b bbbt 86
crtstatus-map:[Cit-Value] [USEr-VAIUE]coviiriiiiiiiiiie et 86
(o1 CTo =T a0] OSSO TSP U PP TOORUTPRPRP 87
ctree-field-NUMDBEIING: [YES/NOT. ..ot bbbttt bbb e 87
ctree-no-full-qualifiCation: [YES/NO]cc.ecviiiiie ettt e e te e te e e e nre e 87
(o0 o LTt T od (0o Rl Y=L T) SRS 88
(0oL Lot T o TSR 101 (=T 1= USSP 88
(0 [=Y o100 Eret (=Tl 2T Lo [SR 88
(o [=Y o1 oo TN aTo Bl FTa L= 2T Lo ST 89
(o [=Y o1 o R o= V=) ol Y= o ST 89
AECIMAl-OPLIMIZEI[YES/NOT. ..ttt bttt b bbbt bbbt bbb bbbt 89
AefaUItDYLEI[ANY INTEOEIT ...ttt bbb bbb bbbttt 89
AEfAUICAIT:[ANY INTEIEIT ..ottt bbb bbbt b bttt bbbttt be s 89
(o T 0B =T a0] OO OO URTRRRRTTOORTTPRTRP 90
AISPIAY-UOS:[YES/NOT ...ttt bbb bbbt bbb bbbt bbbt bbbt 90
(o LTy o] E YT o g VLT 1 SRS 90
displaynumeric-edited-mf50: [YES/NO] ...cvviiiiie ittt et ra e nreens 90
(o Ty o] ENY 0T te ol) o Y=Y o) SRS 90
(o LAVl T S Y=Y (o) ST 91
LYo Lo ool TV =) ol 2T Lo ST 91
EMUIALE-VIMS [YBS/NO] ..ottt ettt bbbttt b bt bt bt b e e Rt e R e e b et e sbeeb e e bt eb e e bt et et sbesbeebeebeenes 91
EXCEPLION CHBCKING ...ttt b bbbtk b et b e bbbttt s bt e b et e en et 92
EXCIUSIVEIOCK: [YES/NOT ... vtttk et b bbbt b bbbt b ettt e bt 95
EXEC-CNECK: [YBS/NO]. . ettt b bbbt s b bbb st bt bt e bt b ettt b et e b et e ne et 95
EXIt-Program-fOrCEU: [YES/N0] .. .ottt et b et bbbt bbb n e 95
EXPANT-EXEC-COPY:IYESINO] -ttt bbbtk b et b e bbbttt ettt e e 95
eXPANT-SAI-INCIUAEI[YES/NOT ..ottt bbbttt bbb een et 96
external-link: <FUNCLION NAIMES ...ttt bbbt et e b et sb et beebeens 96
eXterNal-MapPPING:[YES/NO] .. .o ettt b e bbbt a et e b bbbt h et b e bbb e b nes 96
FaSt-FIGQUrAtIVE-MOVE: [YBS/NOT ...ttt bbbttt bbbt bt bt e e b et sb e besbeebeens 96

@

COBOLIT s

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Lo10 L=To R YY) S 96
L0 (o1 LoV =T T) S 97
LR U (O Ry T gt =2) P 97
Filename-mMapPING:[YES/NO] ..ot b bbbt 97
First-talb-Width:[ANY TNTEGETT ...oviiei bbb bbbt bbbttt bbb 97
flat-extfh: SDRIVER NAMES ..ottt bbbkt b et b ket st b e e bt nnabenas 97
flat-extfh-lib: <library to use for this eXtfh AriVEr>...........ccciiiii s 97
TOIA-COPY-TOWEE: [YBS/NO] ...ttt bbbt bbbttt b et eb s 97
TOIA-COPY-UPPEIIIYES/NOT. ...ttt b e b bbb bbb bbbt b bbbt nb 98
Lj S0 184 Y57 L0 SR 98
free-thread-safe-data: [YES/NO]cvcuiiie ettt et s b e s be e neena e e et et nrenrenreereenes 98
fstatus-map:[Cit-status] = [CUSIOM-STALUS]eiveeveereeieiesiestesie st e ettt st sreena e e e e e e snesrenneeraenes 98
L0 o TaTolcT =T] S S 98
L0 aTo otV ST o) S 99
FUNCLIONS-AlI-INTIINSIC [YES/NO] ... vrivietie et e b s b e te e reene e e et e tesresresneareenes 99
GCCILYES/NO] ..ttt b e bbb E b E R E R R R R R R R R b b bRt R b h b et 99
GCC-O-DUGILYESINO] et b bbb bbb bbb bbb 99
GCC-IUGIIYESINO] .t b bbb bbb E bRt b et b bbbt 99
GCC-GOL0: IYES/NO]. .ttt bbb bbb bbb h ek E R bR b R R b bt b bbb et 99
GCOS-MOAE:[YES/NO] ..ttt b bbbt bbb st bt s b st e bt b e st eb e s b e eb e sb et ebe b ettt eb e b nnes 100
[0 T=T 0o [o B LY Lo SO SPRSPRRN 100
(oL TodoTo R nY] o LeTe [y] Y=) SOOI PS SRR 100
IDM-LIStING-MACTO:[YES/NO] . .. ceee ittt ettt e s e st e s teesteebeenteenseasbesteesbeeteeseesnaesneenneennis 100
IDM-MAINTIAMEI[YES/NO] . ..ottt e st e s e e s ae e beeateeabesaeestaebeesteaneesreenreenreenns 100
(1o R g Tot Y174 11) ST 100
identifier-1ength:<MaX-1ENGEN>cco e te e e e e es 100
ignore-global-in-10Cal-Storage: [YES/NOTot bbb 101
igNOre-With-rollDACK: [YES/NOT......ciuiiiiriiierte bbbt b bbbt b e 101
IMPIICTE-TNIE [YES/NOT 1.ttt b et bbb st b e bbbt b ettt bbbt 101
INCIUAE-MAIN: [YES/NO] ..ttt bbbt bbb bbbt eb bbb bbbt 101
INCOMPIEtE-SUDSCIIPLIYES/NO] ...ttt bbbttt bbbt b bbbt nbns 101
INAEX-0PLIMIZEI[YES/NO] ettt bbbt bbbtk bbb bbbttt sttt 101
Lo LT geTo e T Lol e Y=y 11) ST 102
INITCAILSPrOGIaM-NAMES.o et e b e et e e s e e s te e s teesteebeenteenbeassesbeesteeteeseesneesneeaneennis 102
LT TE e T4 o W Y=Y (o) ST 102
LT 4= LT V=T 11) SO 102
LT T 4= e] o Y=Y 1o TSP 103
LT 4= Lo T ol (= o 2T LT S SOTPT 103
INITIAITIZE-T0-VAIUEI [YES/NO] ..ot bbbttt 103
iSaM-eXtfh: SDRIVER NAIMES.......c.o oottt ettt e teene et e et seentenneeneenes 103
isam-extfh-lib: <library to use for this eXtfh driVEr>...........c.ccoiiiiii e 103
Keep-CopY-StAtEMENTI [YES/NO] .. .eveieite ettt b ettt b et b e bbbttt 104
KEEP-0rg-SIC-HNEIIYES/NO] ...ttt bbbt b bbb bbb bbb bbbt 104
LT R0 LU TT=To YT Lo USSP 104
KEY-AUP-AIWAYS-22:[YES/NO] ... e iteeiee ettt ettt te s te et e e st e eat e ste e be e te e s beaseeaneesaeesreenteenreenrenree e 104
keycompress: [integer DEtWEEN 0 and 9]ccvi it 104
1arger-redefineS-0K:[YES/NO]iiieiiei ettt et e et et e e ab e er e te et e e te e re e e aneeareers 105
L e t=To Rl (oL Y=Y [To) S S STT 105
[INE-SEO-MITI[YES/NO] ..ttt b bbbt bt et e b eb e b e e bt b e e bt e n e et e et e b reens 105
[INE-SEO-NOIUNC:YES/NO] .ttt b bbbkttt bbbttt b et e st 105
line-seq-recording-MOGE: [YES/NO]ciiiiiiiee ettt b ettt 106
[INE-SEO-UNIX:IYES/NO] .ttt etk bbbtk b st b e bbbttt b e e 106
TINK=0NTY: [YES/NOT ..tttk bbbtk b st b bbbt b et e e b 106
[IStING-SOUCES: [YES/NO] ...ttt et bbbt b st b e bbbttt bt ne et 106
local-storage-guard: 8 (INErNal USE ONIY).......oviiiiiiiiiie bbbt 106
[00SY-COMMENTIYES/NO]eeuteiteiteete ettt bbbttt s b e bbbt e bt e m e e b eb e b e s bt eb e e b e e mt et e seenbenbeereens 106
[S-EXPANU-TAD: [YES/NOT ...ttt ettt s b e bbbt bt et e b eh bbbt R et et ne b b ereens 106
[S-IgNOrE-TECOIA-SIZEI[YES/NO] .ttt ettt bbbt bt bt e e b bt bt e bt e bt e e et et sbenbeebesreens 107

COBOLIT —n

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

0L Y=Y 1T SR 107
0T B T L) P 107
g E T Rre Tt o] o [= ot o T) SRS 107
MAINTIAME-VDI[YESINOT .o bbb bbb bbb bbb bbbt 107
MAKeSYN: OlAVAIUETNEWVAIUEoouiiiiiec bbb bbbt sb et 108
Makesyn-PatCh-PreproCeSS: [YES/NOTcvive ittt bbbt b bbbt b bbb 108
MANUAITOCK: [YES/NOT ..ttt b bbb bbb bbbt e bt bbbt bt e bbbt 108
max-literal-expand: 32 (INTerN@l USE ONIY) ...c.oouiiiiiiiiciie e 108
MEM-INTOI [YES/NO] .ttt b et bbbt b bbbt e bbb e bt e bbbt bt e st bbb 108
gy (oo g aa =T g ol =T T [P 109
ME-COMPAL-PAISEL: [YES/NO] ..uvitiiiitiieee ettt sttt e e e st et e besbeabeensesee e e besbeateeseeneeaeeesreareereaneans 109
) ot T oz Vo T=To B o F LSt ol =T T P 109
0] B TR o oL ToT g =T 1) [P 109
0] o o YZ=ET L2 T0) S P 110
ME-NOStNUMCOMPAIE:[YES/NO] ...veveitiiieeeeie ettt ettt et e s b e e ae e e st e besbeeteeneenaesaeseesresreereaneans 110
MNT-INTIYESINO] ettt bbb et b b bt e bt b e bbb e bbb e bbb bbbt b et n 110
MT-TelatiVETile ([YES/NOL. . it 110
MOdUle-10ad-PrioritY:[YES/NOTcveiieieiie bbbt bbbttt 111
MOAUIE-NAME-ENEIY: [YES/NO] ..ttt b et b e et b bbb bbbt b et bttt 111
MOAUIE-UPPEICASE: [YES/NO] -ttt bbb bbbt b bbb bbbttt nb e st bbb 111
TNV cRes | BT [=To B Y=L T) USSP 111
move-high-low-to-displaynumeric [error/ZEro/VaIUE]cceiveiiie it 111
move-picx-to-pic9:[cit / mf50 / MFA0 / mvS / raw / iSO/ NONE | .veiveeieee e 112
MOVeE-SPaces-t0-COMP3:[EITOI/SPACEIZEIO]ecuveiereitreeieeie et ete s ee e e ste ettt e e st e st et e e e e e sreesreesteesaeeteeneeansennee e 112
move-spaces-to-displaynuMEriC: [YES/NO/EITOITccv ittt e e ae e e enee e 113
MOVE-10-group-SEPArated:[YES/N0]ccieeie ittt be et re e re e ae e re b e nnee e 113
NAMEILANY SEFING] vttt b et b bbb bbb b e bt b b e bt e b et e bt e bt e bt e b e e bt e bt e bt bbb 113
NO-TEAIPALN [YES/NOT ... ettt b e bbb bbb bbb bbb bbb bbbt 113
non-ibm-5.2-syntax: [(ok or yes)/(error or NO)/WArNING]cccoereirireiiienee e 114
NOSEIID: [YES/NOT ..ttt e bbb bbb bbb bbbt b bt e b b e bt bt e bt e bbbt b b n et et nens 114
NOLFUNC: [YES/NOT ..ttt ettt bbb bbb et e bbbt b e e bt e b b e bt bt e bt e b b et e bt e bt et b et 114
NOt-reserved:[any reSErVEA WOTG].......cooiiiieie ettt b bbb bbb ettt sttt 114
AT B o= T Tl V=T 11) SRS 114
NUMETIC-COMPATE: [YES/NO] ...viitieiiie ettt ettt ettt et e s e e e s te e be et e e st e easesteebaesteeseeaseesneesseesaeebeenseansenneeses 114
NUMETIC-group: [YES/NOMAINING]eeieeiieiie ettt et te e e et e e e e st e s teesbe e be e besraesreesreesreesbeenseensennee e 115
NUMVAI-VAITHALE: [YES/NO]...e ittt et e et e e bt e s te e be e te e teesaeaneesaeesreebeenbeansennee e 115
(o] o o | il /=7 11) SRS PSSR 115
(oo (o Rt [Ta SRl /=T 11) SRS PSSPRRN 115
OPLIMIZE-MOVE: [YES/NO] .ttt b bbbt b e bbbt eb e s bt ekt sb e ekt s bt et sb e ebennes 116
OPtIMIZE-MOVE-CAILI[YES/NO] .ottt bbb ekt b ekttt b et e 116
OPLIONAI-THIE: [YES/NOT ...ttt ettt bbb bbbt eb e bt e bt b eebe s bt et sb et ebe e 116
PACK-COMP-A:IYESIN0] ..ttt b e bbb et b e bbbt b e b b e bt bbbt b b et bt ebe bbb 116
PEFFOIM-0SVSI[YES/NO] ...ttt bbb et b e bbb bbb b e bbb e bt bbbt be bbb bt b e 116
L] oL (o TN L L= Y=Y Lo OSSP USPSSPR 118
[LYo LTS o] F Y =T 1) SO SSTOSPSSPRN 118
[LT aL =Tt LYo SO OSSPRN 118
Lo T 11 1T T T =57 L1 SRS PSSPSN 118
[T 0] (=T T T Yo T V2T Lo SO SSSSOSSPRRN 118
QUOLE:[ANY SINGIE CHAIACTEIT .. ettt b et b e bt b e et e e b sb et besbeene e 118
FAW-DY-VAIUE: [YES/NOT ettt ettt b e et b bbbt b e bt ettt b et e et 118
FAW-COMPATE: [YES/NOT ...veterieteite ettt b ettt bbbtk e e bt b e e e bt e b et e bt b et e bt e be e et e et e ebe st e ene et 119
FAW-PICO-TISPIAY: [YES/NOT.. . ettt bbbttt b et st b et b bbb n et ne et 119
FEA-At-ENA-MT[YES/NOT ... ettt ettt sttt b ettt be e bbb 119
T€AA-TNT0-COPY: [FES/TIO] vttt sr e r e e r e e e e en e nr e r et et s e e nr e nreenreenis 119
TEAAYTACEI [Y/T1] 1ttt ettt ettt R R et eR e Rt n et nre s 119
Enables paragraph tracing between READY TRACE and RESET TRACE procedural COBOL statements.119
WIVNEIN SEL L0 WS, ..veiiitieeite ettt st b ettt h et et bt b e b e st e st et e e b e e bt e bt e b e e b e e Rt e Rt e b e b eb e eb e ebeeb e e s e et e nbesbeabeaneaneas 119

In the interval between the READY TRACE and RESET TRACE statements, paragraph tracing output is written

@

COBOLIT Page 11

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

t0 the CONSOIE IN the FOMMEL: ..o et 119
PROGRAM-ID: [program-id]: [paragraph NAME].......c.coceieieieiiiieeieieses e se e ettt s snesre e 119
L=Tot g LoTo [N B V=TT 1o SRR 119
FECIMOAE-0SVS:[YES/NO] ...ttt b et bbb bbb bbbt bbb e bbb e bt e bt e bbb e bt bbb 120
TECIMOAE-VIIYES/NO] .. .vetiiteiett ettt bbbt bbb bbb bt e b b e bbb e bt e b b e bt e bt e bt e bt e st bbb 120
record-depending-iSO:[YES/NOT . ..ottt bbbt 120
redefine-identifier: [error / Warning / 0K]cooo i 120
TEGIONO: [YES/NOT ...ttt bbb bbb bbb b e b bbbt e bt bbbt bbbt bbb r et rn 121
relativefile-Digendian:[YES/NO]coo bbb 121
L= N oo TU o ot g =T N =T T RSP 121
relaX-16Vel-hierarCNY:[YES/N0] .. .cii ittt e b s beste e e ena e e et e resaeereaneens 121
relaxed-SyNtaX-ChECK:[YES/NO] ...cui ittt e e e st e be s besteese e st e saeseesresreereaneens 121
=70 P Uot=Rr o fo LAY/ V1T Lo P 121
L= 0T a0 o1 /=1 L2 To) S P 122
LoTU a0 o1 LY) RSP 122
TENCOUE-SIZE. KINTEIEI™ ...ttt ettt bbb bbb bbb bt e bt e e bt e b b e bt e b et e bt e b et e bt e be b ebeeb b ne b 122
PW-AFEr-PrePrOCESS:[YES/NO]veieiiite ettt bbbt b bbb bbb bbb b ettt 122
PW-MOAE-NOPTIIYESINOT ..ottt bbbt bbbt b bbb bbb bbbt 122
PW-MOAE-NOPT-QOS:[YES/NOT. .. ettt bbb e bbb bbbttt bbbt 123
SATE-IINKAGEI[YES/NOT ...ttt bbb bbbt bbbt 123
SCIEEN-EXCEPLIONS: [YES/NO] . i evieie ettt e e s e st e e s aeeste e b e enteeaeesaeesteeste e te e teeraeaneeaneenreenns 123
SCIEEN-TAW-KEYS:[YES/NO]ve ettt ste e te et e eat e e st e es e s te e te e te e eeanaeaneesnnesreennas 124
oo 0T aLEo R TT T Y=L T) T 124
Sare-all-aULOIOCK: [YES/NO] ... i ittt e st et e et e ent e s aeeeteesteeste e teeseeesaeaneesnaenaeennas 124
Share-all-defaUlt:[YES/N0]ccvi ettt e e st e s a e s te e te e te e teenaeareeaneenaeens 125
Share-all-ManUIOCK: [YES/NO]ttt et et e st e s te e te e teenaesreesneenreeneas 125
SIGN-ASCHIILYES/NOT ...ttt b bbbt b bbbt bbb b e Rt bt bt b et et 125
SIGN-EDCICIIYES/NO] ...ttt b bbb bbb bbbt h bt b bbb et 125
SION-1EATING: [YESINO] ...ttt b bbbt b bbbt b et b ettt 125
SIGN-SEPATALEI[YES/NO] ...ttt b bbbt bbb bbb R bbbt bbb et 126
Signed-compB-aS-COMP3B:LYES/NOTcuviviiiiitirieeett ettt b et b et b bbb ne et 126
SIMPIE-TTACEI[YES/NO] ..ttt b bbb bbb bbbt bbbt e et 126
o1 0 (ot e ToTor= Vi [T B /=T 1) ST 126
SPIt-AeDUG-MANK:[YES/NO] .. et e et et e st e e a e et e e te e be e reeae e e nraenreens 126
L 4= (o =T [0 TR 126
= Uod ol o T= Yol Y=Y [0 ST 127
e Lot or= 1| B =T) TR 127
StatiC-lNK: [FUNCLION-NAME]i it e et et e st e e bt e s te e s be e be e teenaesneesnnesreennis 127
sticky-linkage:[yes / no / fixed / Variable]ccoi i 127
SErICt-COMPAIE-10W: [YES/NOTeiiitiiteiiitit ettt bbbttt b bbbttt b et 128
StriCt-record-CONTAINS:[YES/NO]cuiiiiiitirt ettt bbbttt bbbt bbbt 128
synchronized-double-word-Dound:[YES/NO]cooiiiii e 128
synchronized-propagate-to-occurs: [yes/no] (Internal Use ONlY)cccooiiiiiniiiiniiiiecreeseeee 129
synchronized-propagate-to-occurs-with-group-size: [yes/no] (Internal Use Only).......ccccccvevvevviieiie e i, 129
LA Lr= Vol o A Y=Y To) ST 129
syntax-support:[ok / archaic / obsolete / skip / ignore / unconformable / rror].........ccoevvevvevieii e 129
(e LYo L [T (=T =1 o ST 130
(e L YA C=T T (=T o ST L (o ST 130
LEc oo (0] 00T oM 101 =T [=] o OO RU T RUSOURTPTPTPRURPROS 130
tNrEAA-SATE: [YES/NO] ..ttt b bbbttt ettt 130
LUt YT T OO 130
LUt SR 1Y 1T OO PR 130
EraCE-UPON=-SYSTOUL: [YES/NO] . .c.viieitiieeiietiit ettt ettt ettt b b s et b st e e b s 131
LTt 1 =TT RO POPR 131
trap-unhandled-eXCeptioN:[YES/NOT.......cui ittt 131
TrUNCALE-TISTINGI[YES/NO] ..ottt e bbbt b et e e et s bt bt e bt e bt e s e et e besbesbesreeneas 131
UNSEFING=USE-IMOVE:[YES/NO] ... ettt sttt b bbbttt b b bbb e bt e s e e b et sbeeb e s bt e b e e seen b e e sb e besbeebeane e 131
USE-AETAUITDY LRI [YES/NOT ...ttt ettt b bbbt h bbb sb e bbbt e b e e m e e e e nb et sbeebeene e 131

@|/COBOLT 0

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

0L T (o =T T) SO PS 132
010t =T T PR 132
AV Lo =L C=R o LT oo O Y= T) PSP 132
Validate-000: [YBS/NO]. ...ttt bbb bbbt bbb n s 132
Validate-OnIY:[YES/NO] ...ttt 132
Value-0f-id-Priority: [YES/NOT. ... ittt bbb bbbt nb bbbt nn 132
ValUE-SIZE-IS-8ULO: [YES/NOT ...ttt bbb bbbt bbbt 133
variable-reC-pad-MFi[YES/NO].ottt bt 133
VDISAM [YBS/NOT ...ttt b kb s kbbb h bbbt b bbb bbbt nr 133
A LR (e o LaTo (=T Gl =Ty T PP 133
when-compiled-function-all :[YES/NO]ccoiiiiiiiii e re s 133
LV To T aT= =T T] S PP 133
DO =t =AY=) 0L Y=Y 10 SRR 133
pA= (ol T T 1 T T 0 =T 1T) P 134
Compiler ENVIronmMent VariabIEscooiiiiiiii ettt sa e resneeneenes 135
(O @] N o] £0] o =1 . SRS 135
COB_ARFLAGS <A FIagS™ ...ttt ettt bbbttt bbbkt sb ettt sb ettt b et e 135
(010 2 L GI o (T | - SRS 135
COB_CFLAGS <CC TlagS™ ...ttt et eb bbbttt bbbttt b ettt sttt sb et e 135
COB_CONFIG_DIRSAITBCIONYeuteieisiisiesiieieeie ettt ste bt e et ee st testeste s e asaeseessetesaesbesbeaseaseensesaesseseessesseanens 135
COB_CONSOLE_CP=<COUEPAIE-TU>c.tietieiesieseesieesieests et e st e st e ta e teetesseessaesteesteesteesaeanseansesneesseesteeseenseeas 135
COB_COPY _DIRSKAITECIOIYcvvitiiteiiitisieeste st sttt seste e sesteseesesbesbesesbesteseatesbeseabesseseabesbeseasesbeseasesseseatesses 136
COB_EXTRA _FLAGS. ... oottt ettt sttt st sttt bbb s e ek e sb e st e be st e st ek ne e s e e besb e e ebe st e st ebesee e abennes 136
COB_LDADD I FIagS> ...cvviviiieieiteiieesti ettt sttt et sttt sttt st e s et e st e ebesbe e ebesbe e ebesbe e abennes 136
COB_LDFLAGS I FlagS™ ...veveveitiiieiesti ettt ettt sttt bbbttt sbe e ebesbe e ebesbe e ebesbe e abennes 136
COB_LIBS SIIDSS.. ittt sttt sttt bbbtk sb et st e sttt e st et st e et e sb e e ebe st et ebenbe e abe b 136
COB_OPTIMIZE_FLAGSCC flAgS>oorveecveeceeeeeeeeeevee et es s senanns 136
COB_OPTSIZE_FLAG=[0ptimization Flag]ccoeiiiiriiiieie et 136
COB_STDUNIX KLI0> ..ottt sttt sttt sttt e s e et s b e s e et e s b e s e et e st e s e e be st eseebe st eseebe st e seebe st esaabeseeseateneas 137
COB_SUNSTUDIOLI2Z[Y/N] oo en s an e senanns 137
COBCPY <AITBCIONY [ISE> ..iiiiiiticte ettt bbb et e st e e te st e saebesbe e ebesbe e etesbe e etesae e atenes 137
L0021 O AV [T =101] Y 137
COBITOPT=[string of command-line cCOMPIler Flags]ccoovve i 137
COBOPT=[string of command-line compiler flags]coov i 138
COBOLITDIRZEKAITECIONY™ ...evveiiiteiieieete sttt sttt sttt st a bt ebesbeseebe st e seebe s b e s e ebesee e ebesbe e ebesbe e ebesbeeatennes 138
TMPDIR OF TMPEKAITECIONY™ ...ttt e s te e s te et e est e s seesasente e be e be e eeenaesneesneenreennas 138
COBOL-IT RUNEIME OPLIONScotiiitiiie ettt este e s e e ste st e st e ateestaesteesaeesaeasaesseesseesseeseanseanseassesseesseesseeseens 138
COBOL-IT FUNTIME PAFAMELEESviiiveiereetreiteeiteeieetesaeseesteesteeteseesssesseesteebeesteeseessaesseesseesseeseenseassesssesteesseesrensrens 138
==ChECKPOINT FIIE> ...ttt e et et e et e st e e e be st e e ete st e e etesbe e etenas 138
10 15T o] (TR o 138
o [=1 a1 T TR o S 138
B (=] o TU T TR o B T30} (- SRS 138
111 o T o P 139
151 (01 T TP ST P TP PSP P USPRPPRPRPUPPRTR 139
SmVETSTON, =V ottt h et bR R R R R R R R AR Rt R R e Rt R e Rt r et eR e r et b e n et 139
COBOL-IT runtime environment VAriabIEScooiiiiiiiiieie et bbbt e e bbb 139
COB_CALL_CASE=xul [where x=exact match, u=uppercase, I=IOWErCase J.......cccccvververieririnieienene e 139
COB_LOAD_CASE=xul [where x= exact match, u=uppercase, I=IOWercase]cccceoervvririninienenienereeenn 139
COB_CONSOLE_CP=SC00E PAJE™S......eeitiiteiuieieeieie sttt st sieeee e ste st saesbessesseeseaeebesaesbesbeabeaseaneesaesaesbesbesreanens 140
COB_CURRENT _DATE ...ttt ettt st s te e te e s e es e st e s teete e s e aneeaseesteeseeenaeenteeneeansenseenseenteensenneeas 140
COB _DEBUG _ALLUSERSL.....ocitiiiiieiteie ettt estaeste e taesteaseesseesseesseesaeenseanteansenseesseenseeneennenas 140
COB_DEBUG_ID=SAEDUG-IT> ... n s seneons 141
COB_DEBUG_MODULES=<program-id1>:<program-id2>........c.ccccocerererirerinieneeseneiesiesieesreseeesseseesessesnes 141
COB_DEBUG_STARTUP_FILE=<FIlENAMESoooveoveceeeeeeeeeeeeee e ans s 142
COB_DEBUG _TMPEQAITBCIONY ...ttt sttt sttt ettt sttt bt sttt ebesbe e ebesbe e abennes 143
COB_DISPLAY _PRINTERZSFIBNAMEScuiiiiiiiiiieicie ettt sttt st sttt sne e ate e 143

@|/COBOLT s

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

(0@ 2 B LU 1V s] =T a T Ty =SS 143
COB_ERROR_FILEZSFIBNAMES ..ottt 144
COB_EXTFHZSEXTEH ENEIY> oot ane s 144
COB_EXTFH_FLATESEXTEH ENITY> 1ottt sttt a st st saete st saste s esaetesne e atesnas 144
COB_EXTFH_INDEXED=SEXTFH ENIIY> ...ttt st 145
COB_EXTFH_LIB=[list of Shared [IDraries J........ccociuiireiiiieisesieeei et 145
COB_FILE_CASE=[UPPER|LOWERY]......coititiiitiiieiiite sttt sttt sttt sttt sr b et abenn et nn e abe e 145
COB_FILEMAP_CASE=[UPPER/LOWER]c.ciititttitiiteiite ettt ettt 145
COB_FILE_PATHSEIPATHI ettt ettt b bbb bbb bt bkt b ettt ab e abennes 145
COB_FILE_RELATIVE_MFEZY ..ottt nn et snenr e ne e nr e n e nne e ane s 146
COB_FILE_TRACES[Y/N] .ottt b et 146
COB_FULL_CANCELSLY/N] -ttt 146
COB_KEY_DUP_ALWAYS_22=[Y/N]. oottt 146
COB_LIBRARY _PATH S[PATHTI ..ottt 147
COB_LOAD_CASE=[UPPER/LOWER]ccti ittt 147
COB_LOAD_PRIORITY=[Y/NT ...otiiiiiiiiiieiesie ettt 147
COB _ LS _DOSTY/N] cttitttettitesiete ettt sttt ettt be et b et b b e h bt b s e eb e b st eb e s b e st e bt e b e s e eb e s b e s e eb e nb e st eb e s b e st et e nbe e ebe e 147
COB_LS_FIXEDS[Y/INT 1 tettittiteitete ettt sttt sttt bbb bbbt bbbt s bbb st e bt e b e ekt sb e e ekt e b et et e sbe e ebennes 148
COB_ LS _NULLSS[Y/INT ittt sttt sttt eb ekt b bbbt b e sb et ekt b st eb e s b e ekt sb e e ekt s b et et e sb e ebennes 148
COB_INO_DOT _DAT .ottt sttt h et b et b et h e bt s b st eb e b e st bt s b e st e bt e b e st eb e sb e s e ebesb e st eb e s b e st ebenbe e abennas 148
COB_NO_SIGNALS[Y/N] cottttrtettertrree ettt sttt re e r e sr e r e sr e resr s e arenr et e bt ar e enenr e e erenne e arennes 148
COB_PAD _BUGS[0/1] 1.t tettitereeitire ettt sttt sn e b nr et n e nr e er e nr e n e sr e enenr e anenn e erennes 148
COB_PRE_LOAD-=[list Of MOUUIES]......ccvieiieieiie ettt sttt e et ste e steeae e e snsesneesreesreesreaseeas 149
COB_PROFILING_DIR ...ttt n e ar e sn e r e nr et n e r et an et b e ar e enenn e enenn e anennes 149
COB_PROFILING_EACH_MODULEc.oiiiiiiiiire e 149
COB_RTL_CPoSCOUBPAGE™Sveivviittetieteeteeteseesteesteesteasteaseeaseeassesteesteeseasseaseeaseesseesseesseanseanseassesssesseesseessensenas 150
COB_RUNTIME_CHECK_TRACE=[Y/N/Module list separated by ; or : (Windows)]........ccccoevvrerniirenaenne. 150
COB_SCREEN_DISABLE_REFORMATELY/N] ..ottt 151
COB_SCREEN_ESCE[Y/IN] ..eteitittitetiitt ettt et b et b bbb et sb e ekt s bt et sne et nnes 151
COB_SCREEN_EXCEPTIONSELY/NT .ottt sttt s sbe bbb 151
COB_SCREEN_INPUT_BOLDEDZ[Y/N]...cutitttittitiiiteiieiste ettt sb sttt sre b sne b sn e snesne e ane e 152
COB_SCREEN_INPUT_FILLERZ[CRAIT .cvecteiteiiiteieeeite sttt sttt 152
COB_SCREEN_INPUT_INSERT_TOGGLEZLY/N] ...ttt 152
COB_SCREEN_INPUT_REVERSED=Y/N] ..ottt 152
COB_SCREEN_INPUT_UNDERLINED=[Y/N] ...cveititieiiiireisenee sttt 152
COB_SCREEN_RAW _KEYSZLY/N] ...ttt ane s 152
COB_SCREEN_UPDATE_FIRST_KEY_ERASE=[Y/N] ...ttt 153
COB_STDUNIXZLY/INT ottt et nn bt nr et b e sr et b skt ar etk er et e ar e b nn e ebe s 153
COB_SWITCH_0... COB_SWITCH_L6....c.citiuiiitirieieitesieesie sttt sttt ettt sb e e sbesn et sne e abesnes 154
COB_SYNCELY/INT -ttt bbb h bbbt b st b e s b e st b e s b st eb e s b e st eb e sb e s e ebe s b e st ebesbe e ebennes 154
COB_VAR_REC _PADZY/N] . ettt ittt sttt eb e bbbt b e bbbt e bt sb ettt sttt sb et ebennes 154
(OO o I e @ 1Y e 01 4 e S SPRTSPRRN 154
(0] 210 I BT o[(101 10] S 155
TMPDIR OF TIMPEKAITECIONY™ ...ttt e s te e s te et e eat e s aeesasenbe e be e be e eeenaesneesnnesreennas 155
FI1E STATUS COUEBS.veeeiiiteeeie ittt h et r e bbbt e Rt bRt b Rt b Rt e bt e Rt e bbb et b r et nr e n et nr s 156
RUNTIME EFTOE COUBS ...ttt ettt st b e b e bt e bt et e b e sb e b e e Rt e b e e E £ e R e e st e ne e ke sheeb e ebeeh e e s e et e nbesbesbeareaneas 159
Data MEMOTY AIOCALION ..ottt b e bbbt bt e bt e st et e se e ke s bt eb e ebeeb e e s e e e e besbesbesbeaneas 161
BINARY, COMPUTATIONAL ..ottt bbb bbb et eb bt b 161
(oA Rt o] o] B g [o V2T g o) SO PSU SRR PR 161
BINARY-CHAR, BINARY-CHAR SIGNEDccctiititiiiiereese ettt ettt 161
BINARY-CHAR UNSIGNED......cocct ittt sttt b ettt sttt st sttt bttt 161
BINARY-C-LONG, BINARY-C-LONG SIGNEDcceoctitiiieinienieiesie ettt st st 161
BINARY-C-LONG UNSIGNEDcottitiiieiiie ittt ettt sttt st sb et sttt st sttt st ne st e nbns 162
BINARY-DOUBLE, BINARY-DOUBLE SIGNED........cccccotitiiiniieienie et st 162

CO BOI_'lT Page 14

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

BINARY-DOUBLE UNSIGNED.........cotitiiiieiieisie ettt sttt sttt sttt sttt nbens 162
BINARY-LONG, BINARY-LONG SIGNED, SIGNED-LONG, SIGNED-INT.......cccccoereiiriineinenieiseneeeen, 162
BINARY-SHORT BINARY-SHORT SIGNED SIGNED-SHORTcccviiitiinieinienieese e 162
BINARY-SHORT UNSIGNED UNSIGNED-SHORToooiiiiiiiiieienieie ettt sttt 164
COMPUTATIONAL-L ..ottt sttt st be st e e e te st e s e ebesb e s e et e sbe s e ebe st e s e ebesbeseabesbeseabe st esaabeseeeatenaes 164
COMPUTATIONAL-2 ...ttt sttt sttt sttt e st e s e e te st a1 e e tesb e s e etesbese et e sb e s e ebesbesaebesseseabesbeseebe st esaateseeseatenas 164
COMPUTATIONAL-3 PACKED-DECIMAL ...ttt sttt sttt sae et see s e 164
COMPUTATIONAL-Z ...ttt ettt sttt sttt st aete st e s e e besb e s e et e st e s e e besbeseebeseeseebesbeseebe st esaetesee e atennes 164
DIN-OPE-SIHCEIYES/NOT ...ttt b bbbt b e bbbt b et b e bt eb e b e bbb nnes 165
COMPUTATIONAL-D ...ttt ettt et e b st et sb st ek s b e st e be s b e s e ebe s e e s e ebesbe s e abe st e s e abenee e abennes 165
COMPUTATIONAL-D ...ttt ettt sttt st e et a b st e s ebesbe s e et e st e st e besb e s e abesee s e abesbe s e abesbeseabesee e abennes 165
COMPUTATIONAL-X .ottt sttt sttt et ettt e s e abe st e s e ebesbe s e ek e sb e st ebesb e s e abeneeseabesbeseabesbeseabeseeseabennes 165

o ARt o]] 2Es)a [ox od YZ=ET Lo SRS 166
DISPLALY ..ottt ettt ettt ettt b e ekt b et E e bt E e bt Rt ke e Rt SR et R e SRR R e Re et e Rt Rt e Rt R bR e b bRt bt ne et 166
INDEX ..ottt ettt ettt bbb skt R R bR R R R R R R R R R Rt Rt Rt R bRt Rt n e b b n b s 166
POINTER PROGRAM-POINTERocitiiiieititeitet sttt sttt se st ettt s se st st ase bt etesbe st e e abesbanestessenennns 166
Using EXTFH-Compliant Indexed File SYSTEMS........ccoiiiiiiiieiieese et 167
COBOL-IT iNCIUAES EXTFH LIDIAIIES.iiiiiieieeiee sttt sttt sttt sbe st saeereene e 167
WBISAM ...ttt sttt st et a4 et e R e e b et Re e b et R e R et ReeRet e R e Re b e Re e Re et eReeRe b eReeRe et e Rt e Re b e reete b ereete b ene et 167
SEVDISAIM . et e bt e b e be e r et e e b e e e be e ebe e beeteeabenteenbeenbeenteerreas 167

RVZ oL ESY= o B 22T o U 168
LT GG (57 1 SRS 168
00| o OSSP PSPPSR 168
oo |« ST Lo USSP 168

[S A OO PRSPPRSR 168
B0 1t 0 T TSSO PT TR O PO TP PRSPPI 168
AISAM [YES/NO] ..ttt b et e b b st bbbt s b e st b e b A £ b e bRt b e bR e bt bRt b bttt nr e b nnes 168

0 [od 1T ol OSSOSO P TR UROUUPPRPSRPPRN 168
(O =T C I A O RS SUSRR 169
[Lo To1U [41T L4 ISP 169
LaE ez L] P U o TSSOSO 170
(070101011 113 o TR TSSO TO PR PP PSP PEPRPRPUPPRR 171
10T T SRS 171
YL 7] (o] I = 4o 1TSS 171
Data FIlE TOCALIONeiiteii ettt bbb bbbt b b e b s b e bt e b e eb e s e e b et sbeebeane e 171
RESEIVEA VWO LEST.....eiiiiiieieteie ettt bbbttt b bbb e b e e R b e st e b e bt s bt eb e e bt eb e e s e e b e besbe et e sbeeneas 173
INEFINSIC FUNCEION LLEST ...ttt et bbbttt bbbt bt bt e h e et e b s bt e bt e bt e bt e s e e b e besbe et e ene e 179
COBOL-IT® LiDFary ROULINES........c.ccciiieiieitt ettt e ettt e e st e ta e teeteasaessaesteesteesseeseanseanseassesteesteesseeseeas 185
CECALLERNADMEcoo ittt sttt et s s bt s et b s e e b et e s s et e s e st et e s s e s s e b et e st e be b e st ebe b et ebesbe b esenbe s enenrns 187
L0808 |0 | = RSSO 188
(08 0@] 2RSSR 189
CEDEBUGcooiiiitiett ettt ettt ettt b et e s s b et e R e e b et e R e e A et e R s ke b eR s e R e A e R s e R et e Rt e Re b e Rt e Re e be b e Reebe b rente b ne et 190
CODELETEottt ettt ettt sttt b e e s st et e R4 et e s e e b et e s e e b et e s s e b e b e Rt e R et e Rt e b e b e st e R e be b e Reete b erente b ne et 201
08 L N OSSPSR 202
L0818 S I OSSPSR 204
L0V N (=] | = OSSPSR 204
08 OSSPSR 206
CEPARAMSIZE ..ottt ettt bbb bRkt e st b et e st e b b e st b e ke st e be b e st e be ket e R e e be b n et b ene et 207
L0 | I OSSPSR 208
L08R 209
CETOLOWER ..ottt ettt b bbbt e R b et e s e e b et e R e e b et e s s e b e s b e s s e b et e s b e b et e st ebe b e b ebeebe s eseabe b ene et ns 210
CETOUPPER ..ottt ettt ettt ettt b e st et e se s b et e s e b e b e s s e b e s e s e e b e b es s e b e st ens et et en b et e b e s s ebe st e s eseebe s eseabe s eneerens 211
CBL_ALLOC DYN_IMEM ..ottt sttt s et sttt et s st et et ne st e b e se st et eseste s ene et 211

@|/COBOLT -

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_ALLOC_MEM ..ottt b e bbbt e et n et n et nn s 213
CBL_AND ...ttt R R R R R R R R R AR R R R R R Rt r e r s 215
CBL_CHANGE_DIR ..ottt b bbb e Rt e bbbt b et rer e n s 217
CBL_CHECK _FILE _EXIST ...ttt stttk bbb bbbt bbbt bbb b et 218
CBL_CLOSE_FILE.......i ittt bbb bbb bbbt bbb bbbt b e bbb r et nb 220
CBL_COPY _FILE.....e ottt bbb bbb bbb bbbt bbbt bbbt 221
CBL_CREATE_DIR ...ttt bbb bbb bbb bbb bbbt bbbt bbbt et 222
CBL_CREATE_FILE ...ttt bbb bbbt bbbttt bt 223
CBL_DEBUGBREAK ...ttt sttt bbbtk b e bbbt bbb bbbt e bbbttt bt 225
CBL_DELETE_DIR ..ottt b bbbttt n s 226
CBL_DELETE_FILE ...ttt b bt n et r s 227
CBL_ERROR_PROC ..ottt bbbt e bbbt n et nn s 228
CBL_EQ -ttt R R R R AR R R R AR R R R R R Rt R et r et r s 230
CBL_EXIT_PROC ...ttt b et bbbt n et rer e n s 231
CBL_FLUSH_FILE. ..ottt bRt n et nn s 232
CBL_FREE_IMEM ...ttt bbb bbb b bbb bbb bbbt b bbb r et e 232
CBL_FREE_DYN_MEMcoitiititiitiiiiitee stttk bbb bbb bbb bbbttt b et nb bbb 233
CBL_GET_CURRENT_DIR ..ottt bbbt bbb bbbttt bbb 234
CBL_IMP ..t bbb bbb bR bR R R R R bR R bR R bR bRt bbbt b e ettt r et b 235
CBL_INTIMP ...ttt bbbtk bbb h £ H b h £ E b h e E bR bt bR bbb e bbb b bbb r et 237
CBL_NOR Lttt bbb b e bbb R E R R AR R R R R R AR R AR R R R e R Rt R bbbt rens 238
CBL_NOT ettt bbbt f R bR R e bR £ bR R R R SRR AR R AR R AR R R R e bR e R Rt r e r s 239
CBL_OC _INANOSLEEP ..ottt bbbt bbb bbbt bkt p bbb e nn s 240
CBL_OPEN_FILE ...ttt bbbt bbb bbbt b bR bt b et e nr s 241
CBL_OR ettt bR R R R R R R R AR R AR R R e R R AR R R R e bRt R Rt r b rens 243
CBL_READ _FILE ...ttt b e bbb bbb bbbt r et b et nn s 244
CBL_RENAME_FILE ..ottt bbbk b bbb bbbt bbbttt bbb 246
CBL_TOLOWER ...tttk bbb bbb bt b s bbbt b s b bbbt e bt ket e bt e bbbt bbbt 247
CBL_TOUPPER ...tttk b bbb bbb bbbt b s bt bbbt e bt b et b bbbt et b et 248
CBL_WRITE_FILEottt bbb bbbt b bbb bbbttt b e ettt b et 249
CBL_XOR ..ttt bbbt b kbR bR R R R R R R bR R bR R bR E bR bbb bbbttt r et 251
SY STEM .ottt b bbb b h kbR E bR R R R R E AR bR R R bRt R bbbttt b et 252
D G R 1311 1ot o) s U APPSR 253
D G R 1311 1ot o) s PP TPPR 254
D G R 1311 1ot o) s e PP PPRPR 255
D G R 1311 1o o) s N Y PP P RPN 256
XA et E e E b bR R E R R R £ R SR E SRR £ R R R R R b bR e R R bbbt b bt bt n e 257
DGl S TSSOSO SO TT PSSP TSP TSP PT PP 258
The RUNTIME Data STFUCTUFE ([FTA) c.eoviieeiiitiieeectie ettt bbbttt n et b bt 259
The COBOL-IT REGION INTEITACEccuiiiiiiiiiieicte bbbt bbbt 260
OVEIVIBW ...ttt ettt ekt b bbb bbb h b b H £ H bR b b s E b e R b bR £ e bt b et e btk e e bt e b e ettt b ne et 260
TRE REGION AP ...ttt b e bbb bbb b e bbb e bt e b b e bt e bt e bt e b e e et e bt e st et et ene et 261
THE SAMPIE PrOGIAMS ...ttt b bbb bbb bbb bbb b b e b et e bt e b e b et e bt e st et e b e st 263
WAL CODC TOBS ...t bbbt Rt bbbt bbbt r e nn s 266
Creating a shared obJeCt/Il (WINGOWS)c.eiiiie ettt bbb bbb 266
Creating an executable (.eXE) ((WINGOWS) . ..ottt bbbttt bbbt n e bbb ne e 267
Compiling a “C” program with cobc (WINAOWS).....eiiiiiiiiiiiiiiiiiniiee e 269
COMPATIBILITY TOPICS. .. ettt e e et e e e et e e eena e eeees 270
(070] o] 1 01 APPSO PRPTSO PSPPSR 270
OVEIVIEW OF CODMT ...ttt b et b ettt bbb e ne st 270
Dot]0] 0) B =3 (01] [OOSR 270
(070] o] 111 o] 0110 LSOO SO TP 271

@|/COBOLT o

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Using the —CIT 0ption With CODMT ... et r e re e reenes 271
WWHAE CODMT UOBS ...t E et R et n e b an e 271
How cobmf handles the —C “[directive]” compiler flag.........ccooiiviiiiiiiiiicic s 272
COBOPT ...ttt ettt bbb b bbb £ bR £ b e b £ A £ beE £ e b e R £ 4 E SR e A€ AR R oA £ AR R R £ AR e R e £ R b e £ bR e b e R e et b et et nas 273
Table of equivalents to COb COMPIIET TIAGS.c..iiiiiic e 273
Table of equivalents to COMPIEE AIFECTIVESooiiiiiiiiiii bbb 276
THE COBOL-IT DEBUGGER ENGINE (COBCDB)cccvviiiiiiiiiic e, 282
CONVENTIONS USEA.....c.cveiiieeiiiteiee sttt h bt et E b e Rt R bRt R bRt R b et r e e n s 282
QLI 2 oTU oo =T g (o] 1] o SR 282
SOUICE LLOCALION ©..v.veveteiest et R R e R e e R e bt e R n ettt rer e n s 282

W ATTADIES NAMES ...ttt sttt bbbt a e e s et e bese e eb e e bt e s e e s e e e e e sbeeb e e beebe e b e enbeneenbenEeeneebeene e 282
Usage Of the COBOL-IT DEDUGUET:......cc.i ittt ettt bbbttt b ettt sb et et b et st nb e ene s 284
COMMANG-TINE PATAMELETS ...ttt b bbbkt b stk bbbt e bbbt bbb b et 284
PIOGIAM NMAIMIE ...ttt ettt a e bt e b e e e bt e b e e s e e b s e s b e SR e e oE e oo e e e s e e ae e e b e e e R e e R e e b e e s b e s b e e s b e e sbe e sbeenn e e e senenne e 284

(0] 01 (0] 0SSOSO ST TP TSP PP TSP TP S PR PTPOPRO 284
1) (o T OSSO 284
TSSOSO TSP TO TSP TP PEURT PP 284

R [0 TSSOSO TR STV PP P TR PP 284
1015 o T S SPSPSRRN 285
SITACE Lottt b e 285

SV KAIO™ 1R R R R R R R R R R R AR R AR R R R R Rt e Rt E Rt nen e 285
VLT TP PR TP PP PU PR TR 285
DEDUGUET COMIMANGScviiieieiteeei bbbt b e bbb bbb e e bbb ekt b et ekt b et e bt s b et e bt et e b st et 286
0] (57 PSSP 286
BEAK [-T] TADEL. ...t bbb bbbttt b 286
break [-t] MOAUIBTTADETo bbbttt b ettt 286
Dreak [-t] MOGUIBTTINE-NF ... bbb bbb bbbttt b et 286
Dreak [-t] MOTUIETOoceieee et e s e st e e s te e e e e ae e e st e s te e te e beesbeessesseesseesaeenseenseansennee e 287

0] SO TSSOSO TS O TP TP TP PP UPTRPEUPPRTRO 287
(016 41 1140 T TSP TSP TS PR PSPPI 287
(o100 1] (U T TP TP TS T PP TR PP TP PRPRPO 288
AEIBTE X ittt E bbb R R R R R AR R R R R R R R Rt Rt r et r s 288
Trame <FrAME-NUMDEIS ...ttt r et E et r ettt r et nb et nn s 288
) o OSSR 289
1) {08 ToT o | SRS 289
TNTO PIOTHIING ..ttt bbb bbbt b e bkt nb e s e ekt s b et e bt sb et et e nb e ebennes 289
1) 0TS0 10 ot OSSR 290
Y (oI =T SO PSSP PP PSPPI PRPRPUPPRN 290
KL et ettt et Rt E Rt R R e R AR R e Rt AR e R e AR e R e £ R e R e A e R eRe et R e R e e Re Rt et ene e neeteneas 290
IS ettt bbb R R E R R R R e R R £ SRR £ bR e R R b bR e e R Rt bbbt bbbt 290
TIEXE 1ttt E R R R R bR R R R R e eh R R R e e e 291
PrINE SVAITADIE-NAMES ...ttt e bbbt bt bt e R e e e et e besbeeb e e b e e ae e s e et e nbesaeebeene e 291
PrINEN QVAITADIE-NAMES ...t bbb bbbt bt e R e et e b e b sbeeb e e beeae e e et e besaeebeene e 292
01U OO SSO TR PRPRP 292
=10 TSSOSO 292
>replace <oldprefix> ;| KNEBWPFETIXS ..ottt et ere e 293
STEPIACE 2 ..ottt h et b e R e R R R R e bR ARt R R e Rt E R e bt e R R e Rt eh et ke bt et nh et ebennes 293

D =Y o] o Tot eI Ao IR 10 0] 1=T 0] £ 293

1] T O PSP PO PPPOPRPP 293
L 01T AT 01 R 0 0]] 01 A {13 OSSP 294
set var <variable-name> <Variable-ValUe> ... e e bbb 294

@|/COBOLT -

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

set varh <variable-name> <variable-ValUe-NEX>cooiiiiiiiii e 294
] (<] o TSP OO P R PPROPROP 294
] (0] o J PO PPR PR 295
UP m N ettt bbb bR R bR R R R R R R R AR R AR R bR R bbb bbb r et b s 295
AT 5110 PO TSR 296
DEDUGUET EVENTS ...t b bbbt b b e bbb bbb e bbb e bbb e bt bt e bbb st b r et nr s 296
EVENT-DIEAKPOINT-NIL. ...ttt bbb bbb bbbt bbbt bbb 296
SBVBNE-COMEINUE ...ttt ettt et e b e et e et e et e e s teesteesbe e beeseeeaseeaseabeesbeesbeesbeeseesseesbeesbeebeenbeenbeensestsesteestaetensrens 296
Y= gL oo g1 =] ([PP RSTPPTP 296
AV (=Y 1 BT aTo B T o] o] [T Rl Lo [S 296
LA VLL L 1= S TSP RP PR OP PR PRPRN 296
=AY L= 01 T (oo i Ly BT d 1 (Yo S 296
BV =] 11 BT = o T PRSP P OV SUPP TP TTPPRUPPPN 297
L@ U] G- Taa] o [T = 0o =T o 1SS 297
0111 [0] ISP SO U TR U TP URTPRTPPTOPO 297
K10 o] o] 1 1ol o] EO OO TSSOSO ST TSR P TSPV POUR PSPPI 298

@/ COBOLIT —

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

Compiler & Runtime Reference

The COBOL Compiler: cobc

cobc is the COBOL-IT Open Source COBOL compiler.

cobc translates COBOL programs to C code and compiles it using the C platform compiler.
However, this C code is just a compilation artifact that provides portability and performance. It is
not meant to be maintained, or even read. Except for the cases where the developer will be
interfacing COBOL-IT with other libraries or dealing with other similarly low-level task, there is no
need for the developer to even be aware of this intermediate C code, or any other C-related topic.

For a more detailed presentation of the steps cobc goes through in creating an executable object,
see the topic “What cobc does”.

This chapter provides an overview of supported compiler flags, and environment variables, and
includes a section highlighting some important usage cases.

Usage: >cobc [options] file...
The COBOL-IT Compiler supports over 100 compiler flags. For a full list, execute the command:

>cobc -help

Informational Flags

Informational compiler flags do not product any objects, and are used to display information about
the COBOL-IT compiler.

—check-codepage <codepage-id>

The —check-codepage <name> compiler flag is an informational compiler flag that you can use to
check if a given codepage is recognized by the ICU library.

As examples:

To check for support of codepage 500, (which is supported):
C:\COBOL\COBOLIT>cobc -check-codepage 500

500 is found as ibm-500 P100-1995

To check for support of codepage 13488 (which is not supported):

C:\COBOL\COBOLIT>cobc -check-codepage 13488

@ COBOLT Page 19

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Internal Error: can't open converteur 13488 : U_FILE_ACCESS_ERROR

--help
Display this message
—list-codepage

The —list-codepage compiler flag is an informational compiler flag that lists all supported codepages
in the following format:

Codepage: [list of synonyms for codepage]
As an example:

UTF-8 : UTF-8 ibm-1208 ibm-1209 ibm-5304 ibm-5305 ibm-13496 ibm-13497 ibm-17592 ibm-
17593 windows-65001 cp1208 x-UTF_8J unicode-1-1-utf-8 unicode-2-0-utf-8

--list-intrinsics
Display intrinsic functions

--list-mnemonics
Display mnemonic names

--list-reserved

Display all reserved words

--version, -V

Display compiler version

Standard Flags

Standard compiler flags are applied to COBOL-IT’s basic build process, which consists of separate
preprocess, translate, compile, assemble, and link steps, and are used to direct the compiler in basic
functions such as locating copy files, placing object files, creating listing files, adding error-checks,
and adding information required for running with the COBOL-IT debugger.

-b
Links all input files into a single dynamically loadable module

@ COBROLIT Page 20

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-C

Compile and assemble, but do not link

This is equivalent to “cc -¢' (Linux/Unix) or ‘cl —¢’ (Windows).
On Linux/Unix systems, the output is saved in a "*.0' file.

On Windows systems, the output is saved in a “*.obj' file.

-codepage <codepage-id>

Defines the encoding of PIC X in memory.
If —source-codepage is specified, the compiler converts from the codepage-id used in the
—source-codepage compiler flag to the codepage-id used in the —codepage compiler flag.

The debugger makes use of the —codepage <codepage-id> compiler flag setting, and converts
alphanumeric (PIC X) data to/from UTF-8 when sending data to/from GUI interface.

The conversion of data described with USAGE NATIONAL to PIC X also uses the —codepage
<codepage-id> compiler flag setting. The —codepage <codepage-id> compiler flag sets the default
code page for National literals (N'xxx') and for conversion DISPLAY-OF and NATIONAL-OF
when used without code page indication.

If —codepage <codepage-id> is not specified then if —source-codepage <codepage-id> is specified,
the setting of —source-codepage is used for the conversion of data described with USAGE
NATIONAL to PIC X.

-conf=[+]<file>

Causes a user-defined compiler configuration file to be referenced either as the default
configuration file, or, if the “+” operand is used, as an addition to the base compiler
configuration file. For rules on how the base compiler configuration file is set, see the
—std=<file> compiler flag.

-constant "key=value"

Provides a way to define constants that can be tested for purposes of conditional compilation.
After using the —constant “key=value” compiler flag, the conditional compilation below will test
true.

$if key=value
Selse
$end

-debug

Enables all run-time error checking. See Guidelines for Enforcing Bounds-Checking for more
details.

@|COBOLIT Page 21

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

—debugdb [=<DebugDB-name>]

The —debugdb compiler flag causes the compiler to store debugging meta information in an
SQL.ite3 database.

When compiling with —g, the COBOL-IT compiler stores all debugging meta information in the
program binaries. This could make programs compiled for debug very huge. In some situations, it
could prevent the program from loading into memory.

When used without a filename, and when used with —g, stores all debugging information into a file
name <modulename>.dbd. Copy this file to the same location as the the object file .so or .dll. This
will permit the runtime debugger to load the debugging information dynamically when needed.

If you have multiple programs in your project for which debugging information must be stored, you
must use -debugdb=<DebugDB-name>, where DebugDB-nameis the name of an SQL.ite3 database
that stores metadata for all of the programs in the project.

During a debug session, the runtime debugger will check for the existence of the COB_DEBUGDB
environment variable containing the full path to the DebugDB file. If the environment variable is
not set, the runtime will attempt to retrieve the location of the COB_DEBUGDB data file from the
location of the compiled object.

Currently only 1 database may be used at a time. This means that the Customer must use the same
one for all of his programs. Several programs may write metadata to the same database.

-dump-config

Dumps all of the compiler config file settings being used in the compilation session to stdout. The
-dump-config compiler flag can be used with or without a COBOL source file.

To dump default compiler configuration file setting to a file:
>cobc —dump-config > [dumpfile].

To dump compiler configuration file settings for the current compilation:
>cobc [compiler flags] -dump-config hello.cbl > [dumpfile].
-err <file>

Causes errors and warnings to be written to <file> instead of stderr

-ext<extension>

Adds <extension> to list of default copy file extensions. For example, to direct the compiler to
search for copy files with a .fd extension, use the compiler flag “-ext fd”. Multiple iterations of
—ext are used to express multiple non-default copy file extensions. For example, “-ext fd

—ext sl”.

@|COBOLIT Page 22

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fixed

Instructs the compiler that source code is in the fixed source format. The —fixed compiler flag is
assumed, by default.

-free

Instructs the compiler that source code is in the free, or terminal source format.

-9

Produce debugging information in the output.

-initcall=<program-name>

The initcall compiler flag names modules to be called immediately before the first statement of a
program is executed.

-l <lib>

Causes the library <mylib> to be used by the linker. Note- The linker will look for mylib in the
path indicated by the —L compiler flag.

-linkage-desc=[program.xsd]

Generates an XSD file from the Source file. This process parses the program, and records the
names of the entry points, and for each entry point, the linkage section items. This information is
stored in an XML format in a file with a .xsd extension. The -linkage-desc compiler flag is invoked
in the Developer Studio Web Services Perspective, when generating an XSD.

Command-line usage:
» cobc -linkage-desc=[programname].xsd [programname].cbl

-m

Builds a dynamically loadable module. The —m compiler flag is implied by default.

-makesyn "oldvalue=newvalue"

Provides a way to make a reserved word a synonym for another reserved word. The first word,
represented by “oldvalue” becomes a synonym of the second word, represented by “newvalue”. A
common usage is to make COMP a synonym of COMP-5. To do this:

>cobc —makesyn comp=comp-5 hello.cbl

The -makesyn "oldvalue=newvalue" compiler flag provides compatibility with the MAKESYN
directive.

@ COBROLIT Page 23

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

A COBOL verb or field-name may be used as “old-value”. The COBOL-IT compiler will replace
all instances of this “old-value” with the “new-value” when compiling.

CAUTION- While this provides an equivalent capability to the implementation of the MAKESYN
directive in other COBOLs, the order of the parameters is reversed. COBOL-IT requires that the
“old-value” be listed first, and followed by the “new-value”.

-0 <file> | <dir>

Causes a compiled object to be output into <file> or <directory>. When using a directory name,
standard naming conventions are used, and the output is written to the named directory.

-preprocess=<CMD> [input file]

Causes <CMD> to be run after the COBOL pre-processing step. <CMD> is a script of batch file
in which an external pre-processor is run.

Consider an example, related to the use of Pro*COBOL. A simple Pro*COBOL script would be:
procob iname=%21 oname=%2

Where INAME would be the input file, which needed to be preprocessed, and ONAME would be
the resulting output file. To cause the COBOL-IT precompiler to run its precompilation prior to
calling this script, run the script in a .BAT file (in Windows), and invoke as follows:

cobc —preprocess=myprocob.bat mysource.cbl

For more detail, see Guidelines for use of -preprocess=cmd for more details. The —preprocess
compiler flag is only available in the Enterprise Edition of the Compiler Suite.

-save-temps (=<dir>)

Causes all intermediate files to be preserved. Note- “intermediate files” are the “C” source and
header files that are created during the compilation process. These files will be located in a
subdirectory named “c”, when using the —save-temps compiler flag.

-source-codepage <codepage-id>

Defines the code page to be used when editing the source and the code page used for string literals
in the COBOL source code.

When used with —codepage <codepage-id>
If —source-codepage is specified, the compiler converts from the codepage-id used in the
—source-codepage compiler flag to the codepage-id used in the —codepage compiler flag.

When used without —codepage <codepage-id>
If —codepage <codepage-id> is not specified then if —source-codepage <codepage-id> is

@|COBOLIT Page 24

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

specified, the setting of —source-codepage is used for the conversion of data described with
USAGE NATIONAL to PIC X.

For more details, reference documentation on the —codepage <codepage-id> compiler flag.

-std=<dialect>

Causes one of the dialect-oriented compiler configuration files to be used instead of the default
compiler configuration file. COBOL-IT provides several dialect-oriented compiler
configurationfiles, which can be located in $COBOLITDIR/share/COBOL-it/config/*.conf on
Unix/Linux-based systems and in %COBOLITDIR%\config*.conf on Windows-based systems.

For a specific dialect :

COBOL2002 COBOL 2002
COBOLS85 COBOL 85

ibm IBM Compatible

mvs MVS Compatible
bs2000 BS2000 Compatible

mf Micro Focus Compatible

Example: >cobc —std=ibm hello.cbl causes the compiler to select the file ibm.conf as the standard
compiler configuration file, instead of default.conf.

-sysin=<input file>

Allows redirection of ACCEPT statements at compilation time. <input file> is the file
used by ACCEPT instead of the console. It must be a line sequential file.

For example: cobc —sysin=sysin.txt testit.cbl

—sysout=<output file> [,S/L [,Min [,Max]]]

Allows redirection of DISPLAY statements at compilation time. <output file> is the file used by
DISPLAY instead of the console. By default, <output file> is created as a line sequential file.

The —sysout compiler flag provides compatibility with the OUTDD compiler directive supported by
some other COBOL compilers.

For example:—sysout=sysout.txt testit.cbl

When <output file> exists, output is appended to the existing file. When <ouput file> does not
exist, it is created in the current working directory. When dot ‘.’ is used as a file name, sysout is
sent to stdout. As an example: -sysout=.,SEQ,100 produces output on stdout as a sequential record
of 100 bytes.

Use the S flag, in conjunction with the Min/Max flags to cause <output file> to be created as a
binary sequential file, with minimum and maximum record lengths.

@ COBOLT Page 25

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Use the L flag optionally. You may use the Min/Max flags with the L flag. For the case where an
output string exceeds a maximum record length, a line feed (Linux/Unix) or CR/LF (Windows) is
inserted after a maximum length has been reached, and the output string is then continued.

For example:—sysout=sysout.txt testit.cbl

The -sysout compiler flag supports a file name of dot *.”. When dot ‘.’ is used as a file name,
sysout is sent to stdout. As an example:

-sysout=.,SEQ,100 produces output on stdout as a sequential record of 100 bytes..

General Format
-sysout=filename [,S/L [,Min [,Max]]]

Syntax

, may be replace by “:”
No spaces are allowed in the compiler command

S = Sequential (Binary Sequential)

L = Line Sequential

If a Max value is not given for Sequential files, then Max = Min.

If a Max value is not given for Line Sequential files, then Max = Min, and Min = 0.

General Rules

The runtime will write as many records as needed.

If the data written is smaller than the Min value, then

the runtime will pad the output with SPACES up to min-length in the line-sequential output file,
and the runtime will pad the output with LOW-VALUES up to min-length in the sequential (binary
sequential) output file.

-t <file> | <dir>

Causes a program listing to be output into <file> or <directory>. When using a directory name,
standard naming conventions are used, and the output is written to the named directory with a .Ist
extension.

The listing file produced by the —t compiler flag includes memory mapping information. At the end
of the listing, in lines that are commented, the list file reports the size and offsets of the data fields
in the Working-Storage Section.

The listing file produced by the —t compiler flag preserves comments, and can be compiled by the
COBOL-IT compiler.

When a compilation string designates no configuration file, and when not using the —E compiler
flag, the settings of the default.conf file are printed to the listing file that is named, or implied when
using the —t compiler flag.

When a compilation string designates a configuration file, using the conf=xxx.conf compiler flag,

@ COBROLIT Page 26

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

then the settings of the named compiler configuration flag are printed in the listing file that is
named or implied when using the —t compiler flag.

When using the —b compiler flag to combine several programs into a single library, and using the —t
[filename] compiler flag, a single listing is created that includes all of the programs in the library.

-use-extfh <NAME>
Names an EXTFH File handler to be used, enabling the use of an external file system.

-use-extsm <NAME>
Runtime module to be used, enabling the use of an external sort handler.

-V

Produces verbose output. The output of the —v compiler flag displays, all of the steps, and
intermediate programs created by the compilation.

-X

Builds an executable program.

The executable produced with the —x compiler flag includes the main function in the output. This
option takes effect at the translation stage. If you compile with —x —C, you will see the main
function at the end of the generated C file.

WARNING: When using —x, the first source module or object (.0 on UNIX or .obj on windows)
given on the command line MUST be the main module of the program. All other modules, libraries
or object files may follow in any order.

Example:
cobc —x mymain.cob otherl.cob ...

--xdd-prefix=<dir>

Causes the XDD file created with the -fgen-xdd compiler flag to be stored in the directory named in
<dir>. The folder name described in <dir> must be followed by a slash “/”” in Unix/Linux, or a
back-slash “\” in Windows.

As an example:

>cobc -fgen-xdd —xdd-prefix=/my/doc/xdd/ hello.cbl causes all xdds generated in the compilation
to be stored in the /my/doc/xdd/ folder.

@|COBOLIT Page 27

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-C

Interrupts the compilation after converting COBOL to C.

The output is saved in files with different extensions:

.C Files with extension ".c' hold the main code

.c.h Files with extension ‘.c.h’ hold the COBOL field storage
.c.d.h Files with extension ‘.c.d.h’ hold debug information
.c.l.h Files with extension ".c.l.h' hold temporary fields

-D <define>

Passes <define> to the “C” Compiler

-E

Interrupts the compilation after the preprocessing of the COBOL code, without doing any
translation to “C”, compilation, assembly, or linking. The preprocessed code is output to stdout
by default, and reproduces the preprocessed COBOL source code.

Output from the —E compiler flag retains the format (free or fixed) of the original source code.

Note- Using the -E compiler flag, the references to expanded copy files includes path information
on the commented-out reference to the copy file. As an example, in the sample below, the program
was compiled with —I .\copy —ext sl . Note that the path to the SELECT statement is preserved:

*" [copy/reswords.sl"
*
SELECT reswords ASSIGN TO "reswords"
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS reserved-word
FILE STATUS IS reswords-stat.

-G

Produces debugging information in the output, allowing “C”-level debugging.

To perform “C” level debugging, use the COBOL-IT Developer Studio.

COBOL-IT translates COBOL to “C” and uses the host “C” compiler to compile the translated
source. As preparation, compile your COBOL programs with the —G compiler flag. “C” modules

should be compiled for debugging as well.

The -G COBOL compiler flag allows the COBOL program to be include information for the “C”
debugger. This corresponds to the gcc —g compiler flag.

Using the Debug Attach functionality of the Developer Studio to Attach the COBOL Debugger to
an Application, you can enter the COBOL Debugger, then start the “C” debugger, and proceed

@ COBROLIT Page 28

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
your debuggeing with both the “C” and COBOL debuggers running.
The Eclipse IDE for C/C++ Developers, and “C” compiler are required for this exercise.
-I <path>[,extl,ext2,.,extn][@<LibName>] | <command-file>
Where:
<path> is the path that the compiler will search for the COPY file.
extl,ext2,...extn are file extensions to be included when performing the search for the COPY
file.
@ represents the “@” character, which is placed before <LibName>
<LibName> is the Library named in a COPY statement that contains a reference to a
Library. For example:
COPY <filename> IN/OF LibName.
<command-file> is the name of an existing file. When —I is followed by

the name of an existing file,cthat file is read, and each
line is treated as a parameter of the —I compiler flag.

For more details, and rules governing the treatment of file extensions, and
rules applying to the COPY IN/OF LIBNAME syntax, see Guidelines for
Searching and Locating COPY files.

-L <directory>
Adds <directory> to the library search path.

-MF <file>
Writes dependency list into <file>.

-MT <target>
Names the target file used for the dependency list.

-0, -Os, -02

Enables optimization. Note- "-O', "-Os' and -O2' are passed to the “C” compiler as is and used for
“C”-level optimization. For more details on the usage of the optimization compiler flags, see
the Guidelines for use of the Lib Optimizer below.

The -O and -O2 compiler flags now automatically enable the following compiler flags by default:
-fbin-opt, -fcmp-opt, -fcmp-inline, -ffp-opt, -foptimize-move, -foptimzize-move-call, -ffast-op, -
findex-optimize, -fdecimal-optimize. For more details about each of these optimizing compiler

@ COBROLIT Page 29

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

flags, see below.

-R <directory>
Adds <directory> to runtime library search path (if supported).

-S
Interrupts the compilation after after output of the assembly file. Translated C files are compiled
By cc. The output is saved in a file with a .s extension.

The —S compiler flag is only available when using the gcc C compiler.

-Wc CC_opt

Passes CC_opt directly to the C Compiler.
CC_opt is a compiler flag, or string, that can be processed by the C compiler.
As an example, the command:

>cobc -Wc -0O2 hello.cbl

Affects the manner in which the C compiler command-line is built, adding -O2 to the compile
string.

To view the C compiler command-line that is built by the COBOL-IT compiler, add the -v compiler
flag to the compile string.

>cobc -v hello.cbl

cobc:0: cl /c /1 "C:\Cobol\CobolIT\include” /DCOB_HAS_THREAD /W0 /nologo /GF /MD
/Fo"hello.obj" "C:\Users\ROBERT~1\AppData\Local\Temp\cob652217784 5.c"
cob652217784 5.c

-WI LD_opt

Passes LD_opt directly to the Linker.
LD _opt is an option, or string that can be processed by the Linker.

To view the link command-line that is built by the COBOL-IT compiler, add the -v compiler flag to
the compile string.

>cobc -v hello.cbl

cobc:0: link /DLL /MANIFEST /out:"hello.dll" /nologo "hello.obj"
"C:\Cobol\CobolIT\lib\libcobit_dll.lib" /DEFAULTLIB:MSVCRT.LIB

@ COBOLIT Page 30

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Guidelines for Searching and Locating COPY files

The COBOL-IT compiler can be directed to search for copy files in directories named by either the
COBCPY, or COB_COPY_DIR environment variable, or with the use of the —I compiler flag.
Copy file name resolution is refined with the use of the —ext compiler flag.

By default, the COBOL-IT compiler will search the current directory, and $COBOLITDIR\copy for
named copy files, and if the copy files have no explicit file name extensions, the COBOL-IT
compiler will search for default copy file extensions.

Default copy file extensions are:
—.CPY
—.COB
—.CBL

—.cpy
—.cob

—.cbl
— no extension

The COBOL-IT compiler will then check the environment variables COBCPY and
COB_COPY_DIR for pathes to add to the default search pathes.

At the command line, you may add more directories to search with the —I <directory> compiler flag,
and you may add more extensions to the default file extensions searched with the —ext <extension>
compiler flag.

Example: Consider a case where a program, myprog.cbl has a copy file declared as follows:

COPY “customer.cpy”.

And where “customer.cpy” is contained in a subdirectory called “copy”.

>set COBCPY=.\copy
>cobc myprog.cbl

Example: Consider a case where a program, myprog.cbl has a copyfile declared as follows:

COPY “customer”.

And where “customer.fd” is contained in a subdirectory called “copy”. .fd is not a default
extension, so both the directory and the extension need to be given to the compiler, to find the file.

>set COBCPY=.\copy
>cobc —ext=fd myprog.cbl or

>cobc —-I .\copy -ext=fd myprog.cbl

@|COBOLIT Page 31

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Locating COPY books
The COBOL-IT compiler will search for copy files:

First- In the same folder as the source file
Second- In the folder named by the —I compiler option
Third- In the folder named by the COBCPY environment variable

Fourth- if there has been no other indication in the environment or through the —I flag, in
the folder $COBOLITDIR/copy on a Unix/Linux-based system and
%COBOLITDIR%\copy on a Windows-based machine.

Note that the listing file will expand the copy file, and indicate which file was located:

SCREEN SECTION.
*#1 "../COPY/SAMPLE1X.CPY"

Resolving COPY book names
Resolving the statement

\ COPY “MYFILE”.

The file is located if the compiler locates myfile followed by any of the following
extensions: .CPY, .cpy, .CBL, .cbl, .COB, .cob, any extension passed with —ext compiler
option or with no extension at all.

Resolving the statement

\ COPY “MYFILE.CPY”.

The file is located if the compiler locates the file “myfile.cpy”.
Note:

The copy file should not have the same name as the object file.

The target of the COPY command is case-sensitive on UNIX systems.

-1 < directory > compiler flag causes <directory> to be searched for copy files

Example: cobc —I .\copy programl.cbl

-ext< extension> compiler flag causes <extension> to be included in search for copy files.
Example: cobc -1 .\copy —ext ws programl.cbl

For systems where copy file searches are case sensitive:

-ffold-copy-lower Fold COPY subject to lower case (Default no transformation)
-ffold-copy-upper Fold COPY subject to upper case (Default no transformation)

@|COBOLIT Page 32

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Using —fcurdir-include compiler flag

The -fcurdir-include compiler flag causes COPY files to first be searched for in the current
directory. (before the -1 <Path>). The COPY search is performed for files with default
extensions, and with extensions described with the —ext compiler compiler flag. This is the
default behavior of the compiler.

The —fno-curdir-include compiler flag causes the search for a COPY file to not search for
COPY file in the current directory, unless that directory is named by a —I compiler flag, or
by a COB_COPY_DIR, or COBCPY environment variable.

Using -1 <path>[,extl,ext2,.,extn][@<LibName>] | <command-file> compiler flag:

The following rules apply to the treatment of file extensions:

If file extensions are specified, then the compiler will limit its COPY file search to files with
these extensions inside the specified <path>.

If no file extensions are specified, then standard extensions and those specified with the -ext
compiler flag are used for the COPY file search.

File extensions must be named when the COPY <path> is the current directory (*.”).

To specify that files with no extension should be included in the COPY file search, use a
single dot "." .

For example, the following string would check for files with no extension, and with the .cpy
extension:

>cobc -1 /opt/mycopys,.,.cpy

Note that if your file is declared with an extension, for example:
COPY test.cpy
Then, for the purposes of the COPY file search, it is not necessary to apply any
?gltﬁ)r\lzis?ns. In this case, you would want to check for files with no extension, as

>cobc -1 /opt/mycopys,.

That is- you would follow <path> by a comma, and then a single dot “.”,
indicating that files with no extension should be included in the COPY file search.

The following rules apply to cases where a COPY <filename> IN/OF LibName statement is
being interpreted: Consider the case where source code contains the line:

COBOLT Page 33

@ CO BO |_—|-|_ COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

COPY MyCpy IN/OF LIBA.

Note that the default behavior of the compiler in this case is to look in the current directory
for asubdirectory LIBA, and to search that directory for files called MyCpy with all of the
standard file extensions. If not found, the compiler would continue the search in all <path>
specified by the —I compiler flag, and would ignore the LibraryName.

If no @<LibName> is specified in the —I compiler command, then the default behavior of
the compiler is assumed.

If @<LibName> is specified in the —I compile command, then the default behavior of the
compiler is not applied. Instead, the <path> named in the —I compiler command is searched
for the COPY file.
If the COPY file is not located in the <path>, then the search fails.

Examples:
>cobc -1 /opt/copy looks for COPY files with standard extensions in /opt/copy

>cobc -1 /opt/copy,.cpy looks for COPY files with the .cpy extension in /opt/copy

>cobc -1 /opt/copy,.,.cpy looks for COPY files with no extension or with the .cpy extension
in /opt/copy

>cobc -1 /opt/copy,.,.cpy@LIBA looks for COPYfiles with no extension or with the .cpy
extension in /opt/copy when resolving a COPY file described as IN/OF LIB, for example:

COPY [filename] IN/OF LIBA

>cobc -1 <command-file> reads <command-file> and interprets each line as a command
in the —I command string.

Guidelines for enforcing bounds-checking

The use of the “~debug” compiler flag enables all bounds-checking. Effectively, this is the
equivalent of making the following settings in the compiler configuration file (default.conf, for
example):

#Bound Pointer and base vars
EC-BOUND-PTR: yes

#Field Subscript check Field(idx)
EC-BOUND-SUBSCRIPT:yes

#Field Ref check Field(offset:len)
EC-BOUND-REF-MOD:yes

@ COBOLT Page 34

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual

Version 4.1

#Non-numeric data check for PIC 9/USAGE COMP-3 target data items.
EC-DATA-INCOMPATIBLE:yes

If you want to enable/disable bounds checking for individual items you can do this via the
configuration file. When compiling with —debug, the default values for the above-mentioned
compiler configuration flags would all be set to “yes”. Re-setting a flag to “no” would override the
—debug compiler configuration flag.

In the absence of the —debug compiler flag, the default values for the above-mentioned compiler
configuration flags would all be set to “no”. Re-setting a flag to “yes” would override the default
behavior, and enable a specific bounds-checking behavior.

otherwise the default is for all bounds checking to be disabled.

Guidelines for optimizing performance

The COBOL-IT Compiler Suite provides guidelines for optimizing your generated code. You can
cause large modules to be split into separate C functions. The “C” Compiler can then more
effectively optimize the resulting code.

-O compiler flags

o The —Os compiler flag causes large modules to be split, and optimized C code to be

produced.

o The —Os —O sequence of compiler flags causes the “C” Compiler to optimize to reduce
object size when compiling the optimized C code.

o The —O —Os sequence of compiler flags causes the “C” Compiler to optimize to maximize
execution speed, when compiling the optimized C code. Note that objects optimized for
performance may be larger in size.

o The —O compiler flag causes optimized C code to be produced, and causes the “C” Compiler
to optimize to maximize execution speed. However, with very large modules, some “C”
Compilers may fail. The —Os compiler flag can be used to break the large modules down,

and avoid this problem.

Optimizations enabled with the —O compiler flag

Compiler Flag

Default

What it does

Comments

bin-opt:[yes/no]

No

Enables binary
operation optimization.

bin-opt :yes is set by
default with use of the
—0O compiler flag.

If you wish to disable
bin-opt when using —O,
user the —fno-bin-opt
compiler flag.

[yes/no]

decimal-optimize :

No

Enables optimization of
the conversion of

decimal-optimize :yes
is set by default with

@ COBOLT

Page 35

@ COBOLIT

Reference Manual

COBOL-IT Compiler & Runtime

Version 4.1

decimal-encoded
numeric values to binary
in COMPUTE
statements.

use of the —O compiler
flag.

If you wish to disable
decimal-optimize when
using —O, user the —
fno-decimal-optimize
compiler flag.

index-optimize : No Enables optimization of | Index-optimize is set to

[yes/no] MOVE and IF yes by default with the
statements containing use of the —O compiler
references to variables flag.
using indexes. As an If you wish to disable
example, MOVE data- | index-optimize when
item(1,3) to current- using —O, user the —
item. Or IF data- fno-index-optimize
item(1,3) < 100 perform | compiler flag.
inventory-trigger.

binary-truncate:no Yes Enables optimization of | binary-truncate is set to
mathematical operations | yes by default. To
where a numeric field is | achieve optimizations
described with a decimal | from binary-truncate
notation, and contains when compiling with
an integer value, with no | —O, set binary-
decimals, (for example, | truncate:no.
PIC 99V99 VALUE 10.
). Applies to the
performance of the
ADD, SUBTRACT
MULTIPLY and
DIVIDE verbs.

notrunc:yes No Same as binary-truncate: | Notrunc is set to no by

no

default. To achieve
optimizations from
notrunc when
compiling with —O, set
notrunc:yes.

COB_OPTSIZE_FLAG

The environment variable COB_OPTSIZE FLAG can be used to name flags to be used in the C
compilation phase.

Usage: To cause the —Os flag to be used by the “C” Compiler

export COB OPTSIZE FLAG=-0s

COBOLT

Page 36

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

The CALL statement

In applications with large numbers of CALL statements, significant performance
improvements can be gained by optimizing the performance of the CALL statement. This is an
overview of the compiler configuration file options, compiler flags and runtime environment
variables that can improve the performance of the CALL statement. In some cases, more details
can be found at the documentation point of the flag.

external-link:[function-name]

Compiler Configuration Flag. Causes [function-name] to
be declared as an external non-COBOL symbol. Causes
CALL “function-name” to generate more efficient code.

-fauto-load-symb

Compiler Flag. Provides additional control, as regards
static symbol definition, by causing the static.symb and
user.symb files to be automatically loaded with the
compiler configuration file. static.symb is provided with
the compiler distribution, and should not be changed by the
user. Static.symb includes symbols declared by Pro*Cob
and Tuxedo.

-fcall-opt

Compiler Flag. Stores the address of a symbol locally in
module memory. Enables CALL statement optimization.
Programs containing CANCEL statements should not be
compiled with -fcall-opt.

module-load-priority:yes
COB_LOAD_PRIORITY

Compiler Configuration Flag. Affects resolution of target
of CALL statement. Normal sequence is (first) check
linked library, and (then) check shared library. This
reverses the sequence. Module-load-priority:yes
corresponds to the runtime environment variable
COB_LOAD PRIORITY=Y

static-link:[function-name]

Causes [function-name] to be linked statically. Improves
the performance of the CALL statement.

-X

Compiler Flag. Generates native executable.

COB_CALL_CASE=xul
COB_LOAD_CASE=xul

Runtime environment variables. COB_CALL CASE
and COB_LOAD_CASE runtime environment variables
should be used together. Used together, they provide the
user with control over how the target of a CALL
statement is resolved.

The PERFORM statement

In applications where PERFORM statements execute a very high number of times,
significant performance improvements can be seen by optimizing the PERFORM.

| -freturn-opt | Optimizes PERFORM return code.

Resolving File Names

The process of resolving a file name can be time consuming where files as declared in a

@ COBOLT

Page 37

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

SELECT phrase may have no extension, and full path-name. This performance penalty can be
eliminated by using filename mapping.

External-mapping:yes

Allows files declared as EXTERNAL to be resolved using
environment variables.

Filename-mapping:yes

Allows fine names to be resolved at runtime using environment
variables.

Removing debug-oriented compiler flags

Debug-oriented compiler flags have performance penalties. When your code is well-tested,
these compiler flags may no longer be needed, and can be removed to achieve better performance.

-fcheckpoint

Enables setting of checkpoints. Program state is saved at
checkpoints, and can be reloaded. For more details on the
usage of the -fcheckpoint flag,

-debug

Turns on exception checking

-debugdb=<debugDB>

Stores metadata for debugging in SQLite3 database.

-fdebug-exec

Used for debugging of EXEC SQL statements.

Exception-checking
(EC-xxx) compiler
configuration flags. As

Enabled with —debug

an example:

EC-SIZE:yes

-fmem-info Stores memory information, for analysis in the eventual
cause of a crash.

-fprofiling Adds counters to total statistics for reports on where your

application is spending the most time.

-fsource-location

Generates source location code, enabling information to be
dumped on source location when runtime aborts. Enabled by

g

-fstack-check

Enables stack checking debug function.

-ftrace
-fsimpletrace
-ftraceall

The tracing compiler flags. Cause output to be written to an
output file during the runtime execution.

-ftrap-unhandled-

Provides additional information when runtime aborts.

exception

-0 Causes debugger metadata to be stored in the compiled
object file or, if -DebugDB compiler flag is used, in an
SQLite3 database.

-G Produces debugging information, for purposes of debugging

programs_written in “C”.

COB_ERROR _FILE

Used when debugging are set to capture information for
debugging purposes.

COB_FILE_TRACE

Causes data to be written to the COB_ ERROR_FILE
whenever there is a file I/O operation executed.

COB_DUMP

No longer required after your functionality tests have been

@ COBOLT

Page 38

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

completed. Creates an output file for the memory dump
created when a runtime aborts.

Optimizing performed at installation (Windows)

During the Windows install, the user is asked what version of Visual C compiler they are
using. The compiler and runtime are compiled with the indicated version. This provides optimal
performance.

Optimizing compiler flags set by default

The COBOL-IT Compiler Suite uses the following optimizations by default. These can be
disabled by adding the no- prefix to the compiler flag. As an example, to disable the —fcmp-opt
compiler flag, use the —fno-cmp-opt compiler flag.

-fcmp-opt The —fcmp-opt compiler flag activates optimizations when
comparing literals with variables. To disable, use the —fno-
cmp-opt compiler flag.

-ffast-figurative-move Fast MOVE of figurative constant . To disable, use the —fno-
fast-figurtive-move compiler flag.

-ffast-op Fast operation on numeric DISPLAY/COMP-3. To disable,
use the —fno-fast-op compiler flag.

-foptimize-move Optimizes MOVE operations performed by INITIALIZE

statement when target fields are USAGE DISPLAY
NUMERIC or USAGE NATIONAL. To disable, use the —
fno-optimize-move compiler flag.

Guidelines for use of -preprocess=cmd

e The -preprocess=cmd compiler flag implements the COBOL-IT integrated pre-processor.
Preprocessors (like Oracle procob) may now be called by the compiler after the COBOL
preprocessing of COPY/REPLACING clauses has been completed. Usage of the —preprocess
compiler flag allows for use of the —fdebug-exec compiler flag, which permits the user to run
the original source code (before precompiling) in the debugger.

e Note- When using -preprocess=cmd the COBOL-IT Preprocessor ignores INCLUDE
statements, as these must must be processed by the external preprocessor.

e Usage: -preprocess=cmd [filename]

o [filename] is a COBOL source file that needs to be precompiled before being compiled by
the COBOL-IT COBOL compiler. A common case is a COBOL program containing ESQL
statements, allowing it to interact with an Oracle® database. Such a program would need to
be precompiled by the Oracle® precompiler procob.

o cmd is the external preprocessor command that take 2 parameters : The first parameter is the
input file name. The second parameter is the output file name. Consider the sample script
citprocob.sh, provided in the Linux/Unix distributions:

@ COBOLIT Page 39

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

m citprocob.sh

e In Linux/Unix distributions, a sample script called citprocob.sh is located in
$COBOLITDIR/bin/, which executes the command:

procob format=TERMINAL iname=$1 oname=S$2.
With this script, you can execute the command:

cobc —-preprocess=citprocob.sh testsqgl.pco to cause the Oracle
precompiler to run, and preprocess a pco file, producing an intermediate output file.

Note that while the command file takes two parameters, only one parameter is
supplied to the —preprocess compiler flag. The second parameter is provided by the
compiler cobc, as it generates a target file, and supplies it with a name.

Sample Usage:

o

In Linux/Unix:

>cobc —-conf=oraconf.conf -x -preprocess=citprocob.sh
procobdemo.pco SORACLE HOME/precomp/lib/cobsglintf.o -L
$SORACLE HOME/1lib/ -1 clntsh

where citprocob.sh contains the line:

procob format=TERMINAL iname=$1 oname=S$2

In Windows:

>cobc -conf=myconf.conf -b -preprocess=cobcmakel
procobdemo.pco —-L $ICLIBHOMEY -1 $SQLLIB 1ib%

where the following runtime environment variables are set:

set ICHOME=C:\COBOL\INSTANTCLIENT 11 2

set ICLIBHOME=%ICHOME%\sdk\lib\msvc

set PCBCFG=%ICHOMES%\precomp\admin\pcbcfg.cfg
set PROCOB=%ICHOME%\sdk\procob.exe

set SQLLIB lib=orasglll.lib

and where cobcmakel.bat contains the line:

$PROCOBS% config=%PCBCFG% ireclen=132 iname=%1 oname=%2

Special cases:

To allow the compiled object to be run in the debugger, add the —g compiler flag, Note that
the use of —preprocess provides debugging of original source code, and precompiled code is
not displayed in the debugger.

cobc -g -conf=myconf.conf -b -preprocess=cobcmakel

COBOLIT Page 0

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

procobdemo.pco —-L $ICLIBHOMES -1 $SQLLIB 1ib%

If you prefer debugging original source code, while maintaining the ability to trace
generated source code, add the —fdebug-exec compiler flag:

cobc -g —-fdebug-exec -conf=myconf.conf -Db

-preprocess=cobcmakel procobdemo.pco -L $ICLIBHOME% -1
$SQLLIB 1lib%

Compiler -f Flags

-f compiler flags describe a context in which the compiler should generate code in a
prescribed way. As such, they are used to enable optimizations, to enforce behaviors
compliant with other COBOLSs, to create thread-safe code, and to enable the use of utilities
such as the debugger, tracing, memory dumps, and profiling.

All flags are provided in the form : -fflag-name

To enable the flag, use: -fflag-name
To disable the flag, use: -fno-flag-name

The —f convention can also be applied to compiler configuration file entries, enabling
compiler configuration file entries to be entered on the command line.

Consider the case of the align-8:[y/n] compiler configuration flag as an example:
align-8:y is expressed on the command line as follows:

cobc -falign-8 sample.cbl
align-8:n is expressed on the command line as follows:

cobc -fno-align-8 sample.cbl

-f Flags that can be set on the command line are:

-f77-opt

Optimizes the use of integers stored in USAGE DISPLAY or PACKED fields in level-77 data
items. The 77-opt optimizations are enabled by use of the —O compiler flag.

-faccept-with-auto
Causes the WITH AUTO clause to be assumed by default on a field-level ACCEPT statement.

@ COBOLT Page 41

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When not compiling with —faccept-with-auto, the WITH TAB clause is assumed by default on a
field-level ACCEPT statement.

-faccept-with-update

Causes field-level ACCEPT statements to be interpreted as containing the “WITH UPDATE”
clause.

Equivalent to compiler configuration file setting:
accept-with-update: yes

-falign-8

Aligns 01-level and 77-level data on 8 byte boundaries.
Default is 4- byte boundaries.

On HP Itanium based system this flag is always enabled

-fall-external-call
Internal use only. Causes all CALL statements to be considered EXTERNAL.

-fall-external-link

Causes the targets of the CALL statement to all be assumed to be external-links.
This can improve performance at runtime by optimizing the resolution of the CALL statement.

-falloc-unused-linkage

Causes the compiler to allocate static memory for level 01 fields in the Linkage Section that are
not used in either a USING clause or an ENTRY clause.

If the —falloc-unused linkage compiler flag is not used, and level 01 fields in the Linkage Section
are not used in either a USING clause or an ENTRY clause, these fields are initialized to NULL,
and no memory is allocated for them.

Note that usage of of a field for which no static memory has been allocated will provoke a Memory
Fault. For cases such as described above, where static memory has not been allocated at compile
time, it is possible to programmatically allocate static memory to an unused linkage field using the
SET [linkage field] to ADDRESS OF [data-pointer] statement, and avoid the Memory Fault
condition.

-fas400-like

Causes the LIKE clause to act compatibly with the AS400 implementation of the LIKE clause. The
—fas400-like compiler flag causes a field declared with the LIKE clause to be described as a PIC X
(other field’s byte size).

Equivalent to compiler configuration file setting:

@|COBOLIT Page 42

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

as400-like: yes

-fauto-load-symb
Provides additional control, as regards static symbol definition, by causing the static.symb and
user.symb files to be automatically loaded with the compiler configuration file.

static.symb is provided with the compiler distribution, and should not be changed by the user.
Static.symb includes symbols declared by Pro*Cob and Tuxedo. Note that it is overwritten when
the compiler is updated.

user.symb is user-definable and may be placed in the config directory of the COBOL-IT
installation, or in the current directory. If user.symb is missing, no error is generated.

Both static.symb and user.symb files may include static-link declarations.

-fautolock
Sets default for SELECT to LOCK MODE IS AUTOMATIC

-fauto-sprwr

Causes SPCRW?2 to run automatically when needed before any -pre-process script (default).

-fbdb
Activates the usage of Oracle Berkeley DB isam files

-fbinary-byteorder-big-endian
Sets binary-byteorder to big-endian.

Corresponds to compiler configuration flag:
binary-byteorder: big-endian
-fbinary-byte-order-native

Sets binary-byteorder to native.

Corresponds to compiler configuration flag:
binary-byteorder: native
-fbin-opt

Enables the use of CPU integers when manipulating USAGE COMP and USAGE COMP-5 data
elements. The —bin-opt optimizations are enabled by use of the —-O compiler flag.

-fbin-opt-strict
Causes -fhin-opt binary operation optimization to be strictly respected.

@ COBOLT Page 43

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Corresponds to compiler configuration flag:
bin-opt-strict:yes
-fcall-comp5-as-comp

The —fcall-comp5-as-comp compiler flag affects the behavior of the CALL statement. On little-
endian platform (intel Linux, Windows) when a call USING clause contains a literal , the —fcall-
comp5-as-comp compiler flag causes the literal to be copied as a COMPUTATIONAL value, rather
than as a COMP-5 value.

Example: In the statement:

CALL “subprogram” USING 1234.
The literal 1234 is passed as a COMP value when using —fcall-comp5-as-comp.
Otherwise, the literal 1234 is passed as a COMP-5 value.

Equivalent to: call-comp5-as-comp:yes in config file

-fcall-lowercase

Affects the handling of literals that are the target of a CALL statement. As an example, consider
the literal “MyProg” in the statement: CALL “MyProg”. In this case, the -fcall-lowercase compiler
flag causes all of the characters in the literal “MyProg” to be converted to lowercase.

-fcall-opt

Enables CALL statement optimization Programs containing CANCEL statements should not be
compiled with -fcall-opt.

-fcall-uppercase

Affects the handling of literals that are the target of a CALL statement. As an example, consider
the literal “MyProg” in the statement: CALL “MyProg”. In this case, the -fcall-uppercase compiler
flag causes all of the characters in the literal “MyProg” to be converted to uppercase.
-fcarealia-sign

Use CA Realia sign coding for Usage Display

Digit Sign Digit Character for:
Positively-signed values Negatively-signed values
-fsign- -fsign- | -fcarealia- | -fsign- | -fsign- -fcarealia-
ascii ebcdic | sign ascii ebcdic sign
0 0(30) {(7B) 0(30) p(70) H7D) 0(30)
1 1(31) A(41) 1(31) q(71) J(4A) 1(21)
2 2(32) B(42) 2(32) r(72) K(4B) "(22)

@ COBOLT Page 44

@ COBOL
3 3(33) C(43) 3(33) s(73) LA4C) | #(23)
4 4(34) D(44) 4(34) t(74) M (4D) $(24)
5 5(35) E(45) 5(35) u(75) N(4E) | 9(25)
6 6(36) F(46) 6(36) v(76) O(4F) &(26)
7 7(37) G(47) 7(37) W(77) P(50) '(27)
8 8(38) H(48) 8(38) X(78) Q(51) ((28)
9 9(39) 1(49) 9(39) y(79) R(52))(29)
-fC-cmd-line

When used with —x, causes the program to receive command line parameters as though they were
given in C. In this case, command line parameters are read as they would be through a “C”
interface. For example: (intargc, char **argv)

-fC-data-init

(Internal use only)

Controls if the C data structure created by the compiler is initialized in the source (at compilation
time) or at runtime. This should not be changed.

-fcheckpoint

Enables setting of checkpoints. Program state is saved at checkpoints, and can be reloaded. For
more details on the usage of the -fcheckpoint flag, see the Guidelines for use of Checkpoints
below.

-fcics
Generates CICS-compliant code.

-fcmp-inline

Causes comparisons to be inlined in the C code instead of through calls to the runtime library when
possible.

-fcmp-opt

Activates optimizations when comparing literals with variables.
The —fcmp-opt compiler flag is set by default. Use —fno-cmp-opt to disable the functionality.

The —fcmp-opt compiler flag corresponds to the compiler configuration flag :
cmp-opt :yes
-fcobol-lines

When compiling with gcc, line directives corresponding to COBOL source code line numbers are
added to the “C” source code.

@ COBROLIT Page 45

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fcompat-display-to-int

Provides compatibility with older versions of COBOL-IT Compiler Suite (prior to version 3.10.5)
as regards display to int functionality.

-fcompute-ibm

Causes arithmetic expressions (like a+B*c) in COMPUTE statements, and comparisons to use IBM
COBOL defined rules for determining the number of decimals used in intermediate results.

-fno-compute-ibm causes the maximum number of decimals (machine-dependent, up to 37) to be
used in intermediate results of arithmetic expressions in COMPUTE statements and comparisons.

For details, please consult IBM documentation.

-fcompute-ibm-trunc

When using -fcompute-ibm compiler flag, or when compute-ibm compiler configuration flag is set
to yes, causes intermediate results to be truncated (default).

Corresponds to compiler configuration flag:
compute-ibm-trunc:yes

-fcontinuation-line

Allows a hyphen in column 7, with no following text, to be recognized as not being a continuation
line. When compiling with —fcontinuation-line, a hyphen in column 7, with no following text in
quotes is not recognized as a continuation line.

Note: A hyphen in column 7, with following text, in quotes, is always recognized as a continuation
line.

For rules on the handling of continuation lines, see Line Continuations in the COBOL-IT COBOL
Reference Manual.

-fcopy-default-leading
The —fcopy-default-leading compiler flag affect the behavior of the COPY REPLACING statement.

When using the —fcopy-default-leading compiler flag, and when using the ==xxx== notation in a
COPY REPLACING statement, the LEADING phrase is assumed by default. The LEADING
phrase indicates that only the LEADING characters identified will be replaced if they match text in
the copy file.

-fcopy-exec-replace

The —fcopy-exec-replace compiler flag affects the behavior of the COPY REPLACING statement.
When using the —fcopy-exec-replace compiler flag, and when a COPY REPLACING == xxx ==
statement is performed, text inside EXEC / END-EXEC blocks are also replaced if applicable.

@ COBOLT Page 46

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fcopy-mark

Adds mark for begin/end of COPY In listing and preprocessed file
Note: The copy marks are:
*++SCOPY .\copy/sample.CPY (beginning of COPY file)
[COPY file is listed here]
*--SCOPY .\copy/sample.CPY (end of COPY file)

-fcopy-partial-replace

The —fcopy-partial-replace compiler flag increases the compatibility of the COPY REPLACING
behavior with Micro Focus compiler behaviors.

When a pattern like COPY FIC1 REPLACING == WJXX- == BY == WJ03- == is processed :
If this flag is on, the preprocessor uses a partial replacement as defined by MF and ANSI2002
standard.

If it is off (the default) the IBM mainframe and ANSI85 standard is used.

The —fcopy-partial-replace compiler flag corresponds to the compiler configuration flag :
copy-partial-replace :yes
-fctree

Activates the usage of C-tree isam files

-fctree-field-numbering

Causes the CTREE XDD generator to generate a prefix F <field-number> before field names.
Use with —fgen-xdd compiler flag.

-fctree-no-full-qualification

Affects the behavior of the —fgen-xdd compiler flag, causing it to not generate the fully qualified
data names in the XDD description of the file. When using the —fctree-no-full-qualification
compiler flag with the —fgen-xdd compiler flag,

the field name generated is :
xxx_<Field_Name>

Where:
XXX IS @ unique number (position in the structure),
<Field_Name> is the name of the data field, without any other prefix or suffix

Use with —fgen-xdd compiler flag.

-fcurdir-include

Causes COPY files to first be searched for in the current directory, before locations described with
the -1 <Path>, or with environment variables.

The COPY search is performed for files with default extensions, and with extensions described with
the —ext compiler compiler flag.This is a default behavior.

@ COBOLT Page 47

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

The —fno-curdir-include compiler flag causes the search for a COPY file to not search for COPY
file in the current directory, unless that directory is named by a —I compiler flag, or by a
COB_COPY_DIR, or COBCPY environment variable.

-fdebugdb

The —fdebugdb compiler flag, when used with —g, store alls debugging information into a file name
<modulename>.dbd. The runtime checks for the <debugdb> file using the name given at
compilation time. If not found, the runtime will then check for the filename in the
COB_LIBRARY_PATH location.

This is different from debugdb=<filename> where you have to specify a unique Debug db for the
whole project

Equivalent to: debugdb:yes in the compiler configuration file.

-fdebug-exec

Affects the tracing of Exec statements when debugging code that has been compiled with the
integrated pre-processor (-preprocess). When using the Integrated Preprocessor Interface, the
default behavior of the debugger is to —not- trace (display) the code generated by the external
preprocessor. Only the original source EXEC statements are shown. The —fdebug-exec
compiler flag enables the tracing (debugging) of the generated code.

-fdebugging-line

Enables support for debugging lines. (Source lines that contain 'D' in indicator column)

-fdebug-parser
Allows for the debugging of the parser. (maintainer use only)

-fdecimal-optimize

Optimizes the conversion from DISPLAY/COMP-3 to binary values in COMPUTE statements.
When several COMPUTE statement are in the same paragraph, the compiler will minimize the
conversions from DISPLAY/COMP-3 to binary values for fields that are used (and not modified)
in different statements in the same paragraph. -fdecimal-optimize is enabled by using either the -O
or -O2 compiler flags.

Equivalent to: decimal-optimize:yes in config file

-fdisam
Activates the usage of the DISAM indexed file engine.

-fdisplay-dos
Causes DISPLAY statements to use CR/LF.

@ COBOLT Page 48

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Corresponds to configuration file setting:
display-dos: yes
-fdisplay-ibm

Affects the output of the DISPLAY Statement for numeric fields to be more compatible with IBM
mainframe.

-fdiv-check

Enables the checking of divide operations when binary optimizations are turned on with the use of
the —fbin-opt, or —O compiler flags. The effect is to cause divide-by-0 operations to generate an
exception.

-febcdic-charset
The —febcdic-charset compiler flag requires a dedicated license.

Causes the COBOL-IT Compiler and Runtime to store and manage data in the EBCDIC encoding
format. Source code is stored in ASCII format.

The —febcdic-charset compiler flag causes modules to be created that apply the EBCDIC character
set to file operations, and internal data storage. When using the —febcdic-charset compiler flag, all
of the programs in a runtime unit must be compiled with the —febcdic-charset compiler flag. If a
main entry program that is not compiled with the —febcdic-charset compiler flag CALLs a program
that is compiled with the —febcdic-charset compiler flag, or conversely, if a main entry program
compiled with the —febcdic-charset compiler flag CALLs a program that is not compiled with the —
febcdic-charset compiler flag, the CALL will fail, and the COBOL-IT runtime will abort.

-femulate-vms
Causes spaces to be stripped from filenames and adds suffix .DAT" if needed.

Corresponds to compiler configuration file setting:
emulate-vms: yes

-fexclusivelock

Causes all files with no LOCK MODE clause in their SELECT statement to be declared
Implicitly as LOCK MODE is EXCLUSIVE. For details on other —f compiler flags related to
the treatment of LOCK MODE, see Guidelines for modifying default handling of the LOCK
MODE.

-fexec-check
Used with -fsyntax-only, checks the EXEC SQL/CICS/DLI syntax

-fexpand-exec-copy

The —fexpand-exec-copy compiler flag causes the compiler to expand COBOL COPY statements
inside EXEC ... END-EXEC blocks. This applies to both EXEC SQL and EXEC CICS blocks.

@ COBOLT Page 49

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Equivalent to: expand-exec-copy:yes in config file

-fexpand-sql-include
Used with -E, expands 'EXEC SQL INCLUDE <File name> END-EXEC' in the —E outpult.

-ffast-figurative-move
Fast MOVE of figurative constant (default)

-ffast-op

Enables the runtime to use faster operations when manipulating data items declared as USAGE
DISPLAY or USAGE COMP-3.

-ffcdreg

The —ffcdreg compiler flag allows a user of an EXTFH compliant data source to directly read and
write the File Control Description (FCD) through which information passes to and from an
EXTFH-compliant data source. When the —ffcdreg compiler flag is used the compiler will generate
an error if —use-extfh is not used.

As background, EXTFH makes use of a standardized File Control Description (FCD), through
which information passes to and from the EXTFH-compliant data source.

An FCD is created for each file that is mapped to an EXTFH-compliant data source.

It can be useful inside a program to directly read and write the FCD. The FCDREG compiler
directive was developed for this purpose, and the COBOL-IT implementation of this functionality is
the —ffcdreg compiler flag. When you compile with the —ffcdreg compiler flag, a register is created
for each [filename] which is named “FH--FCD of [filename]”. Note that there are two hyphens in
the name “FH--FCD”. By describing the FCD structure, and positioning the beginning of the
structure at the address of “FH--FCD of [filename]”, individual elements within the structure can be
read and written.

Note- The FCD structure is described in a copy file called XFHFCD.CPY, which is included in the
$COBOLITDIR\copy directory in Windows, and the $COBOLITDIR/share/config directory on
UNIX/Linux-based systems.
For example:
1- Include a reference to the FCD in your Linkage Section, as follows:

LINKAGE SECTION.

01 FCD.

COPY "XFHFCD.CPY™.

2- Sync the address of FCD with the address of FH--FCD OF FIL1.

@ COBOLT Page 50

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

PROCEDURE DIVISION.
SET ADDRESS OF FCD TO ADDRESS OF FH--FCD OF FIL1.

3- After performing the SET statement above, the fields in XFHFCD.CPY can be read and written.

-ffdclear
Causes the record to be INITIALIZEd after each WRITE.

-ffile-auto-external

Default: On

This functionality may be disabled using the compiler flag -fno-file-auto-external’. However, when
disabling this functionality, be aware, that if you have separate programs sharing the same
EXTERNAL file that also have file-var fields, then changes made between the programs will not
automatically be shared.

The —ffile-auto-external compiler flag affects the way that the compiler treats variables describing
file-names for files described as EXTERNAL.

When a file is declared as EXTERNAL, if the file-name is indicated as a variable name, in an
ASSIGN DYNAMIC [file-var] clause, then file-var should be declared as EXTERNAL. Note that
variables declared as EXTERNAL must be declared as level 01 or level 77.

If [file-var] is not declared as EXTERNAL, then the default behavior of the COBOL-IT Compiler
is to implicitly declare an external variable name, and assign it a name derived from the FD named
in the SELECT clause.

The convention used is as follows:
Consider the statement:

SELECT myfile ASSIGN DYNAMIC file-var...
77 file-var pic x(8) value “customer”.
In this case, file-var is not declared as EXTERNAL, so COBOL-IT issues the following warning:

‘file-var’ declared imiplicitly EXTERNAL AS ‘FE _file myfile ASSIGN’ (-fno-file-auto-external
to disable).

Creating the implicit name based on the file name guarantees that the programmer will be able to
give different names to [file-var] in different programs, and that they will nonetheless share the
same value.

If file-var is declared explicitly as EXTERNAL, then this condition does not apply.

@ COBOLT Page 51

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-ffold-copy-lower
Folds COPY file names to lower case

-ffold-copy-upper
Folds COPY file names to upper case

-ffp-opt

Causes COMP-2 operations to be inlined in C, and maximizes the use of the CPU Floating Point
unit.

-ffree-thread-safe-data

When used with -thread-safe, causes the data in a module to be freed after a CANCEL event that is
not a FULL-CANCEL.

Corresponds to compiler configuration file setting:
free-thread-safe-data: yes

-ffunctions-all
Allows use of intrinsic functions without the FUNCTION keyword

-ffunctions-all-intrinsic
Some functions do not require FUNCTION keyword

-fgcc

Generates gcc-compliant C code. The —fgcc compiler flag is enabled when COB_CC=gcc.
Default : off for all platforms except Linux

Default: on for Linux platforms

-fgcc-bug

When using a gcc compiler on very large source files, the gcc compiler could enter an infinite loop.
This bug is avoided by using the —gcc-bug compiler flag.

-fgcc-goto

Generates gcc-computed goto code. The —fgcc-goto compiler flag is enabled when using the
—fgcc compiler flag, or when COB_CC=gcc

@|COBOLIT Page 52

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fgcc-O-bug

When using —O , some versions of gcc generate incorrect code. This bug is avoided by using the
—gcc-0O-bug compiler flag.

-fgcos-mode
Causes the compiler to more closely emulate GCOS operations.

-fgen-xdd
Generate c-TreeACE .xdd file

-fglobal-typedef

Causes TYPEDEFs to be GLOBAL for all nested programs. If not set, TYPEDEFs are local to the
current program.

-fibm-listing-macro
Enables IBM listing extensions (TITLE, SKIP1/2/3, EJECT ...) (default)

-fibm-mainframe

Causes the compiler and runtime to operate in an IBM Mainframe compatible mode.

-fibom-sync

Applies SYNC attribute to group item if first elementary field is described with the SYNC attribute.
(default).

To turn off this behavior, use the —fno-ibm-sync compiler flag.

The —fno-ibm-sync compiler flag does not cause the SYNC attribute to be applied to a group item if
the first elementary field in the group item is described with the SYNC attribute.

-fimplicit-init
Initializes the COBOL runtime system at runtime start-up.

-finclude-main
Causes main symbol to be included in module object when compiled with —c.
Previous behavior

Previously, the compiler generated a wrapper C module <module-name>_main.c with the main
symbol that called the first module (.0 or .cob) given as a parameter at the -x command line.

@ COBOLT Page 53

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

The C module was compiled into a .0 and stored in a static “.a” library. Then this library was
appended at link time.

New behavior

When compiling with the compiler flag combination -c —finclude-main, the compiler inserts the
main symbol into the object of the first COBOL module named on the command line. When
compiling with the compiler flag —x, and at least one COBOL module has been compiled, the —
finclude main compiler flag is implied, and no static “.a” library is produced. If no COBOL
modules are compiled, the Previous Behavior is used.

Example :
>cobc -c -finclude-main myprog.cob mysub.cob

You may the link the program with:
>cobc -x -flink-only myprog.o mysub.oad

This will generate a myprog executable. No static “.a” library is produced, and the main symbol of
myprog.o is used.

Example:
>cobc -x myprog.cob mysub.cob

This will generate a myprog executable. No static “.a” library is produced.

-fincomplete-subscript

Affects the behavior of MOVE:s to table items.

Consider a data item declared as 01 TABLE OCCURS 10 PIC X.

Causes the phrase MOVE SPACE TO TABLE to be equivalent to MOVE ALL SPACE TO
TABLE.

-findex-optimize

Improves performance where indexes in tables are evaluated and USAGE DISPLAY fields are used
as indexes. In these cases, the index values are cached in a C integer field to improve performance.

As an example, consider the usage of the follow code:

01 IxdA PIC 999 USAGE DISPLAY.
01 IxdB PIC 999 USAGE DISPLAY.

MOVE FLD-ARRAY(IxdA, ixdB) TO ...
MOVE FLD-ARRAY(IxdA, ixdB) TO ...
IF (FLD-ARRAY(IxdA, ixdB) ...

Use of the —findex-optimize compiler flag will benefit the performance of these MOVE and IF
statements by keeping the actual value of the index in a binary C cache, thus avoiding conversion

@ COBROLIT Page 54

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

from DISPLAY (or COMP-3) to a binary value each time the index is evaluated in a statement.
The -findex-optimize flag is enabled by use of the -O or -O2 compiler flags.

-finitialize-fd

Causes records declared in the FD section to be initialized when the program is initially loaded in
memory.

-finitialize-opt

Using the -finitialize-opt compiler flag optimizes the implementation of the initial field
initialization at runtime startup and the execution of the INITIALIZE statement by grouping field
initializations wherever possible.

-fkeep-copy-statement

In listing and preprocessed file, keep COPY statements.

-fkeep-org-src-line

For use with the integrated pre-processor (-preprocess). Causes errors to be reported on the
original source line.

-fkeep-unused

Causes memory to be allocated for the field tree of level-01 and level-77 data items that are
declared which contain sub-fields and in which none of these sub-fields is used.

The -fno-keep-unused compiler flag causes memory to not be allocated for the field tree of level-01
and level-77 data items that are declared which contain sub-fields and in which none of these sub-
fields is used.

-fline-seq-dos

Affects the writing of the record delimiter at the end of each record in a line sequential file. When
compiling with -fline-seg-dos, the record delimiter is set to <CR><LF>.

-flink-only

Causes the main() symbol to not be generated, when used with —x. For use when the program
entry point (main) is provided by an external object or library.

-flisting-sources

Informs the compiler that source is the result of program listing option (-t <file>).

-floosy-comment

Causes the compiler to allow a * in column 8 to be used to mark a comment.

@ COBOLIT Page 55

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fls-expand-tab

Causes the READ of a LINE SEQUENTIAL file to expand the TAB character to 8 spaces
(default)

-fmain

Generates main() symbol when used with -x (default)

-fmain-as-object
Generates main() symbol as object not in library (unix only) (default)

-fmainframe-vb

The —fmainframe-vb compiler flag causes WRITEs and READs of Variable Blocked files to
assume formats compatible with the Mainframe Z/OS COBOL Format.
-fmakesyn-patch-preprocess

Causes the makesyn compiler flag to change the output of a pre-processed file.

-fmanuallock

Causes all files with no LOCK MODE clause in their SELECT statement to be declared
Implicitly as LOCK MODE is MANUAL unless a SHARING clause in the SELECT statement
or in the OPEN statement indicates otherwise. For details on other —f compiler flags related to
the treatment of LOCK MODE, see Guidelines for modifying default handling of the LOCK
MODE.

-fmem-info

Enables Dump of Working-Storage when runtime aborts. The —-fmem-info compiler flag
functionality is enabled by the —g compiler flag, and by the —debug compiler flag.
-fmfcomment

Treats lines with "*' or '/' in column 1 as comments.

-fmf-compat-parser
Increases compatibility of syntax parser with the Micro Focus syntax parser. (default).

Causes COBOL-IT to match certain Micro Focus behaviors. These include :
Parsing of line continuation characters

Relaxed syntax check on RECORD CONTAINS phrase in the FD
Allowing level-66 and level-88 data names to have the same name as a paragraph or section.

-fmf-ctrl-escaped-parser
Syntax parser is MF compatible with control character escaped by 0 (default).

@ COBOLT Page 56

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fmf-file-optional
Affects the file-status codes returned on files declared as OPTIONAL and OPEN in EXTEND.

The —fmf-file-optional compiler flag causes files declared as OPTIONAL and OPEN in EXTEND
to return file-status code “05” if the file is created and file-status code “00” if the file exists. The
—fmf-file-optional compiler flag improvetrus consistency with Micro Focus behaviors.

Alternatively, the runtime returns file-status code 00 in either case.

The —fmf-file-optional compiler flag corresponds to setting mf-file-optional:yes in the compiler
configuration file.

-fmf-gnt
Causes shared objects generated by the compiler to be created with the.gnt extension.

Note that the generated object IS NOT compatible with the .gnt objects produced by Micro Focus.
This option is only used to reduce change in existing compilation scripts by causing object code to
be generated with the same extensions.

-fmf-hostnumcompare

Provides compatibility with Micro Focus in cases where the HOST-NUMCOMPARE directive is
used. The -fmf-hostnumcompare compiler flag affects comparisons of USAGE DISPLAY numeric
data items when one of the numeric data items in the comparison contain non-numeric data.

When compiling with -fmf-hostnumcompare, the field containing numeric data is redefined as an
alphanumeric item of the same length, and this redefined data item is compared with the non-
numeric value of the other numeric data item.

When not compiling with -fmf-hostnumcompare (the default), the contents of the field containing
numeric data are moved to an intermediate alphanumeric data item that is the same size as the field
containing nonnumeric data before the comparison is performed. The content of this intermediate
alphanumeric item is then compared to the non-numeric value of the other numeric data item.

-fmf-int
Causes shared objects generated by the compiler to be created with the.int extension.

Note that the generated object IS NOT compatible with the .int objects produced by Micro Focus.
This option is only used to reduce change in existing compilation scripts by causing object code to
be generated with the same extensions.

-fmf-relativefile

The —fmf-relativefile compiler flag causes the runtime to assume the Micro Focus format for
relative files for both READ and WRITE operations.

When using the —fmf-relativefile compiler flag, the end-of-record marker for relative files is
consistent with the setting of the compiler configuration flag line-seq-dos.

When line-seq-dos:yes, the end of record setting is CR/LF
When line-seg-dos:no, the end of record setting is LF

@ COBOLT Page 57

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fmodule-name-entry

Generates source module as alternate entry (default)

-fmodule-uppercase
Causes the output file name to be created in upper-case, when used with the —m compiler flag.

-fmove-all-edited
Causes MOVE ALL “X” to an edited field to take care of the PICTURE.

Corresponds to compiler configuration file setting:
move-all-edited: yes

-fno-cbl-error-proc

Prevents the execution of CBL_ERROR_PROC.

Corresponds to compiler configuration file setting:

no-cbl-error-proc: yes

-fno-realpath

Causes file names to NOT be extended to a fully qualified path.

By default, when processing file names, the compiler retrieves the fully qualified path (from the
root) and processes the compilation using that extended name. That full name is also stored as the
source file name for debugging purposes.

-fnostrip

Causes objects and object and executable files to NOT be stripped.

Stripping an object or an executable is the action of removing system level debugging information
-fnotrunc

Causes truncation of binary fields to NOT be made according to the PICTURE clause while
performing intermediate computations.

-fnull-param

Causes an extra NULL pointers to be passed as the last argument on CALL statements.

-fnumeric-compare

Causes the comparison of a numeric field with a PIC X field to interpret the value of the PIC X
field using its numeric value.

-fnumval-validate

The -fnumval compiler flag validates argument 1 of the NUMVAL function.

@ COBOLT Page 58

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fobj-cit

The —fobj-cit compiler flag causes compiled object to be generated with a cit extension instead of
.dll (windows) or .so (unix/linux). The COBOL-IT runtime recognizes the .cit extension as an
executable extension.

In a runtime session in which some of the programs have been compiled with the -fobj-cit compiler
flag, the runtime, when resolving the names of programs/sub-programs, will search first for
programs/sub-programs with the .cit extension. Subsequently, the runtime will search for
programs/sub-programs with the .so/.dll extension.

In a runtime session in which no programs have been compiled with the -fobj-cit compiler flag, the
runtime will search first for programs/sub-programs with the .so/.dll extension.
-fodo-slide

Affects data items that appear after a variable-length table in the same record; that is, after an item
with an OCCURS DEPENDING clause, but not subordinate to it.

If the odo-slide compiler flag is set, these items always immediately follow the table, whatever the
current size of the table. Note that the internal addresses of these data items change as the table's
size changes.

If the odo-slide compiler flag is not set, these items have fixed addresses, and begin after the end of
the space allocated for the table at its maximum length.

Note : The mf.conf configuration file, which contains compiler configuration flags designed to
match Micro Focus default behaviours, includes the setting odo-slide : no.

-foptimize-move

Causes MOVE operations to be optimized by -fmem-info where the source and target fields have
identical declarations. (Default is on).

-foptimize-move-call

Causes MOVE operations to be optimized by pre-selecting the internal runtime library routines
used for the MOVE when possible.

-foptional-file

Causes all SELECT statements that do not specify OPTIONAL or NOT OPTIONAL to be
considered OPTIONAL.

If the compiler flag is not present or if -fno-optional-file is specified, NOT OPTIONAL is the
default value.

The implementation of —foptional-file is designed to be compatible with the OPTIONAL-FILE
compiler directive supported by other COBOL compilers.

-fperform-osvs

Enhances compatibility with OSVS COBOL PERFORM statements

@ COBOLT Page 59

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

The $SET perform type settings of COB370, ENTCOBOL, OSVS and VSC2 are emulated with the
-fperform-osvs compiler flag.

The exit point of any currently executing perform is recognized if reached.

PERFORM statements with the same exit point can be nested to a depth of two (one inner and one
outer). If they are nested deeper, they do not return correctly. The end of a section is regarded as a
separate point from the end of its last paragraph.

The example below is included to illustrate a possible consequence of using the -fperform-osvs
compiler flag, where an infinite loop results that would otherwise be avoided.

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST-PERFORM.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 sw PIC X VALUE '1'.
01 ABORT-PRG PIC X (3) VALUE 'NO'.
PROCEDURE DIVISION.
BEGIN.
DISPLAY "BEGIN".
PERFORM A THRU A-EX UNTIL ABORT-PRG = 'YES'.
DISPLAY"END".
STOP RUN.

DISPLAY "I AM IN C".

IF sw = '1"'
PERFORM D THRU D-EX
ELSE
MOVE 'YES' TO ABORT-PRG.
A-EX.
EXIT.
B.
DISPLAY "I AM IN B".
MOVE 'O' TO SW.
GOTO C.

IF sw = '1'

GOTO B.
D-EX.

EXIT.

When not using the -fperform-osvs compiler flag, , the source above produces the following result :
BEGIN
I AM IN B
I AM IN C
END
-fprepro_cut_line

When preparing a file for preprocessing, cuts line to 72 columns (default).
Corresponds to compiler configuration file setting:

@ COBOLIT Page 60

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

prepro_cut_line: yes

-fprinter-crlf

Files declared with ASSIGN TO PRINTER file names are generated with compatibility for DOS
printers. This will change the End Of Record to CR/LF (instead of LF)

-fprofiling

Generates paragraph profiling code. The output produced by the profiler includes separate
Counts for CPU and real elapsed times. For more details on using COBOL-IT’s built-in
Profiler, see Guidelines for use of Profiler below.

-fprotect-linkage

Generates code at the entry point of a program containing a USING xxx clause.

This allows for the passing of parameters that are NULL pointers. In these cases, where NULL
pointers are passed, the compiler creates a “fake” field of the same definition in WORKING-
STORAGE, and substitutes it as a reference for the parameter. Doing this will avoid a SIGVEC
error if NULL pointers passed through linkage are targets of a READ or WRITE statement.
-fraw-by-value

CALL BY VALUE [PIC X FId] does not convert [PIC X FId] to numeric COMP-5 (default).

-fraw-pic9-display (Internal use only)
DISPLAY PIC 9(X) (no sign, no decimal) as it is in memory.

-fread-into-copy
Causes a READ INTO statement to COPY data rather than perform a MOVE.

Corresponds to compiler configuration file setting:
read-into-copy: yes
-fready-trace

The -fready-trace compiler flag enables paragraph tracing between READY TRACE and RESET
TRACE procedural COBOL statements. In the interval between the READY TRACE and RESET
TRACE statements, paragraph tracing output is written to the console in the format:

PROGRAM-ID: [program-id]: [paragraph name]

-frecmode-f
Causes all unspecified RECORDING MODE clauses to be interpreted as RECORDING MODE F.

-frecmode-v
Causes all unspecified RECORDING MODE clauses to be interpreted as RECORDING MODE V.

@|COBOLIT Page 61

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-frecord-depending-iso

Causes a RECORD DEPENDING ON <FIELD> clause to be handled in an 1ISO-compatible
manner. More specifically, the —frecord-depending-iso compiler flag causes files declared with a
RECORD DEPENDING ON <FIELD> clause, without any FROM or TO value, to assume a
FROM and TO value of the maximum record size.

The —frecord-depending-iso compiler flag corresponds to the
record-depending-iso:yes compiler configuration flag.

-fregion0

Causes the program to always switch to region 0 when executing. The compiler flag -fregion0
lets you specify that the module will always execute in region 0 even if called from another
region. When called from another region, the module will switch to region 0 on entry and
switch back to the calling region at exit.

-frelativefile-bigendian
Causes the record header of relative files to be stored in BigEndian format.

-freplace-additive

Allows for the use of the REPLACE ADD verb, which has the effect of nesting a REPLACE
statement inside an existing REPLACE statement. Nested REPLACE statements are executed
before outer REPLACE statements in COBOL-IT’s precompile phase. Note that aa REPLACE
stack can be cleared with the REPLACE OFF statement.

-freturn-opt

Generates optimized PERFORM return code. The —freturn-opt compiler flag is ignored when
using the —fgcc compiler flag.

-fround-fp

Controls the way COMP-1 or COMP-2 are “moved” into non-COMP-1 or COMP-2 target fields
when the target field has fewer decimal places than the source field.

If the —fround-fp compiler flag is used, the value is rounded to the number of decimal of the target
field. Otherwise, the value is truncated.

-frw-after-preprocess

Causes SPCRW?2 to be run after the -preprocess script. By default SPCRW?2 is run before the
-preprocess script.

-frv-mode-nopf

Is equivalent to setting MODE NOPF for a Report Section report. MODE NOPF causes the Report
Writer to emulate an external print driver that does not generate printer control characters, like FF.
When using the -frw-mode-nopf compiler flag, the report file is written as a standard LINE
SEQUENTIAL file.

@|COBOLIT Page 62

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-frv-mode-nopf-dos

Is equivalent to setting MODE NOPF for a Report Section report. MODE NOPF causes the Report
Writer to emulate an external print driver that does not generate printer control characters, like
FF.When using the -frw-mode-nopf-dos compiler flag, the report file is generated with
fixed-length lines that are padded with SPACES and use the CR/LF record delimiter.

-fsafe-linkage

Generates code at the entry point of a program containing a USING xxx clause.
This allows for the omission of parameters. Doing this will avoind a SIGVEC being returned by
the debugger when all linkage parameters are not provided.

-fsequential-line

Causes all non-qualified SEQUENTIAL files to be declared as LINE SEQUENTIAL. Files
declared as RECORD SEQUENTIAL are not affected.

-fshare-all-autolock

Causes all files with a SHARE WITH ALL clause in their SELECT statement to be declared
implicitly as LOCK MODE IS AUTOMATIC. For details on other —f compiler flags related to
the treatment of LOCK MODE, see Guidelines for modifying default handling of the LOCK
MODE.

-fshare-all-default
The -fshare-all-default compiler flag causes all files to be declared implicitly as SHARE WITH

ALL.

-fshare-all-default may be used in conjunction with :

-fshare-all-autolock Causes all files with a SHARE WITH ALL clause in their SELECT statement
to be declared implicitly as LOCK MODE IS AUTOMATIC.

-fshare-all-manulock Causes all files with a SHARE WITH ALL clause in their SELECT statement
to be declared implicitly as LOCK MODE IS MANUAL.

-fshare-all-default should not be used in conjunction with:

-fexclusivelock Causes all files with no LOCK MODE clause in their SELECT statement to
be declared implicitly as LOCK MODE is EXCLUSIVE.

-fmanuallock Causes all files with no LOCK MODE clause in their SELECT statement to
be declared implicitly as LOCK MODE is MANUAL unless a SHARING clause in the SELECT
statement or in the OPEN statement indicates otherwise.

For details on other —f compiler flags related to
the treatment of LOCK MODE, see Guidelines for modifying default handling of the LOCK
MODE.

@ COBOLIT Page 63

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fshare-all-manulock

Causes all files with a SHARE WITH ALL clause in their SELECT statement to bedeclared
implicitly as LOCK MODE IS MANUAL. For details on other —f compiler flags related to the

treatment of LOCK MODE, see Guidelines for modifying default handling of the LOCK

MODE.

-fsign-ascii
Corresponds to the SIGN “ASCII” directive. Causes numeric DISPLAY items that include signs

to be interpreted according to the ASCII sign convention. (default on ASCII machines)

Digit Sign Digit Character for:
Positively-signed values Negatively-signed values
-fsign- [-fsign- | -fcarealia- | -fsign- | -fsign- -fcarealia-
ascii ebcdic | sign ascii ebcdic sign
0 0(30) {(7B) 0(30) p(70) H7D) 0(30)
1 1(31) A(41) 1(31) q(71) J4A) |11
2 2(32) B(42) 2(32) r(72) K(4B) "(22)
3 3(33) C(43) 3(33) s(73) L(4C) #(23)
4 4(34) D(44) 4(34) t(74) M@4D) | $(24)
5 5(35) E(45) 5(35) u(75) N(4E) %(25)
6 6(36) F(46) 6(36) v(76) O(4F) &(26)
7 7(37) G(47) 7(37) w(77) P(50) '(27)
8 8(38) H(48) 8(38) x(78) Q(51) ((28)
9 9(39) 1(49) 9(39) y(79) R(52))(29)
-fsign-ebcdic

Corresponds to the SIGN”EBCDIC” directive. Causes numeric DISPLAY items that include signs
to be interpreted according to the EBCDIC sign convention. (default on EBCDIC machines)

Digit Sign Digit Character for:
Positively-signed values Negatively-signed values

-fsign- -fsign- | -fcarealia- | -fsign- | -fsign- -fcarealia-
ascii ebcdic | sign ascii ebcdic sign

0 0(30) {(7B) 0(30) p(70) H7D) 0(30)

1 1(31) A(41) 1(31) q(71) J(4A) 1(21)

2 2(32) B(42) 2(32) r(72) K(4B) "(22)

3 3(33) C(43) 3(33) s(73) L(4C) #(23)

4 4(34) D(44) 4(34) t(74) M(4D) | $(24)

@ COBOLT

Page 64

@ CO BOL-l-_ COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

5(35) | E(45) 5(35) | u(75) N(@E) | 0(25)
6(36) | F(46) 6(36) | v(76) O(4F) | &(26)
7(37) | G(47) 7637) | w(7) PGO) | '(27)

8(38) | H(48) 8(38) | x(78) QBL) | ((28)
9(39) | 1(49) 939) | y(79) R(52) |)29)

© 00 N O O1

—fsign-leading
Makes SIGN IS LEADING the default.

—fsign-separate
Makes SIGN IS SEPARATE the default.

-fsimple-trace
Generates trace output at runtime for executed SECTION/PARAGRAPHS.

-fsource-location

Generates source location code, enabling information to be dumped on source location when the
runtime aborts. The —fsource-location compiler flag is enabled by the —g compiler flag, and by
the —debug compiler flag.

-fsplit-debug-mark

DEBUG marks respect max 72 characters (default)

-fstack-check

Enables stack checking debug function. The stack checking debug function allows the user to trace
back through the stack of calling programs to the currently running line of source in a program.
The —fstack-check compiler flag is enabled by the —g compiler flag, and by the —debug

compiler flag.

-fstatic-call

Causes static C function calls to be generated for the CALL statement.

This implies that all CALL’ed programs are C function that are linked with the current program.
When using the —fstatic-call compiler flag, no external dynamic resolution is performed at run-
time.

-fstrict-compare-low

Causes display of numeric variables containing low values not equal to zero or spaces when
compared.

Corresponds to compiler configuration setting:
strict-compare-low: yes

@ COBOLT Page 65

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fstrict-record-contains

Causes the RECORD CONTAINS clause to be strictly respected. (This is the default.)
Note that this compiler flag contains underscores, instead of hyphens.

When an FD contains a RECORD CONTAINS xx CHARACTERS clause, such as:
RECORD CONTAINS 70 CHARACTERS

but the actual record size described has fewer characters than are named in the clause, COBOL-IT
now sends the stated number of characters in the RECORD CONTAINS clause for both MIN-
RECORD-SIZE and MAX-RECORD-SIZE.

Note that in the case above, when using VBISAM, which does not rely on EXTFH handling,
COBOL-IT would detect the smaller actual record size, and pass it through as the MIN-RECORD-
SIZE.

This behavior increases compatibility with the EXTFH implementation of the c-Tree ISAM file
system. If you encounter an EXTFH-compliant file system that requires that the non-EXTFH
default behavior described above, then you may compile with the

-fno-strict_record_contains compiler flag, or set :

strict-record-contains:no in the compiler configuration file .

-fsyntax-only
Performs syntax error checking only. Output is limited to results of syntax check.

-fthread-safe

Generate thread-safe executables. For more details, see Guidelines on operating in a thread-safe
environment below.

When implementing the COBOL-IT Region Interface, required to provide region isolation. For
more details, see the chapter on the COBOL-IT Region Interface.

-ftrace

Generates trace output at runtime, listing the SECTION/PARAGRAPH names as they are
executed.

-ftrace-ts
Generates trace code with timestamp (Executed SECTION/PARAGRAPH)

-ftrace-upon-sysout
Causes trace output to be written upon SYSOUT. Default is to write trace output upon SYSERR.

@ COBOLIT Page 66

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-ftraceall

Generates trace output at runtime, listing SECTION/PARAGRAPH/STATEMENTS names as they
are executed.

-ftrap-unhandled-exception

is useful in cases where certain EC compiler configuration file flags are set to yes, yet ON
EXCEPTION/ON SIZE ERROR/ON OVERFLOW language is not present in the COBOL
program. In these cases, using the —ftrap-unhandled-exception compiler flag causes the
information made available to the user to be enhanced when the program aborts.

As an example, in a case where there is a compiler configuration flag setting of :
EC-SIZE:yes

and where this phrase does not contain an ON SIZE ERROR clause, the program would abort in
cases where a SIZE ERROR was triggered. In combination with —ftrap-unhandled-exception:yes,
all size error events will be captured.

As another example, where there is a compiler configuration flag setting of:
EC-SIZE-ZERO-DIVIDE:yes

In combination with trap-unhandled-exception:yes, setting EC-SIZE-ZERO-DIVIDE:yes will
capture all division by zero error events if no ON SIZE ERROR clause is present.

Note- this applies to the following EC- compiler configuration flags:

EC-IMP-ACCEPT :yes

For Accept exception
EC-IMP-DISPLAY :yes

For Display exception
EC-SIZE : yes

#For Arithmetic exception
EC-OVERFLOW : yes

For String/Unstring exception

Note that all of the EC- compiler configuration flags can be set to yes using the —debug compiler
flag. You may wish that your error procedure be always called on any exception, and thereby
ensure that your server will handle it and not crash. In these cases, you should use the

—debug compiler flag together with the —ftrap-unhandled-exception flag.

For details on how to install and uninstall error procedures, see the COBOL-IT Library Routines
documentation for the CBL_ERROR_PROC library routine. CBL_ERROR_PROC installs or
uninstalls an error procedure, which is run when a program-ending error occurs. The Error Routine
allows the user to register procedures that will automatically be executed either when a program-
ending error occurs.

-ftruncate-listing
Causes output of the -t <file> compiler flag to be truncated at column 76

@|COBOLIT Page 67

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-funstring-use-move

The -funstring-use-move compiler flag affects the behavior of the UNSTRING verb. When using
the -funstring-use-move compiler flag, if the target of an UNSTRING INTO operation is described
as PIC 9, then the operation will be performed using a MOVE operation instead of raw copy
operation. Then rules defined by the move-picx-to-pic9 compiler configuration flag are used for
conversion.

-futf-8

Instructs the compiler that the source file, and literals are UTF-8 encoded. The -futf-8 compiler flag
can be used with, or without the -codepage compiler flag.

If -the futf-8 compiler flag is used and the -codepage compiler flag is not specified, then -codepage
UTF-8 is assumed.

>cobc -futf-8 <source-file>

If, however, you wish to compile your source with another codepage (for example, the LATIN1
codepage), you should explicitly include that codepage declaration.

>cobc -futf-8 -codepage latinl <source-file>

-futfl6-le

Causes fields declared as PIC N to be stored as UTF16-LE (Little Endian). Note that by default,
fields declared as PIC N are stored as UTF16-BE (Big Endian).

Note- Big-Endian refers to a convention for the storage of integers in memory in which the most
significant bytes are stored in the bytes with the lower addresses. The integer 256 is stored in Big-
Endian format, as follows: 00000001 00000000.

Little-Endian refers to a convention of or the storage of integers in memory in which the least
significant bytes are stored in the bytes with the lower addresses. The integer 256 is stored in
Little-Endian format, as follows: 00000000 00000001.

“Endianness” is determined by the Processor of your computer. A simple rule of thumb is that if
you have an x86 processor, your platform has alittle-endian data storage convention. Otherwise,
you most likely have a a big-endian data storage convention. Check with your system
administrator if you have any questions.

Used in conjunction with the compiler configuration file setting:
Is-utfl6: yes

-fvalidate-dep-on
Causes the setting of DEPENDING ON to be set at runtime.

Corresponds to compiler configuration file setting:
validate-dep-on: yes

@ COBOLIT Page 68

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-fvalidate-only
Compiles source, no output produced, EXEC are ignored.

-fvalue-of-id-priority

Gives priority to the literal or data element named in the VALUE OF FILE-ID clause in the FD,
causing the target of the VALUE OF FILE-ID clause in the FD to override the target of the
ASSIGN clause for the file.

-fvalue-size-is-auto

Causes the CALL ..USING BY VALUE : default SIZE IS clause to be set to AUTO (current
default is SIZE IS 4).

-fvbisam

Forces use of the VBISAM Extfh indexed file engine.

This is the default setting in version 3.x and prior versions of COBOL-IT. However, in the future
release of COBOL-IT version 4.x, VBISAM will be deprecated and D-ISAM will become the
default. At that time, continued use of VBISAM files will require that the VBISAM Extfh indexed
file engine be activated either by using the -vbisam compiler flag, or with the use of the
COB_EXTFH=vbisamextfh runtime environment variable setting.

-fvms-error-handler

Causes the default file error handler to always abort (emulation of VMS behavior)

Corresponds to compiler configuration file setting:

vms-error-handler: yes

-fxparse-event

The -fxparse-event compiler flag causes the XML PARSE statement to generate START-OF-
DOCUMENT and END-OF-DOCUMENT XML-EVENTS.

Guidelines for handling Linkage Section parameters

There are a number of scenarios where different behaviors could be desired, with respect to the
handling of Linkage Section parameters. These include:

* The allocation of memory to fields that are declared in a USING clause but not used

* The passing of parameters that are null pointers

* The omission of parameters, which may be subsequently used.

The -f compiler flags related to the handling of Linkage Section parameters are:
-falloc-unused-linkage Causes the compiler to allocate static memory for level 01 fields in
the Linkage Section that are not used in either a USING clause or an

ENTRY clause.

-fprotect-linkage Generates code at the entry point of a program containing a USING
XXX clause.

@ COBOLIT Page 69

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

-fsafe-linkage Generates code at the entry point of a program containing a USING
xxx clause. This allows for the omission of parameters. Doing this
will avoind a SIGVEC being returned by the debugger when all
linkage parameters are not provided.

Guidelines for modifying default handling of the LOCK MODE

There are several —f compiler flags designed to allow the user to create implicit declarations for
LOCK MODE in files.

The -f compiler flags related to the treatment of LOCK MODE are:

-fexclusivelock Causes all files with no LOCK MODE clause in their SELECT statement to
be declared implicitly as LOCK MODE is EXCLUSIVE.

-fmanuallock Causes all files with no LOCK MODE clause in their SELECT statement to
be declared implicitly as LOCK MODE is MANUAL unless a SHARING
clause in the SELECT statement or in the OPEN statement indicates
otherwise.

-fshare-all-autolock Causes all files with a SHARE WITH ALL clause in their SELECT statement
to be declared implicitly as LOCK MODE IS AUTOMATIC.

-fshare-all-manulock Causes all files with a SHARE WITH ALL clause in their SELECT statement
to be declared implicitly as LOCK MODE IS MANUAL.
-fshare-all-default ~ Causes all files to be declared implicitly as SHARE WITH ALL.

Guidelines for use of Checkpoints

COBOL-IT supports the CHECKPOINT verb, which can be used to enable checkpoint processing
in programs compiled with the —fcheckpoint compiler flag.

e Usage:

CHECKPOINT [checkpoint prefix] CONTINUE [GIVING field]

or

CHECKPOINT [checkpoint prefix] EXIT [RETURNING|WITH] [return value]
[GIVING field]

e CHECKPOINT saves the current status of a program (Field Value, call stack , perform
stack) into a file named <checkpoint prefix><program id>.ctx.

¢ When used with CONTINUE, the runtime saves the status and continues execution.
¢ When used with EXIT RETURNING value, the runtime saves the status, and exits the

@ COBOLT Page 70

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

program (and all calling parent programs) returning the value.

e When called back with checkpoint file, the runtime reloads the program status and continues
the execution at the statement just following the CHECKPOINT line. If a GIVING clause is
specified, the field is set to "1" when reloading and to "0" when execution is continuing.

e Reloading a checkpoint is done by using the —reload compiler flag, or by using the —reload
compiler flag together with the —checkpoint compiler flag, and the <checkpoint prefix>:

>cobc —--reload myprog
or
>cobc --reload --checkpoint <checkpoint prefix>myprog

Guidelines for use of Profiler

COBOL-IT provides a profiling utility that allows you to analyze where your programs are
spending time by providing output, in Excel format, on the number of times a paragraph is
executed, and both CPU and elapsed time spent in each paragraph.

The time is expressed in a platform-dependent unit, named “Ticks” as provided by the runtime
environment of the “C” Compiler at hand. Please check the clock function for more information
about this.

Because of the coarseness of this unit, some of the times measured as described above may be zero,
while the paragraph has been executed one or more times.

By default, on program exit, the COBOL_IT runtime generates a file named
cob_profiling_<PID>_final.xls, where [PID] is the PID number. This file is a tab separated text
file, and can be opened directly with a spreadsheet like OpenOffice Calc or Microsoft Excel.

To enable the profiling utility, compile your program with the —fprofiling compiler flag.
Example:

>cobc —fprofiling sample.cbl

>cobcrun sample

>cob profiling 11344 final.xls

Returning Profiling Dumps prior to the program exit:

Dumping Profiling Data at the Module Level

Your can generate separate output files for each module in your COBOL runtime session by setting
the runtime environment variable COB_PROFILING_EACH_MODULE=Y. In this case an XLS
file is output at the exit of each module in the application using the naming convention

@ COBOLT Page 71

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

[MODULE]_[PID]_profile.xls.

Using the PRAGMA statement to produce Profiling Reports

The PRAGMA statement provides internal compiler control, for profiling. The first literal is the
command sent to the compiler.

Format 1

PRAGMA “PROFILING” { literal-1 } ...

Format 2

PRAGMA “DUMP” { literal-1 } ...

Syntax

1. literal-n is a character string.

General Rules

1. The PRAGMA “PROFILING” statement causes programs compiled with —fprofiling to
report time measurements from the current PRAGMA statement to the next PRAGMA , or
to the end of the program.

2. The PRAGMA “PROFILING” statement should be entered in column 8, as in the Code
Sample below.

3. The PRAGMA “DUMP” statement causes a profiling report to be generated when executed.
Profiling reports produced by the PRAGMA “DUMP” statement will overwrite previous
PRAGMA “DUMP” files with the same name.

PRAGMA “PROFILING” Code Sample

PROCEDURE DIVISION.
PRAGMA "PROFILING" "STEP1".

PRAGMA "PROFILING" "STEP2".

PRAGMA “DUMP” Code Sample

PROCEDURE DIVISION.

PRAGMA "DUMP" "REPORT".

Info profiling debugging command
The cobcdb compiler command >info profiling causes a profiling dump to be produced,

@|COBOLIT Page 72

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

dumping profiling information at the current point in the program. Profiling information is dumped
in the .xIs file format.

Attaching a program compiled with -fprofiling to a running process

A program compiled using the -fprofiling compiler flag may be attached exactly like a program to
debug (with cobcdb -p <pid>) even if the program is not compiled for debugging .

Guidelines for thread-safe programs

The -fthread-safe compiler flag causes thread-safe code to be generated.

Take care to use the -fthread-safe compiler flag when interoperating with Java. All programs in an
application that interoperates with Java should be compiled with —fthread-safe, even those not
directly calling, or called by Java. For more information on Interoperability between COBOL-IT
and Java, see the Chapter on COBOL/Java Interoperability.

Thread safe internal structures now use the pthread library, which is available in AIX, Linux, HPUX
Itanium, Sun Solaris and Windows operating environments.

Thread memory release and support for a program monitor

COBOL-IT supports Thread memory release and support for a program monitor taking control of
the abort & exit of the COBOL-IT runtime. A typical “program monitor” should use the following
scheme to call COBOL programs:

/* Allocate Runtime Data memory for this thread */
cit runtime t * constrtd = cob_get rtd();

int (*func)();
int res;

/*initialize COBOL Thread runtime */
cob_init(rtd, argc, argv);

/* Prepare the Runtime to exit with a long jump instead of exit(x)*/
res = cob_setjmp(rtd);
if (res ==0) {

/* Find the COBOL Program */

func = cob_resolve(rtd, "prog");

if (func) {
/* Call it and all other needed*/
func();
}
/* if the Program goes Here the the COBOL exit normally */
/* with a GO BACK */

@ COBOLT Page 73

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

}else if (res >0 && res < 127) {
/* COBOL Program exit normally through STOP RUN */
/* res hold the RETURN-CODE */

} else {
/* COBOL Program exit on runtime abort */
/* res hold the error code */

}

/* Before leaving the Thread Release Runtime Data */
cob_rtd tidy ();

Compiler —w Flags

-w compiler flags are warning flags.
All —w compiler flags are provided in the form : -Wwarning-name

To enable the flag, use: -Wwarning-name
Example:

cobc -Wall sample.cbl

To disable the flag, use: -Wno-warning-name
Example:

cobc -Wno-all sample.cbl

Warnings are evaluated in the command line order.
For example, use the command:

>cobc -Wall -Wno-archaic
to enable all warnings but the archaic features.

Note that cobc -w when used with no warning flag has the effect of disabling all warnings.

Example:

cobc -w sample.cbl

The Warning Compiler flags are:

@ COBOLT

Page 74

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-W
Disables all warnings.

-Wall
Enables all warnings.

-Warchaic
Warns if archaic features are used.

-Whdb
Warns about bdb license. (default).

-Wcall-params
Warns if non 01/77 items are used for CALL parameters (NOT set with Wall).

-Wconstant

Warns if inconsistent constant is used.

-Wimplicit-define

Warns of implicitly defined data items.

-Winformation

Warns information about 'not recommended’ code. —~Winformation is applied by default.
-Wlinkage

Warns of dangling LINKAGE items. (NOT set with -Wall).

-Wobsolete
Warns if obsolete features are used.

-Wparentheses
Warns of lack of parentheses around AND within OR.

-Wredefinition

Warns if incompatible redefinition of data items are used. -Wredefinition is defined by default.
-Wstrict-typing

Warns of type mismatch strictly.

-Wsuggestion
Warns suggestions about 'not recommended' code. —Wsuggestion is applied by default.

-Wterminator
Warns of lack of scope terminator, such as END-XXX. (NOT set with -Wall)

@ COBROLIT Page 75

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
-Wtruncate
Warns of possible field truncations. —Wtruncate is applied by default.
-Wunreachable
Warns of unreachable statements.
Page 76

@ COBOLT

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Compiler Configuration File

The Compiler Configuration File describes compiler behaviors, and is checked by the compiler
cobc at compile time.

The default compiler configuration file, default.conf, is located in $COBOLITDIR/config on
Windows-based systems, and on $COBOLITDIR/share/COBOL-it/config on UNIX/Linux-based
systems.

When modifying compiler configuration flags included in any of the compiler configuration files
provided at installation time, care must be taken when upgrading the COBOL-IT compiler, as these
files will be overwritten at installation time. This problem can be avoided by renaming files which
have been modified, and using the —conf=<myconf.conf> compiler flag.

COBOL-IT also provides a number of sample compiler configuration files, which contain settings
that enhance compatibility with different COBOLSs.

These include

COBOL Configuration file
Bs2000 bs2000.conf
COBOL 2002 COBOL2002.conf
COBOL 85 COBOLS85.conf
IBM ibm.conf

Micro Focus mf.conf

MVS mvs.conf

The compiler can be directed to use any of these files by using the —std compiler flag. The —std
compiler flag will recognize the filename (without extension) of any of the provided compiler
configuration files as a parameter, as follows:

>cobc —std=bs2000 sample.cbl
You may create your own compiler configuration file, and name it whatever you wish.

To direct the compiler to reference a renamed compiler configuration file, locate your renamed
compiler configuration file in the $COBOLITDIR/config on Windows-based systems, and on
$COBOLITDIR/share/config on UNIX/Linux-based systems., and use the

—conf compiler flag as follows:

>cobc —conf=myconf.conf
To facilitate the creation of your own compiler configuration file, you may use the “include” phrase

to indicate that you wish to include all of the settings of a named compiler configuration file, as
follows:

‘ include “default.conf”

@ COBOLT Page 77

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

assign-clause=mf
binary-byteorder=native

Brief descriptions, and valid settings of supported compiler configuration flags are documented
below:

77-opt:[yes/no]

Default is 77-opt : no.

When set to yes,

Optimizes the use of integers stored in USAGE DISPLAY or PACKED fields in level 77
data items. The 77-opt optimizations are enabled by use of the —O compiler flag.
accept-but-ignore-comp6-signed:[yes/no]

Default is accept-but-ignore-comp6-signed: no

Affects compilation of data items described as signed, with usage COMP-6.
When set to yes,

COMP-6 defined as signed (PIC S9) are compiled as non signed.
accept-with-auto:[yes/no]

Default is accept-with-auto:no.

When set to yes,
Causes the WITH AUTO clause to be assumed by default on a field-level ACCEPT statement.

When set to no,

The WITH TAB clause is assumed by default on a field-level ACCEPT statement.
accept-with-update:[yes/no]

Default is accept-with-update:no

When set to yes,

All field-level ACCEPT statements are interpreted as containing the “WITH UPDATE” clause.
align-8:[yes/no]

Defaultis align-8:no*.
* On HP Itanium based systems this flag is always enabled

When set to yes,
Aligns 01-level and 77-level data on 8 byte boundaries.

When set to no,
Aligns 01-level and 77-level data on 4-byte boundaries.

@ COBOLT Page 78

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

all-external-call:[yes/no]

Defaultis all-external-call:no

Internal use only. Causes all CALL statements to be considered EXTERNAL. This should not be
changed.

all-external-link:[yes/no]

Defaultis all-external-link:no

When set to yes,

Causes the targets of the CALL statement to all be assumed to be external-links.

This can improve performance at runtime by optimizing the resolution of the CALL statement.
alloc-unused-linkage:[yes/no]

Defaultis alloc-unused-linkage:no.

When set to yes,

Causes the compiler to allocate static memory for level 01 fields in the Linkage Section that are
not used in either a USING clause or an ENTRY clause.

When set to no,
If level 01 fields in the Linkage Section are not used in either a USING clause or an ENTRY
clause, these fields are initialized to NULL, and no memory is allocated for them.

Note that usage of of a field for which no static memory has been allocated will provoke a Memory
Fault. For cases such as described above, where static memory has not been allocated at compile
time, it is possible to programmatically allocate static memory to an unused linkage field using the
SET [linkage field] to ADDRESS OF [data-pointer] statement, and avoid the Memory Fault
condition.

as400-like :[yes/no]

Defaultis as400-1ike:no

Causes the LIKE clause to act compatibly with the AS400 implementation of the LIKE clause.

When set to yes, a field declared with the LIKE clause is assumed to be described as
PIC X (other field’s byte size).

assign-clause: [COBOL2002 / mf /ibm / external]
Defaultis assign-clause: mf
Improves compatibility with named COBOL on compilation of ASSIGN clause.

When set to external,
Targets of all all ASSIGN causes are considered to be EXTERNAL.

@ COBOLT Page 79

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

auto-initialize:[yes/no]

Defaultis auto-initialize:yes

Affects automatic initialization behavior.

When set to yes, working-storage is automatically initialized when the program is loaded into
memory.

auto-load-symb:[yes/no]

Default is auto-load-symb:yes

When set to yes,

Provides additional control, as regards static symbol definition, by causing the static.symb and
user.symb files to be automatically loaded with the compiler configuration file.

static.symb is provided with the compiler distribution, and should not be changed by the user.
Static.symb includes symbols declared by Pro*Cob and Tuxedo. Note that it is overwritten when
the compiler is updated.

user.symb is user-definable and may be placed in the config directory of the COBOL-IT
installation, or in the current directory. If user.symb is missing, no error is generated.

Both static.symb and user.symb files may include static-link declarations.

autolock:[yes/no]

Default is autolock:no.

When set to yes,

Sets default for SELECT to LOCK MODE IS AUTOMATIC

bdb:[yes/no]

Default is bdb : no.

When set to yes,

Activates the usage of Oracle Berkeley DB isam files

bin-opt:[yes/no]
Defaultis bin-opt:no.
When set to yes,

Enables binary operation optimization. The —bin-opt optimizations are enabled by use of the —O
compiler flag.

bin-opt-strict:[yes/no]
When set to yes,
Causes -fhin-opt binary operation optimization to be strictly respected.

@ COBOLIT Page 80

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

binary-byteorder: native / big-endian

Defaultis binary-byteorder:big-endian

Defines the binary byte order of USAGE COMPUTATIONAL data items.

On little-endian platforms like x86, binary-byteorder should be set to “native”.

Note- Big-Endian refers to a convention for the storage of integers in memory in which the most
significant bytes are stored in the bytes with the lower addresses. The integer 256 is stored in Big-
Endian format, as follows: 00000001 00000000.

Little-Endian refers to a convention of or the storage of integers in memory in which the least
significant bytes are stored in the bytes with the lower addresses. The integer 256 is stored in
Little-Endian format, as follows: 00000000 00000001.

The Native option provides the ability to use the “Endianness” of the native processor.

“Endianness” is determined by the Processor of your computer. A simple rule of thumb is that if
you have an x86 processor, your platform has a little-endian data storage convention. Otherwise,
you most likely have a a big-endian data storage convention. Check with your system
administrator if you have any questions.

binary-size: 2-4-8 / 1-2-4-8 / 1--8

Defaultis binary-size:1-2-4-8

Describes relationship between PIC description and storage bytes of a binary data item.

Binary byte size defines the allocated bytes according to number associated with PIC 9 clause.

Value: signed unsigned bytes
'2-4-8" 1 - 4 1 - 4 2
5 - 9 5 - 9 4
10 - 18 10 - 18 8
'1-2-4-8" 1 - 2 1 - 2 1
3 - 4 3 - 4 2
5 - 9 5 - 9 4
10 - 18 10 - 18 38
'1--8" 1 - 2 1 - 2 1
3 - 4 3 - 4 2
5 - 6 5 - 7 3
7 - 9 8 - 9 4
10 - 11 10 - 12 5
12 - 14 13 - 14 6
15 - 16 15 - 16 7
17 - 18 17 - 18 8

binary-truncate:[yes/no]

Defaultis binary-truncate:yes

@|COBOLIT Page 81

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Governs the behavior of the runtime when binary data is truncated.

When set to yes, the default value of yes corresponds to the behavior of the TRUNC compiler
directive. The TRUNC compiler directive causes truncation to be governed by the number of
digits in the PICTURE clause, when moving data into data items described as COMP, BINARY, or
COMP-4.

When set to no, the value of no corresponds to the behavior of the NOTRUNC compiler directive.
The NOTRUNC compiler directive causes truncation to be governed by the capacity of allocated
storage when moving data into data items described as COMP, BINARY, or COMP-4.
bitfield-first-is-Isb: [yes/no]

Defaultisbitfield-first-is-1sb:no

call-comp5-as-comp:[yes/no]

Defaultis call-comp5-as-comp:no.

When set to yes, affects the behavior of the CALL statement. On little-endian platform (intel
Linux, Windows) when a call USING clause contains a literal. When set to yes, causes the literal to
be copied as a COMPUTATIONAL value, rather than as a COMP-5 value.

Example: In the statement:

CALL “subprogram” USING 1234.

The literal 1234 is passed as a COMP value when call-comp5-as-comp is set to yes.
Otherwise, the literal 1234 is passed as a COMP-5 value.

call-lowercase: [yes/no]

Defaultis call-lowercase:no

The call-lowercase compiler configuration flag affects the handling of literals that are the target of a
CALL statement. As an example, consider the literal “MyProg” in the statement: CALL “MyProg”.

When set to yes, all of the characters in the literal “MyProg” are converted to lowercase.
When set to no (the default), this setting is ignored.
call-opt: [yes/no]

Defaultis call-opt:no.

When set to yes,

Enables CALL statement optimization. Programs containing CANCEL statements should not be
compiled with call-opt:yes.

call-uppercase: [yes/no]

Defaultis call-uppercase:no

The call-uppercase compiler configuration flag affects the handling of literals that are the target of a
CALL statement. As an example, consider the literal “MyProg” in the statement: CALL “MyProg”.

@|COBOLIT Page 82

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to yes, all of the characters in the literal “MyProg” are converted to uppercase.
When set to no (the default), this setting is ignored.
carealia-sign: [yes/no]

Defaultis carealia-sign: no

When set to yes, the carealia-sign compiler configuration flag causes signed (PIC S9) variables to
be stored according to CA-REALIA sign storage conventions. For more detail, see —fcarealia-sign
compiler flag documentation.

C-cmd-line:[yes/no]

Default is C-cmd-1ine:no.
When set to yes,

When used with —x, causes the program to receive command line parameters as though they were
given in C. In this case, command line parameters are read as they would be through a “C”
interface. For example: (intargc, char **argv)

C-data-init:[yes/no] [Internal use only]

Defaultis C-data-init:no

Controls if the C data structure created by the compiler is initialized in the source (at compilation
time) or at runtime. This should not be changed.

check-linkage-bound: [yes/no]

Default is check-linkage-bound: yes.

checkpoint: [yes/no]

Default is checkpoint:no.

When set to yes,

Enables setting of checkpoints. Program state is saved at checkpoints, and can be reloaded. For
more details on the usage of the checkpoint flag, see the Guidelines for use of Checkpoints.
cics: [yes/no]

Defaultis cics: no.
When set to yes,
The compiler generates CICS-compliant code.

cmp-inline:[yes/no]

Default is cmp-inline:no
When set to yes,

Causes comparisons to be inlined in the C code instead of through calls to the runtime library when
possible.

@ COBOLIT Page 83

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

cmp-opt:[yes/no]

Default is cmp-opt:yes

The cmp-opt compiler flag activates optimizations when comparing literals with variables.
When set to no, this functionality is disabled.

cobol-lines: [yes/no]

Default is cobol-lines: no.

When set to yes,

When compiling with gcc, line directives corresponding to COBOL source code line numbers are
added to the “C” source code.

codepage: <codepage-id>

Names the default codepage to be used.

Example: codepage: 1252

See compiler option —codepage for more details.

compb5-byteorder: [native/big-endian]

Default is comp5-byteorder: native
Sets the byte ordering used for COMP-5 data.

When set to native, a little-endian byte ordering is set.

When set to big-endian, a big-endian byte ordering is set.

compat-display-to-int:[yes/no]

Default is compat-display-to-int:no

When set to yes, provides compatibility with older versions of COBOL-IT Compiler Suite (prior to
version 3.10.5) as regards display to int functionality.

complex-odo:[yes/no]

Default is complex-odo:no

The compiler flag complex-odo is now obsolete. OCCURS DEPENDING ON is always considered
to be complex.

compute-ibm:[yes/no]

Default is compute-ibm: no.

Beginning with version 3.7.20 the —fcompute-ibm compiler flag is used by default.

When set to yes,

Causes arithmetic expressions (like a+B*c) in COMPUTE statements, and comparisons to use IBM
COBOL defined rules for determining the number of decimals used in intermediate results. For
details, please consult IBM documentation.

When set to no,

@ COBOLT Page 84

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Causes the maximum number of decimals (machine-dependent, up to 37) to be used in intermediate
results of arithmetic expressions in COMPUTE statements and comparisons.

compute-ibm-trunc: [yes/no]

When compute-ibm is set to yes, causes intermediate results to be truncated (default).

console-is-sysfile: [yes/no]

Defaultis console-is-sysfile:no
When set to yes,

Causes DISPLAY UPON CONSOLE statements to be redirected to <file> when the compiler
flag —sysout=<file> is used. This allows users to maintain a pre-2.11 behavior, which was
determine to be defective.

constant: "key=value"

Provides a way to define constants that can be tested for purposes of conditional compilation.
When using the constant “key=value” compiler flag, the conditional compilation below will test
true.

$if key=value
$else
$end

continuation-line

Defaultis continuation-line:no

When set to yes, allows a hyphen in column 7, with no following text, to be recognized as not being
a continuation line. When set to yes, a hyphen in column 7, with no following text in quotes is not
recognized as a continuation line.

Note: A hyphen in column 7, with following text, in quotes, is always recognized as a continuation
line.

For rules on the handling of continuation lines, see Line Continuations in the COBOL-IT COBOL
Reference Manual.
copy-default-leading:[yes/no]

Default is copy-default-leading:no
When set to yes,
affects the behavior of the COPY REPLACING statement.

When copy-default-leading is set to yes and when using the ==xxx== notation in a COPY
REPLACING statement, the LEADING phrase is assumed by default. The LEADING phrase

@ COBOLT Page 85

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

indicates that only the LEADING characters identified will be replaced if they match text in the
copy file.

copy-exec-replace[yes/no]

Default is copy-exec-replace: no.

When set to yes, affects the behavior of the COPY REPLACING statement. When set to yes,
and when a COPY REPLACING == xxx == statement is performed, text inside EXEC / END-
EXEC blocks are also replaced if applicable.

copy-mark: [yes/no]

Default is copy-mark: no.

When set to yes,
Adds mark for begin/end of COPY In listing and preprocessed file
Note: The copy marks are:
*++SCOPY .\copy/sample.CPY (beginning of COPY file)
[COPY file is listed here]
*--SCOPY .\copy/sample.CPY (end of COPY file)

copy-partial-replace:[yes/no]

Default is copy-partial-replace:no

When set to yes,

The copy-partial-replace compiler configuration flag increases the compatibility of the COPY
REPLACING behavior with Micro Focus compiler behaviors.

When a pattern like COPY FIC1 REPLACING == WJXX- == BY == WJ03- == is processed :

If this flag is on, the preprocessor uses a partial replacement as defined by MF and ANSI12002
standard.

If it is off (the default) the IBM mainframe and ANSI85 standard is used.

The copy-partial-replace compiler compiler configuration flag corresponds to the compiler flag :
-fcopy-partial-replace

crtstatus-map:[cit-value] [user-value]
Allows the user to create their own CRT STATUS Map, as described below.

When crt-status-var is declared as UNSIGNED-INT, the runtime copies user-value directly into the
crt-status-var. For this case, if you wish to remap the first four function keys, from CIT-Values of
1001 through 1004 to single digits 1 through 4, you would add the entries:

crtstatus-map: 1001 1
crtstatus-map: 1002 2
crtstatus-map: 1003 3
crtstatus-map: 1004 4

@ COBOLIT Page 86

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

The use of hex notation (x00 through x127) to describe characters in user-value is supported. For
this case, if you wish to remap the first four function keys, from CIT-Values of 1001 through 1004
to single digits 1 through 4, you would add the entries:

crtstatus-map: 1001 x31
crtstatus-map: 1002 x32
crtstatus-map: 1003 x33
crtstatus-map: 1004 x34

Hex notations permit the user to use values that fall outside of the normal alphanumeric range.
More than one character can be represented using hex notation. For example, if you wish to map
the cit-value of 1004 to the user-value of 1234 using hex notation, you would add the entry:

crtstatus-map 1004 x31323334

In the example above, in the description of the user-value, after the “x”, the values “317, “32”, “33”,
“34” are concatenated to represent the string “1234”. When using hex notations, it is recommended
that the receiving field be described as PIC X(4).

If no crtstatus-map is defined , CRT STATUS values are converted to PIC 9(4) and copied into the
crt-status-var.
ctree: [yes/no]

Default is ctree:no.

When set to yes,
Activates the usage of C-tree isam files .

ctree-field-numbering: [yes/no]

Defaultis ctree-field-numbering:no

When set to yes,
Causes the CTREE XDD generator to generate a prefix F <field-number> before field names.
Use with —fgen-xdd compiler flag.

ctree-no-full-qualification: [yes/no]

Defaultis ctree-no-full-qualification:no.

When set to yes,

Affects the behavior of the gen-xdd compiler flag, causing it to not generate the fully qualified data
names in the XDD description of the file. When using the ctree-no-full-qualification compiler flag
with the gen-xdd compiler flag, the field name generated is :

xxXx_<Field_Name>

Where:
XXX IS a unique number (position in the structure),

@|COBOLIT Page 87

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

<Field_Name> is the name of the data field, without any other prefix or suffix.

Use with the gen-xdd compiler flag.

curdir-include: [yes/no]

Default is curdur-include:yes.

When set to yes,

Causes COPY files to first be searched for in the current directory, before locations described with
the -1 <Path>, or with environment variables. The COPY search is performed for files with default
extensions, and with extensions described with the —ext compiler compiler flag.This is a default
behavior.

When set to no,

Causes the search for a COPY file to not search for COPY file in the current directory, unless that
directory is named by a —I compiler flag, or by a COB_COPY_DIR, or COBCPY environment
variable.

datacompress: <integer>

Default is datacompress: 0.
e To enable compression in VBISAM, you must add :

'$SET DATACOMPRESS “x”

before the SELECT statement.

“x” is a numeric integer literal, ranging from 1 to 9. Higher values produce better compression, at
the expense of performance. A setting of 1 provides the best performance, a setting of 9 the best
compression.

All users of an indexed file created with compression must re-compile their programs with the
DATACOMPRESS compiler directive and use the same compression setting.

To disable compression (after having enabled it)

'$SET NODATACOMPRESS

debug-exec: [yes/no]
Default is debug-exec:no.

When set to yes,

Affects the tracing of Exec statements when debugging code that has been compiled with the
integrated pre-processor (-preprocess). When using the Integrated Preprocessor Interface, the
default behavior of the debugger is to —not- trace (display) the code generated by the external
preprocessor. Only the original source EXEC statements are shown. The —fdebug-exec
compiler flag enables the tracing (debugging) of the generated code.

@ COBOLIT Page 88

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

debugging-line:[yes/no]
Default is debugging-1line:no.

When set to yes,
Enables support for debugging lines. (Source lines that contain 'D' in indicator column)
debug-parser: [yes/no]

Default is debug-parser:no.
When set to yes,
Allows for the debugging of the parser. (maintainer use only).

decimal-optimize:[yes/no]
Defaultis decimal-optimize:no

When set to yes, optimizes the conversion from DISPLAY/COMP-3 to binary values in
COMPUTE statements. When several COMPUTE statement are in the same paragraph, the
compiler will minimize the conversions from DISPLAY/COMP-3 to binary values for fields that
are used (and not modified) in different statements in the same paragraph. Decimal-optimize is set
to yes by default when using either the -O or -O2 compiler flags.

defaultbyte:[any integer]

Defaultis defaultbyte:0

Corresponds to the DEFAULTBYTE directive. Sets the character used to initialize undeclared
Working-Storage.

If specified , the integer value is the ASCII Value of default byte that will be used to fill memory of
data items that have been declared in Working-Storage, and which do not have an VALUE
declared. For example, to set the DEFAULTBYTE to an ASCII SPACE, the setting would be:
defaultbyte: 32.

Note that the compiler configuration flag defaultbyte:[integer] requires that the
use-defaultbyte:yes compiler configuration flag also be set.

defaultcall:[any integer]

Defaultis defaultcall:0

Designates default call-convention used when no CALL-CONVENTION is mentioned in a CALL
statement.

The integer value for defaultcall is a numeric literal representing the call convention .
The call convention number is a 16-bit number defined as follows:

Bit Meaning
0-1 Unsupported
2 =0 - RETURN-CODE is updated on exit

=1 - RETURN-CODE is not updated on exit

@ COBOLIT Page 89

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

3 = 0 —CALL is resolved dynamically at run time
=1 -CALL is resolved statically at compilation time

4-5 Unsupported
Windows Only

=0 —CALL use standard C call conventions
=1 -CALL use “STDCALL” WINAPI call conventions (used to call
Windows standard API)

Typical values are :
4 Do not modify RETURN-CODE
72 Windows API Call.

disam:[yes/no]

Default is disam: yes

When set to yes,

Activates the usage of DISAM files .
display-dos:[yes/no]

Default is display-dos:no

When set to yes,

Causes DISPLAY statements to use CR/LF.

display-ibm:[yes/no]
Defaultis display-ibm:no

When set to yes,

Affects the output of the DISPLAY Statement for numeric fields to be more compatible with IBM
mainframe.

displaynumeric-edited-mf50: [yes/no]

Defaultis displaynumeric-edited-mf50:yes.
displaynumeric-mf50:yes

Used with :

move-spaces-to-display-numeric:yes

causes numeric-edited fields to be allowed to be initialized to spaces.

displaynumeric-mf50:[yes/no]
Defaultis displaynumeric-mf50: no

Enhances compatibility with Micro Focus behaviors for MOVE and INITIALIZE of data items
described as USAGE DISPLAY NUMERIC.

@ COBOLIT Page 90

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to yes, the following are implied:

move-picx-to-pic9:mf50

move-spaces-to-displaynumeric:yes

When set to yes, compatibility with Micro Focus MOVE, INITIALIZE behaviours are enhanced.
Consider an example:

77 NUMERIC-FLD PIC 99.

INITIALIZE NUMERIC-FLD TO SPACE (NUMERIC_FLD: “<sp><sp>)
MOVE ZERO TO NUMERIC-FLD. (NUMERIC-FLD: “<sp>0\")

div-check: [yes/no]
Default is div-check:yes.

When set to yes,

Enables the checking of divide operations when binary optimizations are turned on with the use of
the —fbin-opt, or —O compiler flags. The effect is to cause divide-by-0 operations to generate an
exception.

ebcdic-charset: [yes/no]

Default is ebcdic-charset:no.

The —febcdic-charset compiler flag requires a dedicated license.
When using the —febcdic-charset compiler flag, the COBOL-IT Compiler and Runtime store and
manage data in the EBCDIC encoding format. Source code is stored in ASCII format.

When set to yes,

The —febcdic-charset compiler flag causes modules to be created that apply the EBCDIC character
set to file operations, and internal data storage. When using the —febcdic-charset compiler flag, all
of the programs in a runtime unit must be compiled with the —febcdic-charset compiler flag. If a
main entry program that is not compiled with the —febcdic-charset compiler flag CALLs a program
that is compiled with the —febcdic-charset compiler flag, or conversely, if a main entry program
compiled with the —febcdic-charset compiler flag CALLSs a program that is not compiled with the —
febcdic-charset compiler flag, the CALL will fail, and the COBOL-IT runtime will abort.

emulate-vms [yes/no]

Default is emulate-vms:no.

When set to yes,
Causes spaces to be stripped from filenames and adds suffix .DAT" if needed.

@|COBOLIT Page 91

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

exception checking

Runtime exception checking is enabled when compiling with —debug, for the following compiler
configuration flags. For details about the Runtime Exception Checking flags, see the file
exception.def, which is located in SCOBOLITDIR\include\libcob, in your distribution.

EC-ALL:[yes/no]
EC-ARGUMENT:[yes/no]
EC-ARGUMENT-FUNCTION:[yes/no]
EC-ARGUMENT-IMP:[yes/no]
EC-BOUND:[yes/no]
EC-BOUND-IMP:[yes/no]
EC-BOUND-ODO:[yes/no]
EC-BOUND-OVERFLOW:[yes/no]
EC-BOUND-PTR:[yes/no]
EC-BOUND-REF-MOD:[yes/no]
EC-BOUND-SET:[yes/no]
EC-BOUND-SUBSCRIPT:[yes/no]
EC-BOUND-TABLE-LIMIT:[yes/no]
EC-DATA:[yes/no]
EC-DATA-CONVERSION:[yes/no]
EC-DATA-IMP:[yes/no]
EC-DATA-INCOMPATIBLE:[yes/no]
EC-DATA-INFINITY:[yes/no]
EC-DATA-INTEGRITY:[yes/no]
EC-DATA-NEGATIVE-INFINITY:[yes/no]
EC-DATA-NOT_A_NUMBER:[yes/no]
EC-DATA-PTR-NULL:[yes/no]
EC-FLOW:[yes/no]
EC-FLOW-GLOBAL-EXIT:[yes/no]
EC-FLOW-GLOBAL-GOBACK:[yes/no]
EC-FLOW-IMP:[yes/no]
EC-FLOW-RELEASE:[yes/no]
EC-FLOW-REPORT:[yes/no]
EC-FLOW-RETURN:[yes/no]
EC-FLOW-SEARCH:[yes/no]
EC-FLOW-USE:[yes/no]
EC-FUNCTION:[yes/no]
EC-FUNCTION-NOT-FOUND:[yes/no]
EC-FUNCTION-PTR-INVALID:[yes/no]
EC-FUNCTION-PTR-NULL:[yes/no]
EC-I1-O:[yes/no]
EC-1-O-AT-END:[yes/no]
EC-1-O-EOP:[yes/no]
EC-1-O-EOP-OVERFLOW:[yes/no]
EC-1-O-FILE-SHARING:[yes/no]
EC-1-O-IMP:[yes/no]
EC-1-O-INVALID-KEY:[yes/no]
EC-1-O-LINAGE:[yes/no]

@|COBOLIT Page 92

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

EC-1-O-LOGIC-ERROR:[yes/no]
EC-1-O-PERMANENT-ERROR:[yes/no]
EC-1-O-RECORD-OPERATION:[yes/no]
EC-IMP:[yes/no]
EC-IMP-ACCEPT:[yes/no]
EC-IMP-DISPLAY::[yes/no]
EC-LOCALE:[yes/no]
EC-LOCALE-IMP:[yes/no]
EC-LOCALE-INCOMPATIBLE:[yes/no]
EC-LOCALE-INVALID:[yes/no]
EC-LOCALE-INVALID-PTR:[yes/no]
EC-LOCALE-MISSING:[yes/no]
EC-LOCALE-SIZE:[yes/no]
EC-00:[yes/no]
EC-O0-CONFORMANCE:[yes/no]
EC-O0O-EXCEPTION:[yes/no]
EC-O0-IMP:[yes/no]
EC-OO-METHOD:[yes/no]
EC-OO-NULL:[yes/no]
EC-O0O-RESOURCE:[yes/no]
EC-OO-UNIVERSAL:[yes/no]
EC-ORDER:[yes/no]
EC-ORDER-IMP:[yes/no]
EC-ORDER-NOT-SUPPORTED:[yes/no]
EC-OVERFLOW:[yes/no]
EC-OVERFLOW-IMP:[yes/no]
EC-OVERFLOW-STRING:[yes/no]
EC-OVERFLOW-UNSTRING:[yes/no]
EC-PROGRAM:[yes/no]
EC-PROGRAM-ARG-MISMATCH:[yes/no]
EC-PROGRAM-ARG-OMITTED:[yes/no]
EC-PROGRAM-CANCEL-ACTIVE:[yes/no]
EC-PROGRAM-IMP:[yes/no]
EC-PROGRAM-NOT-FOUND:[yes/no]
EC-PROGRAM-PTR-NULL:[yes/no]
EC-PROGRAM-RECURSIVE-CALL:[yes/no]
EC-PROGRAM-RESOURCES:[yes/no]
EC-RAISING:[yes/no]
EC-RAISING-IMP:[yes/no]
EC-RAISING-NOT-SPECIFIED:[yes/no]
EC-RANGE:[yes/no]
EC-RANGE-IMP:[yes/no]
EC-RANGE-INDEX:[yes/no]
EC-RANGE-INSPECT-SIZE:[yes/no]
EC-RANGE-INVALID:[yes/no]
EC-RANGE-PERFORM-VARYING:[yes/no]
EC-RANGE-PTR:[yes/no]
EC-RANGE-SEARCH-INDEX:[yes/no]

@ COBOLT

Page 93

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

EC-RANGE-SEARCH-NO-MATCH:[yes/no]
EC-REPORT:[yes/no]
EC-REPORT-ACTIVE:[yes/no]
EC-REPORT-COLUMN-OVERLAP:[yes/no]
EC-REPORT-FILE-MODE:[yes/no]
EC-REPORT-IMP:[yes/no]
EC-REPORT-INACTIVE:[yes/no]
EC-REPORT-LINE-OVERLAP:[yes/no]
EC-REPORT-NOT-TERMINATED:[yes/no]
EC-REPORT-PAGE-LIMIT:[yes/no]
EC-REPORT-PAGE-WIDTH:[yes/no]
EC-REPORT-SUM-SIZE:[yes/no]
EC-REPORT-VARYING:[yes/no]
EC-SCREEN:[yes/no]
EC-SCREEN-FIELD-OVERLAP:[yes/no]
EC-SCREEN-IMP:[yes/no]
EC-SCREEN-ITEM-TRUNCATED:[yes/no]
EC-SCREEN-LINE-NUMBER:[yes/no]
EC-SCREEN-STARTING-COLUMN:[yes/no]
EC-SIZE:[yes/no]
EC-SIZE-ADDRESS:[yes/no]
EC-SIZE-EXPONENTIATION:[yes/no]
EC-SIZE-IMP:[yes/no]
EC-SIZE-OVERFLOW:[yes/no]
EC-SIZE-TRUNCATION:[yes/no]
EC-SIZE-UNDERFLOW:[yes/no]
EC-SIZE-ZERO-DIVIDE:[yes/no]
EC-SORT-MERGE:[yes/no]
EC-SORT-MERGE-ACTIVE:[yes/no]
EC-SORT-MERGE-FILE-OPEN:[yes/no]
EC-SORT-MERGE-IMP:[yes/no]
EC-SORT-MERGE-RELEASE:[yes/no]
EC-SORT-MERGE-RETURN:[yes/no]
EC-SORT-MERGE-SEQUENCE:[yes/no]
EC-STORAGE:[yes/no]
EC-STORAGE-IMP:[yes/no]
EC-STORAGE-NOT-ALLOC:[yes/no]
EC-STORAGE-NOT-AVAIL:[yes/no]
EC-USER:[yes/no]

EC-VALIDATE:[yes/no]
EC-VALIDATE-CONTENT:[yes/no]
EC-VALIDATE-FORMAT:[yes/no]
EC-VALIDATE-IMP:[yes/no]
EC-VALIDATE-RELATION:[yes/no]
EC-VALIDATE-VARYING:[yes/no]
EC-XML:[yes/no]
EC-XML-CODESET:[yes/no]
EC-XML-CODESET-CONVERSION:[yes/no]

@ COBOLT

Page 94

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

EC-XML-COUNT:[yes/no]
EC-XML-DOCUMENT-TYPE:[yes/no]
EC-XML-IMPLICIT-CLOSE:[yes/no]
EC-XML-INVALID:[yes/no]
EC-XML-NAMESPACE:[yes/no]
EC-XML-RANGE:[yes/no]
EC-XML-STACKED-OPEN:[yes/no]

Compiling with the —debug compiler configuration flag enables all of the exception checks.
When not compiling with —debug, you can enable specific exception checks by setting the
associated compiler configuration flag to yes in the compiler configuration file.
exclusivelock: [yes/no]

Default is exclusivelock:no.

Causes all files with no LOCK MODE clause in their SELECT statement to be declared
Implicitly as LOCK MODE is EXCLUSIVE. For details on other compiler flags related to
the treatment of LOCK MODE, see Guidelines for modifying default handling of the LOCK
MODE.

exec-check: [yes/no]
Default is exec-check: no.

When set to yes,
Used with -fsyntax-only, checks the EXEC SQL/CICS/DLI syntax.

exit-program-forced:[yes/no]
Defaultis exit-program-forced:yes
Affects behavior of the EXIT PROGRAM statement.

When set to yes, the execution of the EXIT PROGRAM statement is forced, creating compatibility
with non-1SO-standard behavior used by some COBOL compilers.

Note that 1ISO standards state that the EXIT PROGRAM should be ignored if the currently running
program was not CALL’ed by a COBOL main program. However, many proprietary COBOL
compilers never ignore the EXIT PROGRAM statement

When set to no, the EXIT PROGRAM statement behaves according to 1SO standards, which
state that the EXIT PROGRAM should be ignored if the currently running program was not
CALL’ed by a COBOL main program.

expand-exec-copy:[yes/no]

Default is expand-exec-copy:no.
When set to yes, causes the compiler to expand COBOL COPY statements inside EXEC ... END-
EXEC blocks. This applies to both EXEC SQL and EXEC CICS blocks.

@ COBOLT Page 95

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

expand-sqgl-include:[yes/no]

Default is expand-sgl-include:no.

When set to yes,

Used with -E, expands 'EXEC SQL INCLUDE <File name> END-EXEC" in the —E output.
external-link: <function name>

Causes [function name] to be declared as an external non-COBOL symbol.

Usage:

external-link: functionName

Using the compiler configuration flag external-link will cause the code “CALL ‘function-name’” to
generate more efficient code.

external-mapping:[yes/no]
Defaultis external-mapping:yes

Allows files declared as EXTERNAL to be resolved using environment variables.

When set to yes, file names of files declared as EXTERNAL are resolved at run time using
environment variables. See ‘filename-mapping’ for detail about name-mapping.

fast-figurative-move: [yes/no]
Defaultis fast-figurative-move:yes.
When set to yes,

Optimizes the performance of the MOVE of figurative constants (default).fast-op: [yes/no]
Defaultis fast-op:no

When set to yes,

Enables the runtime to use faster operations when manipulating data items declared as USAGE
DISPLAY or USAGE COMP-3. Fast-op is set to yes by default when using either the -O or -O2
compiler flag.

fcdreg: [yes/no]

Default is fcdreg:no.

When set to yes,

Corresponds to the FCDREG compiler directive. This compiler flag provides functionality in
applications that are using the EXTFH file system interface. For more detail see the description
of the —ffcdreg compiler flag.

@ COBOLIT Page 96

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

fdclear:[yes/no]

Default it fdclear:no

When set to yes,

Causes the record to be INITIALIZEd after each WRITE.
file-auto-external:[yes/no]

Defaultis file-auto-external :yes.

The —file-auto-external compiler flag affects the way that the compiler treats variables describing
file-names for files described as EXTERNAL. For more detail, see the description of the —ff-auto-
external compiler flag.

filename-mapping:[yes/no]

Defaultis filename-mapping: yes

Allows file names to be resolved at runtime using environment variables.

When set to yes, file names are resolved at run time, checking for environment variables.

For example, given ASSIGN TO "DATAFILE", the actual file name
will be

1. the value of environment variable 'DD DATAFILE' or

2. the value of environment variable 'dd DATAFILE' or

3. the value of environment variable 'DATAFILE' or

4. the literal "DATAFILE"

When set to no, the value of the ASSIGN clause is treated as the file name.

first-tab-width:[any integer]

Defaultis first-tab-width:8.

Allows the user to define the size of the first tab.

Notes- This is done to support the RM/COBOL standard that defines the first tab as 8 characters,
and following tabs as 6 characters. To mimic this standard, you would set tab-width: 6, and first-
tab-width: 8.

flat-extfh: <DRIVER NAME>

flat-extfh-lib: <library to use for this extfh driver>

The configuration file flags flat-extth and flat-extfh-lib enable the usage of EXTFH drivers for
Sequential and Relative files.

Note: When used, they should be used together.

fold-copy-lower: [yes/no]

Defaultis fold-copy-lower:no.

When set to yes,

@|COBOLIT Page 97

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Folds COPY file names to lower case.

fold-copy-upper:[yes/no]
Default is fold-copy-upper:no.

When set to yes,

Folds COPY file names to upper case.

fp-opt:[yes/no]

Default is fp-opt:no

When set to yes,

Causes COMP-2 operations to be inlined in C, and maximizes the use of the CPU Floating Point
unit.

free-thread-safe-data: [yes/no]

Defaultis free-thread-safe-data:no

When set to yes,

When used with -thread-safe compiler flag, frees data in modules after a CANCEL event that is not
a FULL-CANCEL

fstatus-map:[cit-status] = [custom-status]

Allows COBOL-IT to map file 10 statuses to custom values.

Example: fstatus-map: 22 = 67

In the example above, when the file system returns status 22, the value will be translated to 67
before returning to the application. This flag may be repeated as many as needed for all expected
translation.

full-cancel:[yes/no]

Default is full-cancel: no
Affects the behavior of the CANCEL statement which, by default, causes a “Logical Cancel” to be
implemented.

When set to yes,

All CANCEL statements performed in the running program cause a “Full Cancel” to be
implemented.

This behavior can also be achieved by setting the runtime environment variable
COB_FULL_CANCELtoY.

Clarifications on the difference between a “Logical Cancel” and a “Full Cancel”:
In a “Logical Cancel”, the Working-Storage Section is reset to its initial values. Working-Storage
initial values are the values set the first time the module was loaded in memory.

In a “Full Cancel”, the Working-Storage Section is reset to its initial values, and the module binary
is unloaded, if possible, from memory. Unloading the module binary from memory is only possible

@ COBOLIT Page 98

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

if the module is not being used in another region/thread, and it has been loaded by a CALL
STATEMENT (not by a preload of a shared library).

functions-all:[yes/no]

Default is functions-all:no.

When set to yes,
Allows use of intrinsic functions without the FUNCTION keyword.

Note : The mf.conf configuration file, which contains compiler configuration flags designed to
match Micro Focus default behaviours, includes the setting functions-all: yes. Micro Focus users
that require the use of the FUNCTION keyword should re-set this option to functions-all: no.
functions-all-intrinsic:[yes/no]

Default is functions-all-intrinsic:no.

When set to yes,
Allows use of intrinsic functions without the FUNCTION keyword
gcc:[yes/no]

Default : no for all UNIX platforms
Default: yes for Linux platforms

When set to yes,

Generates gcc-compliant C code. The —fgcc compiler flag is enabled when COB_CC=gcc.
gcc-O-bug:[yes/no]

Default is gcc-O-bug:no.

When set to yes,

When using —O , some versions of gcc generate incorrect code. This bug is avoided by using the
—gcc-O-bug compiler flag.

gcc-bug:[yes/no]

Default is gcc-bug:no.

When set to yes,
When using a gcc compiler on very large source files, the gcc compiler could enter an infinite loop.
This bug is avoided by using the —gcc-bug compiler flag.

gcc-goto:[yes/no]
Default is gcc-goto:no
When set to yes,

Generates gcc-computed goto code. The —fgcc-goto compiler flag is enabled when using the
—fgcc compiler flag, or when COB_CC=gcc

@ COBOLIT Page 99

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

gcos-mode:[yes/no]

Default is gcos-mode:no.

When set to yes,

Causes the compiler to more closely emulate GCOS operations.

gen-xdd:[yes/no]
Default is gen-xdd: no.

When set to yes,

Causes the compiler to generate a c-TreeACE .xdd file
global-typedef:[yes/no]

Default is global-typedef:yes.

When set to yes,

Causes TYPEDEFs to be GLOBAL for all nested program. If not set, TYPEDEFs are local to the
current program.

ibm-listing-macro:[yes/no]

Defaultis ibm-1listing-macro:yes.

When set to yes,
Enables IBM listing extensions (TITLE, SKIP1/2/3, EJECT ...) (default)
ibm-mainframe:[yes/no]

Default is ibm-mainframe:no

When set to yes, causes the compiler and runtime to operate in an IBM Mainframe compatible
mode.

ibm-sync:[yes/no]

Default is ibm-sync:yes.

When set to yes,
Applies SYNC attribute to group item if first elementary field is described with the SYNC attribute.
(default).

When set to no,
The SYNC attribute is not applied to a group item if the first elementary field in the group item is
described with the SYNC attribute.

identifier-length:<max-length>
Default is identifier-length: 0

The identifier-length compiler configuration flag allows compatibility to be achieved with other

@ COBOLT Page 100

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

compilers, as regards the maximum length of a variable name.

When set to 0

COBOL-IT has no limit on the length of a variable name, and will never test for this, or generate
an error.

When set to a positive, non-zero value

COBOL-IT will generate an error if the length of a variable name exceeds the the max-length
named by identifier-length.

To achieve compatibility with the IBM COBOL compiler, for example, which generates an error
when a variable name exceeds 30 characters, set identifier-length: 30.
ignore-global-in-local-storage: [yes/no]

Default is ignore-global-in-local-storage:no

ignore-with-rollback: [yes/no]
Default is ignore-with-rollback:no

implicit-init: [yes/no]
Default is implicit-init:no
When set to yes,
Initializes the COBOL runtime system at runtime start-up.
Include-main: [yes/no]
Default is include-main:no
When set to yes,
Causes main symbol to be included in module object when compiled with —c.
For more details, see the documentation of the —finclude-main compiler flag.
incomplete-subscript:[yes/no]
Defaultis incomplete-subscript: yes
Affects the behavior of MOVE:s to table items.
When set to yes:
Consider a data item declared as 01 TABLE OCCURS 10 PIC X.
The phrase MOVE SPACE TO TABLE is equivalent to MOVE ALL SPACE TO TABLE.

index-optimize:[yes/no]

Default is index-optimize:no

Improves performance where indexes in tables are evaluated and USAGE DISPLAY fields are used
as indexes. In these cases, the index values are cached in a C integer field to improve performance.

As an example, consider the usage of the follow code:

@ COBOLT Page 101

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

01 IxdA PIC 999 USAGE DISPLAY.
01 IxdB PIC 999 USAGE DISPLAY.

MOVE FLD-ARRAY(IxdA, ixdB) TO ...
MOVE FLD-ARRAY(IxdA, ixdB) TO ...
IF (FLD-ARRAY(IxdA, ixdB) ...

When set to yes, benefits the performance of these MOVE and IF statements by keeping the actual
value of the index in a binary C cache, thus avoiding conversion from DISPLAY (or COMP-3) to a
binary value each time the index is evaluated in a statement. index-optimize is set to yes by default
when using the -O or -O2 compiler flags.

indirect-redefines:[yes/no]

Defaultis indirect-redefines: yes

Enables the REDEFINES of a variable that REDEFINES another variable.

When set to yes, redefines of a redefining variable is allowed.

When set to no, redefines of a redefining variable is not allowed.

Example of a redefines of a redefining variable:

10 VALA PIC 99.
10 VALB PIC XX REDEFINES VALA.
10 VALC PIC 99 REDEFINES VALB.

initcall:<program-name>

The initcall compiler configuration flag names modules to be called immediately before the first
statement of a program is executed.

Initialize-fd:[yes/no]

Defaultis initialize-fd:no.

When set to yes,

Causes records declared in the FD section to be initialized when the program is initially loaded in
memory.

initialize-filler:[yes/no]

Defaultis initialize-filler: no

Affects whether the INITIALIZE statement does or does not initialize fields declared as FILLER.
When set to yes,

When performing an INITIALIZE statement, FILLER fields defined in elementary fields are
initialized to the default value or to data of the VALUE clause (depending on initialize-to-value).

@ COBOLT Page 102

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to no,
When performing a INITIALIZE statement, FILLER fields are left unchanged.

initialize-opt:[yes/no]

Defaultis initialize-opt:no
When set to yes,

Optimizes the implementation of the initial field initialization at runtime startup and the execution
of the INITIALIZE statement by grouping field initializations wherever possible.
initialize-pointer:[yes/no]

Defaultis initialize-pointer: yes

Affects whether elementary fields described as USAGE INDEX, USAGE POINTER, USAGE
PROGRAM POINTER are initialized by the INITIALIZE verb.

When set to yes,

Elementary fields described as USAGE INDEX, USAGE POINTER, USAGE PROGRAM-POINTER
are initialized by the INITIALIZE verb.

When set to no,

Elementary fields described as USAGE INDEX, USAGE POINTER, USAGE PROGRAM-POINTER
are not initialized by the INITIALIZE verb.

initialize-to-value:[yes/no]

Defaultis initialize-to-value: no

Affects the behavior of the INITIALIZE statement.

When set to yes, when performing an INITIALIZE statement :

If a data element contains a VALUE clause, then the INITIALIZE statement causes the data
element to be INITIALIZE’d to the value defined in it’s VALUE clause.

If a data element contains no VALUE clause, then the INITIALIZE statement causes the
data element to be INITIALIZE’d using the defaults.

isam-extfh: <DRIVER NAME>

isam-extfh-lib: <library to use for this extfh driver>

The configuration file flags isam-extth and isam-extth-1ib enable the usage of EXTFH drivers for
Indexed ISAM files.

Note: When used, they should be used together.
Usage: isam-extth: <DRIVER NAME>
isam-extfh-lib: <library to use for this extfh driver>

@ COBOLT Page 103

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

keep-copy-statement:[yes/no]

Default is keep-copy-statement:no.

When set to yes,
Causes listings and preprocessed files to keep COPY statements.

keep-org-src-line:[yes/no]

Default is keep-org-src-1line:yes.

When set to yes,
For use with the integrated pre-processor (-preprocess). Causes errors to be reported on the
original source line.

keep-unused:[yes/no]

Default is keep-unused:yes

When set to yes,
Causes memory to be allocated for the field tree of level-01 and level-77 data items that are
declared which contain sub-fields and in which none of these sub-fields is used.

When set to no,
Causes memory to not be allocated for the field tree of level-01 and level-77 data items that are
declared which contain sub-fields and in which none of these sub-fields is used.

key-dup-always-22:[yes/no]

Default is key-dup-always-22: no
Forces the runtime to return a file status of 22 on a duplicate key condition.

When set to yes,
When adding a record to an INDEXED file that is open in OUTPUT mode, if a duplicate key
condition is detected, the runtime will return a file status 22.

keycompress: [integer between 0 and 9]

Default is keycompress: 0.
e To enable key compression in VBISAM, you must add :

'$SSET KEYCOMPRESS “x”

before the SELECT statement.

“x” is a numeric integer literal, ranging from 1 to 9. Higher values produce better compression, at
the expense of performance. A setting of 1 provides the best performance, a setting of 9 the best
compression.

@|COBOUIT Page 104

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

All users of an indexed file created with compression must re-compile their programs with the
KEYCOMPRESS compiler directive and use the same compression setting.

To disable compression (after having enabled it)

‘$SET NOKEYCOMPRESS

larger-redefines-ok:[yes/no]

Defaultis larger-redefines-ok: yes
Allows a larger variable to redefine a smaller variable
When set to yes,

Larger variables may redefine smaller variables.

When set to no,

Larger variables may not redefine smaller variables.
line-seq-dos:[yes/no]

Defaultis 1ine-seg-dos: no

Determines the end-of-record delimiter used on line sequential files.

When set to yes,
Line sequential records are terminated by a CR/LF

When set to no,

Line sequential records are terminated by a CR

line-seq-mf:[yes/no]

Defaultis 1ine-seg-mf: yes

Affects the storage of bytes with values less than 0x20 in line sequential files.
When set to yes,

Line sequential files preface bytes with values less than 0x20 with 0x00. Thus, when you write the
bytes X”1F”, X20” to a line sequential file, they will be recorded in the file as : X”00” X”1F”
X”20”.

line-seqg-notrunc:[yes/no]

Default is 1ine-seg-notrunc:no

The line-seqg-notrunc compiler configuration flag affects the behavior of the runtime when a line
sequential record is read that is longer than the declared record length.

When set to yes, the part of the record that exceeds the declared record length is returned as the next
record.

@ COBOLT Page 105

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to no, (the default), the record is truncated.

line-seqg-recording-mode:[yes/no]
Defaultis 1ine-seg-recording-mode: no
Affects the interpretation of the RECORDING MODE F clause on line sequential files.

When set to yes,
The record is written to disk including all trailing spaces.

When set to no,

Trailing spaces are removed from the record before writing it to disk.
line-seq-unix:[yes/no]

Defaultis 1ine-seg-linux:no.

Obsolete

link-only: [yes/no]
Defaultis 1ink-only:no.

When set to yes,

Causes the main() symbol to not be generated, when used with —x. For use when the program
entry point (main) is provided by an external object or library.

listing-sources: [yes/no]

Defaultis 1isting-sources:no.

When set to yes,

Informs the compiler that source is the result of program listing option (-t <file>).
local-storage-guard: 8 (internal use only)

Defaultis local-storage-guard: 8

This setting is for internal use only, and should not be changed.

loosy-comment[yes/no]

Default is 1oosy-comment : no

When set to yes, the compiler allows a * in column 8 to be used to mark a comment.
Is-expand-tab:[yes/no]

Default is 1s-expand-tab:yes
Implements the expansion of the tab character in line sequential files in a manner that is compatible
with Micro Focus COBOL.

When set to yes,
Tab characters not preceded by a 0 are expanded to spaces. The tab stop is fixed to 8 characters.

@ COBOLT Page 100

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Is-ignore-record-size:[yes/no]

Defaultis 1s-ignore-record-size:no

Determines whether or not trailing spaces are stripped from a line sequential file before writing it to
disk.

When set to yes,

The RECORD SIZE clause for LINE SEQUENTIAL files is ignored. Trailing white spaces are
stripped before WRITEing a record to disk.

When set to no,

The RECORD SIZE clause for LINE SEQUENTIAL files is used to determine the number of bytes
written to disk on a WRITE statement. Trailing spaces are not stripped.

Is-utfl6:[yes/no]

Defaultis 1s-utfl6:no

Activates support for UTF16 storage, which affects the reading and writing of line sequential files.
When set to yes,

Line sequential file are read/stored in UTF16 format. When UTF16 Storage is active, end-of-record
is read/written in UTF16 format in accordance with the setting of the -futf16-le compiler flag.
When used, the —futf16-le compiler flag causes fields declared as PIC N to be stored as UTF16-LE
(Little Endian). Note that by default, fields declared as PIC N are stored as UTF16-BE (Big
Endian). X’000A’ is the end-of-record for BE storage and X’0A00’ is the end-of-record for LE
storage.

Note that the Is-utf16 compiler configuration flag may be set in source using the meta comment
$SET before the SELECT statement:

$SET LSUTF16 Activate UTF16 storage
$SET NOLSUTF16 Deactivate UTF16 storage

main:[yes/no]

Defaultismain:yes.

When set to yes,
Generates main() symbol when used with -x (default).

main-as-object:[yes/no]

Defaultismain-as-object:yes.

When set to yes,
Generates main() symbol as object not in library (unix only) (default)

mainframe-vb:[yes/no]

Default ismainframe-vb:no.

@ COBOLT Page 107

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to yes,
Causes WRITEs and READs of Variable Blocked files to assume formats compatible with the
Mainframe Z/OS COBOL Format.

makesyn: oldvalue=newvalue

Provides a way to make a reserved word a synonym for another reserved word. The first word,
represented by “oldvalue” becomes a synonym of the second word, represented by “newvalue”. A
common usage is to make COMP a synonym of COMP-5.

The entry:

makesyn: comp=comp-5 corresponds to the compiler flag —makesyn, used as follows:

>cobc —makesyn comp=comp-5 hello.cbl

The -makesyn oldvalue=newvalue compiler flag provides compatibility with the MAKESYN
directive.

A COBOL verb or field-name may be used as “old-value”. The COBOL-IT compiler will replace
all instances of this “old-value” with the “new-value” when compiling.

CAUTION- While this provides an equivalent capability to the implementation of the MAKESYN
directive in other COBOLSs, the order of the parameters is reversed. COBOL-IT requires that the
“old-value” be listed first, and followed by the “new-value”.

makesyn-patch-preprocess: [yes/no]

Default ismakesyn-patch-preprocess:no

When set to yes,
Causes the makesyn compiler flag to change the output of pre-processed files
manuallock: [yes/no]

Default ismanuallock:no.

When set to yes,

Causes all files with no LOCK MODE clause in their SELECT statement to be declared
Implicitly as LOCK MODE is MANUAL unless a SHARING clause in the SELECT statement
or in the OPEN statement indicates otherwise. For details on other —f compiler flags related to
the treatment of LOCK MODE, see Guidelines for modifying default handling of the LOCK
MODE.

max-literal-expand: 32 (internal use only)

Defaultismax-literal-expand: 32

This setting is for internal use only, and should not be changed.

mem-info: [yes/no]

Default ismem-info:no.

@ COBOLT Page 108

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to yes,
Enables Dump of Working-Storage when runtime aborts.

mem-info:yes is enabled by the —g compiler flag and by the —debug compiler flag.

mfcomment: [yes/no]

Default is mfcomment : yes.
Treats lines with ™' or '/' in column 1 as comments.

mf-compat-parser: [yes/no]

Default is mf-compat-parser:yes.

When set to yes,

Causes COBOL-IT to match certain Micro Focus behaviors. These include :

Parsing of line continuation characters

Relaxed syntax check on RECORD CONTAINS phrase in the FD

Allowing level-66 and level-88 data names to have the same name as a paragraph or section.

When set to no,
The compiler generates errors in these situations.
mf-ctrl-escaped-parser: [yes/no]

Defaultismf-ctrl-escaped-parser:yes.

When set to yes,
Syntax parser is MF compatible with control character escaped by 0 (default).

mf-file-optional:[yes/no]

Defaultismf-file-optional:no

When set to yes,
Affects the file-status codes returned on files declared as OPTIONAL and OPEN in EXTEND.

The mf-file-optional:yes compiler configuration flag causes files declared as OPTIONAL and
OPEN EXTEND to return file-status code “05” if the file is created and file-status code “00” if the
file exists. The mf-file-optional:yes compiler flag improves consistency with Micro Focus
behaviors.

When set to no,
Files declared as OPTIONAL and OPEN EXTEND return file-status code “00” in both the case
where the file did not exist, and was created, and the case where the file did exist.

The —mf-file-optional compiler configuration flag corresponds to setting -fmf-file-optional compiler
flag.

@ COBOLT Page 109

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

mf-gnt: [yes/no]
Defaultismf-gnt:no.

When set to yes,
Causes shared objects generated by the compiler to be created with the.gnt extension.

Note that the generated object IS NOT compatible with the .gnt objects produced by Micro Focus.
This option is only used to reduce change in existing compilation scripts by causing object code to
be generated with the same extensions.

mf-hostnumcompare:[yes/no]

Default is mf-hostnumcompare:no.

The mf-hostnumcompare compiler configuration entry provides compatibility with Micro Focus in
cases where the HOST-NUMCOMPARE directive is used. The mf-hostnumcompare compiler
configuration entry affects comparisons of USAGE DISPLAY numeric data items when one of the
numeric data items in the comparison contain non-numeric data.

When set to yes, the field containing numeric data redefined as an alphanumeric item of the same
length, and this redefined data item is compared with the non-numeric value of the other numeric
data item.

When set to no (the default), the contents of the field containing numeric data are moved to an
intermediate alphanumeric data item that is the same size as the field containing nonnumeric data
before the comparison is performed. The content of this intermediate alphanumeric item is then
compared to the non-numeric value of the other numeric data item.

mf-int:[yes/no]

Defaultismf-int :no.

When set to yes,
Causes shared objects generated by the compiler to be created with the.int extension.

Note that the generated object IS NOT compatible with the .int objects produced by Micro Focus.
This option is only used to reduce change in existing compilation scripts by causing object code to
be generated with the same extensions.

mf-relativefile :[yes/no]

Default is mf-relativefile :no
Allows for compatibility with Micro Focus relative files.

When set to yes, the COBOL-IT runtime assumes the Micro Focus format for relative files for both
READ and WRITE operations.

When set to yes, the end-of-record marker for relative files is consistent with the setting of the
compiler configuration flag line-seg-dos.

When line-seg-dos:yes, the end of record setting is CR/LF
When line-seq-dos:no, the end of record setting is LF

@ COBOLT Page 110

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

module-load-priority:[yes/no]
Defaultismodule-load-priority: no

Affects the manner in which the runtime resolves the target of a CALL statement, so that shared
libraries are searched before linked symbols.

When set to no,

To resolve “myprog” in the phrase CALL “myprog”, the default behavior is first to look for the
symbol “myprog” in the linked library. Then if the symbol is not found, the runtime searches for a
shared library (myprog.cit, myprog.dll (Windows) or myprog.so (Linux/UNIX)) and searches for
the symbol myprog in the shared library.

When set to yes,

The search order is reversed. The runtime first looks for the shared library and if the symbol is not
found, it then looks into the linked symbols.

The same effect can be achieved at runtime by setting the COB_ LOAD_PRIORITY environment
variable as follows:

export COB_ LOAD PRIORITY=1
The compiler option —fthread-safe enables this option.

module-name-entry: [yes/no]

Default is module-name-entry:yes.

When set to yes,

Generates source module as alternate entry (default)

module-uppercase: [yes/no]

Default is module-uppercase:no.

When set to yes,

Causes the output file name to be created in upper-case, when used with the —m compiler flag.

move-all-edited: [yes/no]
Default ismove-all-edited:no.

When set to yes,
Causes MOVE ALL "X" TO an edited field to take care of the picture.

move-high-low-to-displaynumeric [error/zero/value]

Default ismove-high-low-to-displaynumeric:value

The move-high-low-to-displaynumeric compiler configuration flag affects the behavior of
MOVE HIGH-VALUES TO (usage display numeric data item) and

MOVE LOW-VALUES TO (usage display numeric data item).

When set to

@ COBOLT Page 111

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

error: trigger error at compilation "Invalid MOVE statement”
zero: move zeroes to display numeric item
value: move high- or low-values to display numeric item

move-picx-to-pic9:[cit / mf50 / mf40 / mvs / raw /iso / none]

Default ismove-picx-to-pic9: none

Defines the runtime behaviour when moving alphanumeric (PIC X(n) USAGE DISPLAY), to non-
signed display numeric data items (PIC 9(n) USAGE DISPLAY).

When set to “cit”

The target field is filled with ‘0’s. Then the source’s alphanumeric field value is checked for
validity as a numeric value. If the check passes, the value is transferred truncated according to the
rules associated with a COBOL MOVE from display numeric to display numeric.

When set to “mf50”

The source field value is copied, with truncation on the high end of the data item. No validation is
done.

When set to “mf40°’

The source field is copied, right-justified. Upper half-bytes are replaced with 0x30. As a result, a
MOVE PIC X(3) VALUE “ABC” to a PIC 9(3) field stores “123” in the PIC 9(3) field. This is the
Micro Focus 4.0 default behavior.

When set to “mvs”

The source field value is copied with truncation at the high end of the data item. Then the last
character is checked. If that last character is a valid EBCDIC sign character , that last character is
replaced by the corresponding value (0-9).

When set to “raw”

The data is copied with no conversion and no validation, and with RIGHT-JUSTIFY. It is
equivalent to a MOVE of a PIC X field to a PIC X field where both PIC X fields are RIGHT-
JUSTIFIED.

When set to “iso” (when displaynumeric-mf50:yes)

When MOVEing a PIC X field padded with SPACES to a PIC 9 field, the padding SPACES are
converted to 0s. As an example, when MOVEing a PIC XX VALUE “2” field to a PIC 99 field,
the PIC 99 field would store the target as “02”.
move-spaces-to-comp3:[error/space/zero]

Default is move-spaces-to-comp3:zero

The move-spaces-to-comp3 compiler configuration flag affects the behavior of the compiler and
runtime when SPACES are moved to a COMP-3 data item.

@ COBOLT Page 112

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

The default setting is “zero”. When set to zero, the compiler does not issue an error. At runtime
ZEROES are moved to the COMP-3 data item.

When set to space, the compiler does not issue an error. At runtime, SPACES are moved to the
COMP-3 data item.

When set to error, the compiler issues an error : Error: Invalid MOVE statement.

move-spaces-to-displaynumeric:[yes/no/error]
Default is move-spaces-to-displaynumeric: error

Enables MOVE SPACES to a numeric USAGE DISPLAY data item (PIC 9(n) USAGE
DISPLAY)

When set to yes,
The MOVE of SPACES to a PIC 9 USAGE DISPLAY field is allowed.

move-to-group-separated:[yes/no]
Default is move-to-group-separated: no

Affects the behaviour of a MOVE of SPACES or ZEROES to a group item, as when compiling the
instruction:

MOVE SPACE TO GRP-XXX
MOVE ZERO TO GRP-XXX

where GRP-XXX is a group item.

When set to yes,

The MOVE is generated for each field and sub-field of the group
When set to no,

The MOVE treats the group-item as a single alphanumeric data item.

name:[any string]
Default value: "COBOL-IT"
Purely used for purposes of commentary.

no-cbl-error-proc: [yes/no]

Default is no-cbl-error-proc: no

When set to yes,

Prevents the execution of CBL_ERROR_PROC.

no-realpath: [yes/no]

Default is no-realpath:no.

@ COBOLT Page 113

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to yes,
Causes file names to NOT be extended to a fully qualified path.

By default, when processing file names, the compiler retrieves the fully qualified path (from the
root) and processes the compilation using that extended name. That full name is also stored as the
source file name for debugging purposes.

non-ibm-5.2-syntax: [(ok or yes)/(error or no)/warning]

Defaultis non-ibm-5.2-syntax: ok

When set to ok or yes, non-ibm 5.2 syntax is not checked, and no action is taken.
When set error or no, non-ibm 5.2 syntax generates a compilation error.

When set to warning, non-ibm-5.2 syntax generates a warning, but the compilation continues.

nostrip: [yes/no]

Default is nostrip:no.

When set to yes,

Causes objects and object and executable files to NOT be stripped.

Stripping an object or an executable is the action of removing system level debugging information
notrunc: [yes/no]

Default is notrunc:no

When set to yes,

Causes truncation of binary fields to NOT be made according to the PICTURE clause while
performing intermediate computations.

not-reserved:[any reserved word]

Allows the removal of words from the reserved word list.

As an example, if you want the reserved word INCLUDE to not be considered a reserved word by
the compiler, make an entry in the compiler configuration file as follows:

not-reserved:INCLUDE

null-param: [yes/no]

Defaultis null-param:no

When set to yes,
Causes an extra NULL pointers to be passed as the last argument on CALL statements.

numeric-compare: [yes/no]

Default is numeric-compare:no.

When set to yes,

@|COBOLIT Page 114

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Causes the comparison of a numeric field with a PIC X field to interpret the value of the PIC X
field using its numeric value.

numeric-group: [yes/no/warning]

Default is numeric-group:yes

Determines the behavior of the compiler when an IS/IS NOT NUMERIC clause is applied to a
group item.

When set to yes, the compiler supports the syntax, and the clause does not produce a compiler error.
When set to no, compiler aborts, with the error message:
Error: IS NUMERIC not allowed on group

When set to warning, the compiler continues, but produces a warning:
Warning: IS NUMERIC not allowed on group
numval-validate: [yes/no]

Default is numval-validate: no

When set to yes,
Validates argument 1 of the NUMVAL function.

obj-cit: [yes/no]

Default is obj-cit:no.

When set to yes, causes compiled object to be generated with a cit extension instead of .dll
(windows) or .so (unix/linux). The COBOL-IT runtime recognizes the .cit extension as an
executable extension. The default behavior of the CALL statement has been changed, so that in a
CALL “myprog” statement, the runtime will look first for a compiled object with a .cit extension,
before searching for a .dll (Windows) or a .so (Linux/UNIX).

odo-slide: [yes/no]
Default is odo-slide: no

When set to yes,
Affects data items that appear after a variable-length table in the same record; that is, after an item
with an OCCURS DEPENDING clause, but not subordinate to it.

If the odo-slide compiler flag is set, these items always immediately follow the table, whatever the
current size of the table. Note that the internal addresses of these data items change as the table's
size changes.

If the odo-slide compiler flag is not set, these items have fixed addresses, and begin after the end of
the space allocated for the table at its maximum length.

Note : The mf.conf configuration file, which contains compiler configuration flags designed to
match Micro Focus default behaviours, includes the setting odo-slide : no.

@ COBOLT Page 115

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

If you are using the mf.conf configuration file, and your code depends on odo-slide being set to yes,
please add odo-slide : yes to your configuration file or add —fodo-slide to your compilation
command line.

optimize-move: [yes/no]

Default is optimize-move: yes

When set to yes,

Causes MOVE operations to be optimized that are performed by the INITIALIZE

verb in cases where target fields are USAGE DISPLAY NUMERIC, or USAGE NATIONAL.
Causes MOVE operations to be optimized by -fmem-info where the source and target fields have
identical declarations.

When set to no,
The optimizations are deactivated.

optimize-move-call:[yes/no]
Default is optimize-move-call:no

When set to yes,

Causes MOVE operations to be optimized by pre-selecting the internal runtime library routines
used for the MOVE when possible. Optimize-move-call is set to yes by default when using either
the -O or -O2 compiler flag.

optional-file: [yes/no]

Default is optional-file: no

When set to yes,

Causes all SELECT statements that do not specify OPTIONAL or NOT OPTIONAL to be
considered OPTIONAL.

pack-comp-4:[yes/no]

Default is pack-comp-4: no

Affects the storage of COMP-4 data items.

When set to yes,

COMP-4 fields are stored in the minimal possible amount of data space. This is the equivalent of
applying “binary-size = 1 - - 8 to the COMP-4 data items.

When set to no,

COMP-4 is considered equivalent to USAGE COMPUTATIONAL with memory storage calculated
accordingly.

perform-osvs:[yes/no]

Default is perform-osvs: no

@ COBOLT Page 110

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

Enhances compatibility with OSVS COBOL PERFORM statements

The $SET perform type settings of COB370, ENTCOBOL, OSVS and VVSC2 are emulated with the
setting perform-osvs:yes.

When set to yes,
The exit point of any currently executing perform is recognized if reached.

PERFORM statements with the same exit point can be nested to a depth of two (one inner and one
outer). If they are nested deeper, they do not return correctly. The end of a section is regarded as a
separate point from the end of its last paragraph.

The example below is included to illustrate a possible consequence of setting perform-osvs to ‘yes’,
where an infinite loop results that would otherwise be avoided.

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST-PERFORM.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 sw PIC X VALUE '1'.
01 ABORT-PRG PIC X (3) VALUE 'NO'.
PROCEDURE DIVISION.
BEGIN.
DISPLAY "BEGIN".
PERFORM A THRU A-EX UNTIL ABORT-PRG = 'YES'.
DISPLAY"END".
STOP RUN.

DISPLAY "I AM IN C".

IF sw = '1"'
PERFORM D THRU D-EX
ELSE
MOVE 'YES' TO ABORT-PRG.
A-EX.
EXIT.
B.
DISPLAY "I AM IN B".
MOVE 'O' TO SW.
GOTO C.

IF sw = '1'

GOTO B.
D-EX.

EXIT.

When perform-osvs is set to ‘no’, the source above produces the following result :
BEGIN
I AM IN B
I AM IN C

END

@ COBOLT Page 117

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

prepro_cut_line: [yes/no]
Defaut is prepro cut line: yes.

When set to yes,
When preparing file for preprocess, cuts output to 72 columns (default)

When set to no,
When preparing file for preprocess, does not cut output to 72 columns.

pretty-display:[yes/no]

printer-crlf:[yes/no]

Defautis printer-crlf: no.

When set to yes,

Files declared with ASSIGN TO PRINTER file names are generated with compatibility for DOS
printers. This will change the End Of Record to CR/LF (instead of LF)

profiling:[yes/no]

Defaultisprofiling: no.

When set to yes,

The compiler generates paragraph profiling code. The output produced by the profiler includes
separate counts for CPU and real elapsed times. For more details on using COBOL-IT’s built
in Profiler, see Guidelines for use of Profiler below.

protect-linkage:[yes/no]
Defaultisprotect-linkage: no.

When set to yes,
Generates code at the entry point of a program containing a USING xxx clause.

This allows for the passing of parameters that are NULL pointers. In these cases, where NULL
pointers are passed, the compiler creates a “fake” field of the same definition in WORKING-
STORAGE, and substitutes it as a reference for the parameter. Doing this will avoid a SIGVEC
error if NULL pointers passed through linkage are targets of a READ or WRITE statement.

guote:[any single character]
Default is quote: ™
Defines the value of the QUOTE reserved word

raw-by-value: [yes/no]

Default is raw-by-value:yes.

@ COBOLT Page 118

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to yes,
CALL BY VALUE [PIC X FId] does not convert [PIC X Fld] to numeric COMP-5 (default).

raw-compare: [yes/no]

Default is raw-compare:yes.

raw-pic9-display: [yes/no]

Defaultis raw-pic9-display:no.

When set to yes,

DISPLAY PIC 9(X) (no sign, no decimal) as it is in memory.

read-at-end-mf:[yes/no]

Default is read-at-end-mf :no

Affects the interpretation of the AT END/NOT AT END clauses used with a READ statement.

When set to yes,

For INDEXED files, when compiling a READ statement:

If an AT END and/or NOT AT END clause is defined in a READ statement and no NEXT or
PREVIOUS clause is specified, then the NEXT clause is implied.

read-into-copy: [yes/no]

Default is read-into-copy:no

When set to yes,

Causes the READ INTO statement to COPY data rather than performing a MOVE.

ready-trace:[y/n]
Default is ready-trace: no

Enables paragraph tracing between READY TRACE and RESET TRACE procedural COBOL
statements.

When set to yes,

In the interval between the READY TRACE and RESET TRACE statements, paragraph tracing
output is written to the console in the format:

PROGRAM-ID: [program-id]: [paragraph name]

recmode-f:[yes/no]

Default is recmode-f: no.

When set to yes,
Causes all unspecified RECORDING MODE clauses to be interpreted as RECORDING MODE F.

@ COBOLT Page 119

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

recmode-osvs:[yes/no]

Improves compatiblility with OSVS COBOL, as regards the RECORDING MODE phrase.
Default is recmode-osvs: no

When set to yes,

Compatibility with OSVS COBOL is improved, as regards the RECORDING MODE phrase.

recmode-v:[yes/no]

Default is recmode-v: no.

When set to yes,
Causes all unspecified RECORDING MODE clauses to be interpreted as RECORDING MODE V.

record-depending-iso:[yes/no]

Default is record-depending-iso:no

When set to yes,

The record-depending-iso compiler configuration flag causes a RECORD DEPENDING ON
<FIELD> clause to be handled in an 1ISO-compatible manner. More specifically, the recOrd-
depending-iso:yes compiler configuration flag causes files declared witha RECORD
DEPENDING ON <FIELD> clause, without any FROM or TO value, to assume a FROM and TO
value of the maximum record size.

When set to no,
The clause is ignored.

redefine-identifier: [error / warning / ok]

Default is redefine-identifier: ok

The redefine-identifier compiler configuration entry has been added to the “Dialect Features”
component of the compiler configuration file. The redefine-identifier compiler configuration flag
affects compiler behavior when ambiguous identifiers exist in the source code.

As an example, if your Working-Storage Section contained two identical declarations:

77 field-1 pic x(10).
77 field-1 pic x(10).

When set to ok

The compiler does not generate an error.
When set to warning

The compiler generates a warning
When set to error

The compiler generates an error

@ COBOLT Page 120

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

regionO: [yes/no]

Defaultis region0O:no.

When set to yes,

Causes the program to always switch to region 0 when executing. Setting region0:yes

lets you specify that the module will always execute in region 0 even if called from another
region. When called from another region, the module will switch to region 0 on entry and
switch back to the calling region at exit.

relativefile-bigendian:[yes/no]

Defaultis relativefile-bigendian:no

When set to yes,

Causes the record header of relative files to be stored in BigEndian format.
relax-bounds-check:[yes/no]

Defaultis relax-bounds-check: yes

Affects bounds-checking in reference-modified notations.

When set to yes,

In a reference-modified expression like mystring (x:length), the variable length is not checked for
an out-of-bounds condition.

relax-level-hierarchy:[yes/no]

Defaultis relax-level-hierarchy: yes

Affects compiler’s handling of non-matching level numbers.

When set to yes,

Non-matching level numbers are allowed.

relaxed-syntax-check:[yes/no]

Default is relaxed-syntax-check: yes

Affects strictness of syntax checking rules applied by the compiler.
When set to yes,

Relaxed syntax checking rules are applied by the compiler.

replace-additive:[yes/no]

Defaultis replace-additive:no.

When set to yes,

Allows for the use of the REPLACE ADD verb, which has the effect of nesting a REPLACE
statement inside an existing REPLACE statement. Nested REPLACE statements are executed
before outer REPLACE statements in COBOL-IT’s precompile phase. Note that a a REPLACE
stack can be cleared with the REPLACE OFF statement.

@ COBOLT Page 121

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

return-opt:[yes/no]
Default is return-opt : no.

When set to yes,
Generates optimized PERFORM return code. The —freturn-opt compiler flag is ignored when
using the —fgcc compiler flag.

round-fp:[yes/no]
Default is round-fp:no.

When set to yes,

Controls the way COMP-1 or COMP-2 are “moved” into non-COMP-1 or COMP-2 target fields
when the target field has fewer decimal places than the source field. If the —fround-fp compiler
flag is used, the value is rounded to the number of decimal of the target field. Otherwise, the
value is truncated.

rtncode-size: <integer>

Defaultis rtncode-size: 0.

When set to a non-zero value, sets the size, and memory alignment of the return-code register.
Possible values are:

2 2 bytes. Align on 2-byte boundary
4 4 bytes. Align on 4-byte boundary
8 8 bytes. Align on 8-byte bounary

rw-after-preprocess:[yes/no]
Default is rw-after-preprocess:no

When set to yes,

Causes SPCRW?2 to be run after the -preprocess script. By default SPCRW?2 is run before the
-preprocess script.

rw-mode-nopf:[yes/no]

Default is rw-mode-nopf :no

When set to yes,

Is equivalent to setting MODE NOPF for a Report Section report. MODE NOPF causes the Report

Writer to emulate an external print driver that does not generate printer control characters, like FF.
When set to yes, the report file is written as a standard LINE SEQUENTIAL file.

@ COBOLT Page 122

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

rw-mode-nopf-dos:[yes/no]

Default is rw—-mode-nopf-dos:no
When set to yes,

Is equivalent to setting MODE NOPF for a Report Section report. MODE NOPF causes the Report
Writer to emulate an external print driver that does not generate printer control characters, like

FF. When set to yes, the report file is generated with fixed-length lines that are padded with
SPACES and use the CR/LF record delimiter.

safe-linkage:[yes/no]

Defaultis safe-1linkage:no.

When set to yes,

Generates code at the entry point of a program containing a USING xxx clause.

This allows for the omission of parameters. Doing this will avoind a SIGVEC being returned by
the debugger when all linkage parameters are not provided.

screen-exceptions:[yes/no]

Default is screen-exceptions: no
Mimics the behavior of the environment variable COB_SCREEN_EXCEPTIONS.

When set to yes,
Causes the runtime to behave as if the environment variable COB_SCREEN_EXCEPTIONS=Y

Enables use of the Page Up, Page Down, Up Arrow, and Down Arrow keys on Field-level
ACCEPT statements. Also enables use of the Esc key, if the environment variable
COB_SCREEN_ESC=Y. When these keys are pressed, the COBOL-IT runtime will return the
CRT Status values as described in the table below. Note that Page Up, Page Down, Up Arrow, and
Down Arrow are enabled by default when ACCEPTIing a Screen:

Condition Key Pressed Cit Value returned to
CRT-STATUS-VAR

On ACCEPT <Screen> or On Page Up 2001

ACCEPT <Field> where the

environment variable
COB_SCREEN_EXCEPTIONS=Y
or the compiler configuration flag
screen-exceptions:Y

Page Down 2002
Up Arrow 2003
Down Arrow 2004
When COB_SCREEN_ESC=Y Escape Key 2005

@ COBOLT Page 123

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Print 2006

screen-raw-keys:[yes/no]

Default is screen-raw-keys: no
Mimics the behavior of the environment variable COB_SCREEN_RAW _KEYS.

When set to yes,
Causes the runtime to behave as if the environment variable COB_SCREEN_RAW_KEYS=Y

Note- The “raw keys” are the Home, End, Insert, Delete, and Erase EOL keys. When one of these
keys is pressed, the COBOL-IT runtime will return CRT Status values as described in the table
below:

Condition Key Pressed Cit Value returned to
CRT-STATUS-VAR
Where the environment variable Home 2007

COB_SCREEN_RAW_KEYS=Y

Or the compiler configuration flag
screen-raw-keys:Y

End 2008
Ins 2009
Del 2010
Erase EOL 2011

sequential-line:[yes/no]

Default is sequential-line:no.

When set to yes,
Causes all non-qualified SEQUENTIAL files to be declared as LINE SEQUENTIAL. Files
declared as RECORD SEQUENTIAL are not affected.

share-all-autolock:[yes/no]

Default is share-all-autolock:no.

When set to yes,

Causes all files with a SHARE WITH ALL clause in their SELECT statement to be declared
implicitly as LOCK MODE IS AUTOMATIC. For details on other —f compiler flags related to
the treatment of LOCK MODE, see Guidelines for modifying default handling of the LOCK
MODE.

@|COBOLIT Page 124

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

share-all-default:[yes/no]
Default is share-all-default:no.

When set to yes,
Causes all files to be declared implicitly as SHARE WITH ALL.

For details on other compiler flags related to the treatment of LOCK MODE, see Guidelines for
modifying default handling of the LOCK MODE.

share-all-manulock:[yes/no]

Default is share-all-manulock:no.

When set to yes,
Causes all files with a SHARE WITH ALL clause in their SELECT statement to bedeclared
implicitly as LOCK MODE IS MANUAL.

For details on other compiler flags related to the treatment of LOCK MODE, see Guidelines for
modifying default handling of the LOCK MODE.

sign-ascii:[yes/no]

Defaultis sign-ascii:no.

When set to yes,
Corresponds to the SIGN “ASCII” directive. Causes numeric DISPLAY items that include signs
are interpreted according to the ASCII sign convention. (default on ASCII machines)

sign-ebcdic:[yes/no]

Default is sign-ebcdic:no.

When set to yes,
Corresponds to the SIGN”EBCDIC” directive. Causes numeric DISPLAY items that include signs
are interpreted according to the EBCDIC sign convention. (default on EBCDIC machines)

sign-leading:[yes/no]
Defaultis sign-leading:no

When set to yes,
Makes SIGN IS LEADING the default.

@ COBOLT Page 125

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

sign-separate:[yes/no]

Defaultis sign-separate:no.

When set to yes,
Makes SIGN IS SEPARATE the default.
signed-comp6-as-comp3:[yes/no]

Default is signed-comp6-as-comp3: no
Affects treatment of data items described as comp-6.

When set to yes,
Signed comp-6 data items are treated as comp-3 data items.

simple-trace:[yes/no]

Defaultis simple-trace:no.

When set to yes,
Generates trace output at runtime for executed SECTION/PARAGRAPHS.

source-location:[yes/no]

Default is source-location:no.

When set to yes,

Generates source location code, enabling information to be dumped on source location when the
runtime aborts.

source-location:yes is enabled by the —g compiler flag and by the —debug compiler flag.
split-debug-mark:[yes/no]
Default is split-debug-mark:yes.

When set to yes,
DEBUG marks respect max 72 characters (default)

spzero:[yes/no]

Defaultis spzero: no

Affects the handling of space characters in numeric fields.

When set to yes,

Space characters moved to NUMERIC USAGE fields are converted to '0's.

@ COBOLT Page 120

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

stack-check:[yes/no]
Default is stack-check:no.

When set to yes,
Enables stack checking debug function. The stack checking debug function allows the user to trace
back through the stack of calling programs to the currently running line of source in a program.

stack-check:yes is enabled by the —g compiler flag and by the —debug compiler flag.

static-call:[yes/no]
Default is static-call:no.

When set to yes,
Causes static C function calls to be generated for the CALL statement.

This implies that all CALL’ed programs are C function that are linked with the current program.
When using the —fstatic-call compiler flag, no external dynamic resolution is performed at run-
time.

static-link:[function-name]
Improves performance of the CALL statement for statically linked routines.

The string value represents a symbol to link statically when encountered as an argument of a CALL.
This improves the performance of the call.

Mainly used for linked C function libraries
Example:

static-link: myfunc
Note:

Oracle symbols are provided in the file “oracle.symb”, and can be included in your compiler
configuration file as follows:

‘ include “oracle.symb”

Tuxedo symbols are provided in the file “tuxedo.symb”, and can be included in your
compiler configuration file as follows:

‘ include “tuxedo.symb”

sticky-linkage:[yes / no / fixed / variable]

Defaultis sticky-linkage: no

Affects allocation of linkage section items not listed as parameters
When set to yes, or fixed

@ COBOLT Page 127

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

The called program fills in any parameter not actually passed by the caller.
When set to no, or variable

Non-parameter linkage-section items remain allocated between invocations.

strict-compare-low: [yes/no]

Defaultis strict-compare-low:no

When set to yes,

Causes display of numeric variables containing low values not equal to zero or spaces when
compared.

strict-record-contains:[yes/no]
Default is strict-record-contains:yes

The strict-record-contains compiler configuration entry affects the handling of the RECORD
CONTAINS xx CHARACTERS clause in file systems using then EXTFH interface, when the
actual record size has fewer characters than are named in the clause.

When set to yes (the default):
COBOL-IT sends the number of characters stated in the clause as both MIN-RECORD-SIZE and
MAX-RECORD-SIZE.

When set to no:
COBOL-IT detects the smaller actual record size, and passes it through as the MIN-RECORD-
SIZE, whie passing the number of characters stated in the clause as the MAX-RECORD-SIZE.

Note that the strict-record-contains compiler configuration flag has no effect on VBISAM files, as
they do not use the EXTFH interface.

synchronized-double-word-bound:[yes/no]
Default is synchronized-doube-word-bound:no

Affects the alignment of data items declared as USAGE BINARY, which also contain the SYNC
clause. The default behavior is consistent with the behaviors of the IBM and Micro Focus
compilers. Specifically, when the SYNC clause is used, binary fields are aligned either on 2- or 4-
byte boundaries, depending on the size of the field.

Fields of 1-2 bytes in size are aligned on 2-byte boundaries.
Fields greater than 2-bytes in size are aligned on 4-byte boundaries.

When set to yes,

Binary fields are aligned on 2- or 4- or 8-byte boundaries, depending on the size of the field. This
was the default COBOL-IT behavior prior to version 3.7.9.

Fields of 1-2 bytes in size are aligned on 2-byte boundaries.

Fields of 3-4 bytes in size are aligned on 4-byte boundaries.

Fields greater than 4 bytes in size are aligned on 8-byte boundaries.

@ COBOLT Page 128

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

synchronized-propagate-to-occurs: [yes/no] (Internal Use Only)

Defaultis synchronized-propagate-to-occurs: yes

This setting is for internal use only, and should not be changed.

synchronized-propagate-to-occurs-with-group-size: [yes/no] (Internal Use Only)

Defaultis synchronized-propagate-to-occurs-with-group-size: no

This setting is for internal use only and should not be changed.

syntax-only:[yes/no]

Default is syntax-only:no.

When set to yes,
Performs syntax error checking only. Output is limited to results of syntax check.

syntax-support:[ok / archaic / obsolete / skip /ignore / unconformable / error]

Allows users to choose for the compiler to support, warn, or reject listed phrases which are
included in some COBOL dialects. The meaning of the different syntax support options:

ok Accept the dialect

archaic, obsolete, unconformable Emit warning messages

skip Construction is ignored

ignore Produces a warning message

error Produces a syntax error

unconformable Produces an 'unconformable’ error message

The phrases entered by default in the compiler configuration file with syntax support options :

Dialect features

Value: 'ok', 'archaic', 'obsolete', 'skip', 'ignore', 'unconformable'
author-paragraph: obsolete
memory-size-clause: obsolete
multiple-file-tape-clause: obsolete
label-records-clause: obsolete
value-of-clause: obsolete
data-records-clause: obsolete
top-level-occurs-clause: ok
synchronized-clause: ok
goto-statement-without-name: obsolete
stop-literal-statement: obsolete
support-debugging-line: obsolete
padding-character-clause: obsolete
next-sentence-phrase: archaic
eject-statement: skip
entry-statement: ok
move-noninteger-to-alphanumeric: error
@ COBOLT Page 129

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
odo-without-to: ok
move-spaces-to-displaynumeric: error
synchronized-clause: ok
synchronized-clause-on-group: ok
synchronized-group-align-size: skip
synchronized-occurs-align-size: skip

tab-width:[integer]
Default value: 8

Affects interpretation of tab characters in source code.

tally-register:[yes/no]

Defaultis tally-register: yes

Affects the creation of the internal TALLY register.
When set to no,

The creation of the TALLY register is disabled.

text-column:[integer]

Defaultis text-column: 72

Defines number of columns used for COBOL text

For Fixed source format only. Causes the compiler to ignore characters after the column marked by
“text-column + 6.

thread-safe:[yes/no]

Default is thread-safe:no.

When set to yes,
Generates thread-safe executables. For more details, see Guidelines on operating in a thread-safe
environment below.

trace:[yes/no]

Default is trace : no.

When set to yes,
Generates trace output at runtime, listing the SECTION/PARAGRAPH names as they are
executed.

trace-ts: [yes/no]

Defaultis trace-ts:no.
When set to yes,
Causes trace output to include timestamp.

@ COBOLT Page 130

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

trace-upon-systout: [yes/no]

Default is trace-upon-sysout :no.
When set to yes,
Causes trace output to to be written upon sysout, instead of the default writing upon syserr.

traceall:[yes/no]
Default is traceall:no.

When set to yes,
Generates trace output at runtime, listing SECTION/PARAGRAPH/STATEMENTS names as they
are executed.

trap-unhandled-exception:[yes/no]

Default is trap-unhandled-exception:no.

When set to yes,

Is useful in cases where certain EC compiler configuration file flags are set to yes, yet ON
EXCEPTION/ONSIZE ERROR/ON OVERFLOW language is not present in the COBOL
program. In these cases, using the —ftrap-unhandled-exception compiler flag causes the
information made available to the user to be enhanced when the program aborts.

For more details, see the documentation of the —ftrap-unhandled-exception compiler flag.

truncate-listing:[yes/no]
Default is truncate-listing:no.

When set to yes,
Causes output of the -t <file> compiler flag to be truncated at column 76

unstring-use-move:[yes/no]

Default is unstring-use-move:no.
Affects the behavior of the UNSTRING verb.

When set to yes, if the target of an UNSTRING INTO operation is described as PIC 9, then the
operation will be performed using a MOVE operation instead of raw copy operation. Then rules
defined by the move-picx-to-pic9 compiler configuration flag are used for conversion.
use-defaultbyte:[yes/no]

Default is use-defaultbyte: no

Enables defaultbyte use

When set to yes,

@ COBOLT Page 131

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

The defaultbyte compiler configuration file flag may be used.

utfl6-le:[yes/no]
Defaultisutf16-le:no.

Determines whether fields declared as PIC N are stored in UTF16-LE (Little Endian) or UTF16-
BE (Big Endian) format.

When set to yes,
Causes fields declared as PIC N to be stored in UTF16-LE (Little Endian) format.

When set to no,

Causes fields declared as PIC N are stored in UTF16-BE (Big Endian) format.
utf-8:[yes/no]

Defaultis ut£-8: no.

When set to yes,
Instucts the compiler that the source file, and literals are UTF-8 encoded. The utf-8 compiler
configuration file flag can be used with, or without the codepage compiler configuration flag.

If the utf-8 compiler configuration flag is used and the codepage compiler configuration flag is not
specified, then codepage utf-8 is assumed.

If, however, you wish to compile your source with another codepage (for example, the LATIN1
codepage), you should explicitly include that codepage declaration:

codepage: latinl

validate-dep-on: [yes/no]

Defaultis validate-dep-on:no.
When set to yes,

Causes the value of DEPENDING ON to be checked at runtime.

validate-odo:[yes/no]

Defaultis validate-odo:yes.

validate-only:[yes/no]
Defaultis validate-only:no.

When set to yes, causes the compilation of source to ignore all EXEC statements, and produce no
compiled objects. Compiler errors are produced, and can be captured in an error file, (using —err,
for example.

value-of-id-priority: [yes/no]

Default is value-of-id-priority:no

@ COBOLT Page 132

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to yes, the literal or data element that is the target of the VALUE OF FILE-ID clause in
the FD overrides target of the ASSIGN clause for the file.
When set to no (the default), this setting is ignored.

value-size-is-auto: [yes/no]

Default is value-size-is-auto: no

When set to yes, the CALL ..USING BY VALUE : default SIZE IS clause will be AUTO
(current default is SIZE IS 4).

variable-rec-pad-mf:[yes/no]
Default is variable-rec-pad-mf: no
Affects padding rules applied to variable length sequential records.

When set to yes, variable size RECORD SEQUENTIAL records (REC MODE ‘V’) are stored with
padding characters at the end to ensure that the next record starts on a 4 byte boundary.

vbisam: [yes/no]
Default is vbisam: no

When set to yes, causes VBISAM tobe used as the default indexed file system.

vms-error-handler: [yes/no]

Default is vins-error-handler:no

When set to yes,

Causes the default 10 error handler to always abort (emulation of VMS behavior).

when-compiled-function-all :[yes/no]
Default is when-compiled-function-all: no

When set to yes, and when functions-all: yes, then WHEN-COMPILED can be called without using
the FUNCTION keyword.

wnone:[yes/no]

Default is wnone: no

When set to yes, causes warnings turned on by default to be turned off.

Xxparse-event:[yes/no]
Default is xparse-event:no

When set to yes, causes the XML PARSE statement to generate START-OF-DOCUMENT and
END-OF-DOCUMENT XML-EVENTS.

@ COBOLT Page 133

@ CO BO |_—|-|_ COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

zero-length-trim:[yes/no]

Defaultis zero-length-trim:yes.

When set to yes, allows the LENGTH intrinsic function to return a zero-length of a string that has
been operated on by the TRIM intrinsic function.

@|/COBOLIT Page 134

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Compiler Environment Variables

The following environment variables are used by cobc, the COBOL-IT compiler, at compilation
time.
COB_AR <program>

Default is ar on Unix/Linux-based systems and 1ib.exe on Windows-based systems.
Designates archive program to be used by cobc.

COB_ARFLAGS <ar flags>
Designates archive flags used by cobc.

COB_CC <program>
Designates C compiler used by cobc.

COB_CFLAGS <cc flags>

Default is —-TSCOBOLITDIR/include on Unix/Linux-based sytems and
-I%COBOLITDIR%\include on Windows.

Designates C compiler flags used by cobc.
If defined, replaces the default settings used by cobc as the C compiler flags.

COB_CONFIG_DIR<directory>

Default is SCOBOLITDIR/share/COBOL-it/config on Unix/Linux-based systems, and
$COBOLITDIR%/config on Windows-based systems.

Designates the location of the compiler configuration file.

COB_CONSOLE_CP=<codepage-id>

The COB_CONSOLE_CP=<codepage-id> runtime environment variable, when defined, causes
the DISPLAY UPON CONSOLE/DISPLAY UPON SYSOUT phrases to convert the codepage
defined using the —fcodepage compiler flag to <codepage-id>.

As an example (on a Linux X Console):

>cobc —x myprog.cob —fcodepage latinl
export COB_CONSOLE_CP=UTF-8

Jmyprog

Will correctly display literals encoded in latinl on the console.

@ COBOLT Page 135

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COB_COPY_DIR<directory>

Default is SCOBOLITDIR/share/COBOL-1it/copy on Unix/Linux-based systems, and
$COBOLITDIRS%\ copy on Windows-based systems.

Designates the location of COPY files.

COB_EXTRA_FLAGS

Designates C compiler flags added when —O2 option is used or when —O is used without prior
-Os.

COB_LDADD <Id flags>

Sets an additional link command to be used by cobc.
Example:

COB_LDADD= -L/my/ownlibpath/ -Imylibs; export COB_LDADD

COB_LDFLAGS <Id flags>
Designates linker flags used by cobc. If defined, cobc does not compute the needed linker flags.

COB_LIBS <libs>

Defaultis -1/ opt /COBOL-it/1ib -lcob —-lgmp -1db on Unix/Linux-based systems,
and /LIBPATH:C:\COBOL\COBOLIT\1lib\ libcobit dl1.1ib on Windows-based
systems

Designates C compiler library flags used by cobc.

COB_OPTIMIZE_FLAG<cc flags>
Default is -02

Designates C compiler flags added when -O option is used.

Warning : On some platforms, using an optimization level greater than 2 can produce an unstable
program.

COB_OPTSIZE_FLAG=[optimization flag]
Default is —02

Designates flag to be used in the C compilation phase for the purpose of optimization.

Usage: To cause the —Os flag to be used by the C compiler

@ COBOLT Page 130

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

export COB_OPTSIZE FLAG=-Os

COB_STDUNIX <1/0>
Default is 0

When set to 1, on Windows-based systems, indicates that end-of-line is marked by LF, not CR/LF
as is the default on Windows-based systems.

COB_SUNSTUDIO12=[Y/N]
Default is N.

On sun SPARC Solaris, when using C compiler Sun Studio 12. you must set the runtime
environment variable "COB_SUNSTUDIO12" to “Y” to avoid receiving the warning:

cc: Warning: -xarch=generic64 is deprecated, use -m64 to create 64-bit programs

This environment variable setting is required when creating 64-bit programs. Otherwise, 4-byte
structure alignments could cause your program to abort at runtime with the error: “Bus Error (core
dumped)”.

COBCPY <directory list>

Designates colon ":'-separated list of pathes (Unix,Linux) or semi-colon ';'-separated list of pathes
(Windows) where cobc looks for COPY files.

COBCTMP=<directory>

Default is /tmp on UNIX/Linux-based systems and the local user’s
AppData\Local\Temp directory on Windows-based systems.

Designates the directory where temporary files are stored.
Note- The default TMPDIR setting is returned in the command “cobc —V”.

Note- When compiling with the -save-temps compiler flag, temporary files are stored in the current
directory.

COBITOPT=[string of command-line compiler flags]

Stores command-line compiler flags, for use with cobc. COBITOPT is designed to be compatible
with the MF environment variable COBOPT.

@ COBOLT Page 137

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COBOPT=[string of command-line compiler flags]

Stores command-line compiler flags, for use with cobmf. COBOPT is designed to be compatible
with the MF environment variable COBOPT.

COBOLITDIR=<directory>

Default is /opt /COBOL-1t on UNIX/Linux-based systems and C : \COBOL\COBOLIT on
Windows-based systems.

Names the directory in which COBOL-IT is installed.

TMPDIR or TMP=<directory>

Default is /tmp on UNIX/Linux-based systems and the local user’s
AppDatal\Local\Temp directory on Windows-based systems.

Designates the directory where temporary files are stored.
Note- The default TMPDIR setting is returned in the command “cobc —V”.

Note- When compiling with the -save-temps compiler flag, temporary files are stored in the current
directory.

COBOL-IT Runtime Options

Usage: cobcrun [param ...] PROGRAM

COBOL-IT runtime parameters

--checkpoint <file>
Sets checkpoint filename

--console, -c

Creates a new console

--debug, -d
Suspends and waits for debugger

--debug, -d --remote -r
Same as —debug but uses a separate file for events

@ COBOLT Page 138

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

--help,-h
Prints this help

--reload

Reloads checkpoint

--version, -V

Display runtime version

COBOL-IT runtime environment variables

The following environment variables are used by cobcrun, or by the COBOL-IT native executable
at run time.

COB_CALL_CASE=xul [where x=exact match, u=uppercase, |=lowercase |

COB_LOAD_CASE=xul [where x=exact match, u=uppercase, |=lowercase |

COB_CALL_CASE and COB_LOAD_CASE should be used together, and affect the behavior of
the CALL statement, as regards algorithms applied when locating the target of the CALL statement.

When COBOL-IT executes a CALL “[Symbol]” statement, the default behavior for the runtime is:
to look first in memory for:

1- an exact case match of “[Symbol]”,

2- “[Symbol]” in upper case,

3- “[Symbol]” in lower case.

If “[Symbol]” is not found in memory, the runtime will then look for a filename with:
1- an exact case match of “[Symbol]”,
2- “[Symbol]” in upper case,
3- “[Symbol]” in lower case.

The first match is used.

COB_CALL_CASE and COB_LOAD_CASE provide the user with control over this lookup
process, as follows:

COB_CALL_CASE=xul controls the behavior of “[Symbol]” lookup in memory.
COB_LOAD _ CASE=xul controls the behavior of “[Symbol]” lookup in a filename on disk.

Where the letters xul represent three letters, each of which may be set toY or N, to set whether or
not the x (exact match check), u (uppercase check) or | (lower-case check) is performed.

@ COBOLT Page 139

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Default settings are :
COB_CALL_CASE=YYY
COB_LOAD_CASE=YYY

An example of a usage, in which only exact case matching would be applied for a symbol in
memory would be, while upper-case and lower-case matching for the filename is preserved:

export COB_CALL_CASE=YNN

export COB_LOAD_CASE=YYY

COB_CONSOLE_CP=<code page>

Sets the Windows console code page to <code page>. COB_CONSOLE_CP is available in
Windows only.

COB_CURRENT_DATE

The COB_CURRENT_DATE runtime environment variable can be used to control the results of
the ACCEPT FROM DATE YYYYMMDD statement. COB_CURRENT_DATE holds a date in
the format “yyyy-mm-dd”.

Usage:

In Windows:
>set COB_ CURRENT_DATE=2015-01-31

In .Linux/Unix:
>export COB_ CURRENT_DATE=2015-01-31

77 the-date PIC 9(8).

ACCEPT the-date FROM DATE YYYYMMDD .
DISPLAY the-date line 10 col 10.

Alternatively, you can use the SET verb to set COB_CURRENT_DATE, as follows:
SET ENVIRONMENT “COB_CURRENT DATE” TO “2011-01-31".

In each of these cases the variable the-date would be returned as 20110131 instead of the current
date, as would be expected if COB_CURRENT_DATE were not set.

Note: The ACCEPT FROM DATE statement now checks once to determine whether the
COB_CURRENT_DATE environment variable is set. If it is set, then the value is stored in cache,
and is retrieved by the ACCEPT FROM DATE statement. If it is not set, then
COB_CURRENT_DATE is not re-checked, and the ACCEPT FROM DATE statement

applies its default behavior of retrieving the date from the system.

COB_DEBUG_ALLUSER=1
The COB_DEBUG_ALLUSER environment variable, when set to 1, and when defined before

@ COBOLT Page 140

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

running a COBOL program, causes the pipes that are created by the debugger to communicate with
cobcdb to have an attribute mask of 777, which provides Read/Write attributes for all users.

For the case where cob _init(. . .) has already been called, the same effect can be achieved by
calling:

cob_debug_acl alluser(rtd,1);

This will also ensure that the pipes that are created by the debugger to communicate with cobcdb
have Read/Write attributes for all users.

Note- Usage of COB_DEBUG_ALLUSER, and/or COB_DEBUG_TMP may be indicated if you
receive this error message opening a pipe created by the debugger:

Error opening /[path]/debug_xxx.cit for write (13: Permission denied)

COB_DEBUG_ID=<debug-id>

Defines a numeric ID that may be used to catch the program instead of the process id (PID). When
defined, a debugger may attach to the program using the COB_DEBUG _ID.

Before running the program in debug, define the environment variable COB_DEBUG_ID, for
example:

export COB_DEBUG_ID= <debug-id>
where <debug-id> is an integer.
Attach to the program using the debug-id:

For details on the debug attach functionality, see the documentation of the C$DEBUG library
routine.

Then at run time you must define the runtime environment variable:
COB_DEBUGDB=<DebugDB-name>

When compiling with —debugDB=<DebugDB-name>, the compiler will modify the way debugging
information is stored at compile-time. Instead of storing the metadata in the compiled object, the
metadata will be stored in an SQL.ite3 database named by <DebugDB-name>.

The COB_DEBUGDB=<DebugDB-name> runtime environment variable allows the runtime to
locate this file during a debugging session, and use the debugging information. Currently only 1
database may be use at a time. As a consequence, the user must use the same database for all of the
programs in his run unit.

COB_DEBUG_MODULES=<program-id1>:<program-id2>....

COB_DEBUG_MODULES is a list of program-ids, in which the entries are separated by a colon
character “:”. Adding the program-id of a program in your application to the list of
COB_DEBUG_MODULES causes the debugger to break at the entry of that program.

@|COBOLIT Page 141

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

This provides an alternative way to attach the debugger to a running process in cases where
programs do not contain calls to “C$DEBUG”, or where you do not have access to the remote
attach interface in the Developer Studio.

COB_DEBUG_STARTUP_FILE=<filename>

The console debugger cobcdb can locate source files that have been re-located after compilation
using the COB_DEBUG_STARTUP_FILE runtime environment variable and invoking the replace
debugger command.

The COB_DEBUG_STARTUP_FILE runtime environment variable is set to the name and location
of a file containing any number of commands that are executed when cobcdb is started.

Open <filename> and place the “replace” commands on separate lines:

replace /opt/cobol-it-64/samples/test:/opt/cobol-it-64/samples/src
replace ?

Save <filename> and export the COB_DEBUG_STARTUP_FILE environment variable.
export COB_DEBUG_STARTUP_FILE=<filename>

To locate a source file that has been moved, and associate it with an object compiled for debug, use
the 'replace’ debugger command, which changes the path to the source file.

The syntax is as follows: replace <oldprefix> : <newprefix>

The replace debugger command allows you to replace the location where the source files associated
with the program being debugged are stored.

The replace debugger command replaces any prefix of the full pathname, so the command replace
/dirA : /dirB will allow any program that was originally compiled in /dirA/dev/sources to have its
source stored in /dirB/dev/sources.

Subsequent commands are stacked, so when typing two more commands as follows :

replace /dirC : /dirD
replace /dirE : /dirF

you will end up with a list of three possible replacements. Only the first matching replacement will
be executed.

Further usages include:

replace <no arguments> Resets the list, removing active replacements
replace ? Produces a list of active replacements.

Note that replace only affects the output of the list command.
The list debugger command allows you to expand the source you can see inside the console

@|COBOLIT Page 142

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

debugger as you execute your debugger commands.

COB_DEBUG_TMP=<directory>

Default is /tmp.
COB_DEBUG_TMP control where the files and pipes created by the debugger are stored.

The runtime debugger uses named pipes to communicate. These are pipes with a file name, and by
default, they are located in /tmp. You may relocate them by defining the COB_DEBUG_TMP
environment variable.

This variable can be set in the login script of the user used to connect the remote debugger, as
defined in the remote connection tab of the Developer Studio This variable can also be set in the
local runtime environment. It does not need to be set in both locations. If it is set in both locations,
the settings should be identical, or the settings will be ignored, and the default value of /tmp will be
used.

The COB_DEBUG_TMP environment variable may be required when debugging remotely
attaching to a running process using the Developer Studio Remote System Explorer. This could be
the case if COBOL-IT user:group that the program is running under have different permissions on
pipe files created by default in the /tmp directory than the user:group of the user running the
debugger. This problem is resolved by use of the COB_DEBUG_TMP environment variable which
can be used to relocate the named pipes used by the runtime debugger into a directory in which the
permissions of the user:group running the program and the permissions of the user:group running
the debugger are the same.

Note- Usage of COB_DEBUG_ALLUSER, and/or COB_DEBUG_TMP may be indicated if you
receive this error message opening a pipe created by the debugger:

Error opening /[path]/debug_xxx.cit for write (13: Permission denied)

COB_DISPLAY_PRINTER=<filename>

The COB_DISPLAY_PRINTER runtime environment variable defines a file that is appended to for
each “DISPLAY UPON PRINTER” statement. Each “DISPLAY UPON PRINTER” statement
OPEN:s this file, WRITEs to the file, and then CLOSEs the file.

COB_DUMP=<filename>

Designates the filename used to dump memory information, when a program aborts that has been
compiled with the —-fmem-info compiler flag.

When set to N/NO, no dump is produced. If COB_DUMP is not set, then the memory
information is dumped to the file named by the COB_ERROR_FILE environment variable.

If COB_ERROR_FILE is also not set, memory information is written to stderr.

The output of this dump has been enhanced by adding the memory address of each field.

@|/COBOLT Page 143

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

As an example:
WORKING-STORAGE
RETURN-CODE [6AEF4438] = +000000000
TALLY [6AEF4440] = +000000000
SORT-RETURN [6AEF4448] = +000000000
NUMBER-OF-CALL-PARAMETERS [6AEF4458] = +000000000

COB_ERROR_FILE=<filename>

Designates the filename used to receive all runtime error messages that would otherwise be sent
to stderr. When writing an error message, the runtime will create the specified filename if it
does not exist, and will append to it if it does exist.

COB_EXTFH=<EXTFH Entry>
Defines the EXTFH handle name to be used for all COBOL files.

At run time, if the COB_EXTFH environment variable is defined (and no additional variables are
included to specify what library to load), the runtime looks for lib$(COB_EXTFH) on UNIX and
$(COB_EXTFH)_dIl.dll on Windows in the COBOL-IT installation directory and all directories
indicated in the COB_LIBRARY_PATH.

To use D-ISAM through EXTFH :
>export COB_EXTFH=disamextfh
Libdisamextfh.so will be found and loaded into the CIT distribution directory (COBOLITDIR).

The D-ISAM indexed file engine includes a check utility: dcheck. Dcheck is available on all Linux,
UNIX and Windows systems.

To use BerkeleyDB through EXTFH:
>export COB_EXTFH=bdbextfh

To use VBISAM through EXTFH*:

>export COB_EXTFH=vbisamextfh

*In version 3.10, VBISAM is the default file system, and does not require setting the COB_EXTFH
environment variable. However, in the future releases of Version 4.x, D-ISAM will replace
VBISAM as the default file system, and use of VBISAM will require this setting.

To use C-Tree through EXTFH:
COB_EXTFH=CTEXTFH; export COB_EXTFH

COB_EXTFH_LIB=/opt/mytools/lib/liba.so:/opt/mytools/lib/libb.so; export COB_EXTFH_LIB

These file systems can be used with all COBOL-IT tools including CitSORT.

COB_EXTFH_FLAT=<EXTFH Entry>

Defines the EXTFH handle name to be used for all COBOL flat files (SEQUENTIAL non-indexed
and RELATIVE).

@|COBOLIT Page 144

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Example:
COB_EXTFH_FLAT=MYEXTFH; export COB_EXTFH_FLAT

COB_EXTFH_INDEXED=<EXTFH Entry>
Defines the EXTFH handle name to be used for all COBOL indexed files

Example:

COB_EXTFH_INDEXED=BDBEXTFH; export COB_EXTFH_INDEXED
COB_EXTFH_LIB=/opt/COBOL-it/lib/libbdbextfh.so; export COB_EXTFH_LIB
COB_EXTFH_LIB=[list of shared libraries]

Iterates a colon —separated "' list of external shared libraries on (Unix,Linux) or a semi-colon-
separated | ;' list of external shared libraries on Windows. The list of shared libraries is preloaded
at start-up, and provides the reference to the COBOL-IT runtime, for locating the EXTFH handler
defined by COB_EXTFH, COB_EXTFH_INDEXED and COB_EXTFH_FLAT.

Example:
COB_EXTFH_LIB=libbdbextfh.so:libdb-4.7.s0; export COB_EXTFH_LIB

COB_FILE_CASE=[UPPER|LOWER]
Forces all file names to be converted to upper/lower case.

COB_FILEMAP_CASE=[UPPER/LOWER]

Forces the runtime to convert all literals that are the target of ASSIGN EXTERNAL clauses that are
associated with environment variables to upper/lower case before trying to resolve the name of the
environment variable associated with the file.

Example:
SELECT myfile ASSIGN EXTERNAL “FileA”....

When there is no setting of COB_FILEMAP_CASE, the runtime looks for an environment variable
named FileA.

When COB_FILEMAP_CASE=UPPER, the runtime looks for an environment variable named
FILEA.

When COB_FILEMAP_CASE=LOWER, the runtime looks for an environment variable named
filea.

COB_FILE_PATH=[PATH]

Designates the path to data files used by the application. COB_FILE_PATH is prepended to
datafile names by the runtime as it works to resolve filenames and locations.

@|COBOUIT Page 145

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Example:
COB_FILE_PATH=./data; export COB_FILE_PATH

COB_FILE_RELATIVE_MF=Y
Defaultis N

When set to Y, the COBOL-IT runtime assumes the Micro Focus format for relative files for both
READ and WRITE operations.

COB_FILE_TRACE=[Y/N]
Default is N

When set to Y, file tracing information is output to the file named by COB_ERROR_FILE, which
includes information on how the runtime resolves file names on OPEN, and also status codes
returned from unsuccessful file i-o operations. The COB_FILE_TRACE runtime environment
variable is evaluated when the OPEN statement is executed by the runtime. Changes to the
COB_FILE_TRACE runtime environment variable can be made during the runtime session.

COB_FULL_CANCEL=[Y/N]
Default is N.

Affects the behavior of the CANCEL statement which, by default, causes a “Logical Cancel” to be
implemented.

When setto Y,

All CANCEL statements performed in the running program cause a “Full Cancel” to be
implemented.

This behavior can also be achieved by setting the compiler configuration file flag:
full-cancel:Y.
Clarifications on the difference between a “Logical Cancel” and a “Full Cancel”:

In a “Logical Cancel”, the Working-Storage Section is reset to its initial values. Working-Storage
initial values are the values set the first time the module was loaded in memory.

In a “Full Cancel”, the Working-Storage Section is reset to its initial values, and the module binary
is unloaded, if possible, from memory. Unloading the module binary from memory is only possible
if the module is not being used in another region/thread, and it has been loaded by a CALL
STATEMENT (not by a preload of a shared library).

COB_KEY_DUP_ALWAYS_22=[Y/N]
Default is N.

@|COBOUIT Page 146

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

When set to Y, causes an error code of 22 to be returned if an attempt is made to add a record that
results in a duplicate key error condition.

By default, COBOL-IT returns an error code of 21 if an attempt is made to add a record that results
in a duplicate key error condition.
COB_LIBRARY_PATH =[PATH]

Designates the path to shared objects that will be executed with cobcrun.
COB_LIBRARY_PATH is prepended to shared object names that are CALL’ed by the runtime
as it works to resolve called object names and locations.

COB_LOAD_CASE=[UPPER/LOWER]
Controls the case transformation when looking for an external program in a CALL statement.

When set to LOWER, the CALL’ed name is converted to lower case.
When set to UPPER, the CALL’ed name is converted to upper case.
Otherwise, the name remains unchanged.

COB_LOAD_PRIORITY=[Y/N]
Default is N.
When set to no,

To resolve “myprog” in the phrase CALL “myprog”, the default behavior is first to look for the
symbol “myprog” in the linked library. Then if the symbol is not found, the runtime searches for a
shared library (myprog.cit, myprog.dll (Windows) or myprog.so (Linux/UNIX)) and searches for
the symbol myprog in the shared library.

When set to yes,

The search order is reversed. The runtime first looks for the shared library and if the symbol is not
found, it then looks into the linked symbols.

Setting the COB_ LOAD_ PRIORITY environment variable provide the ability at runtime to produce
the effect created by using the module-load-priority=y compiler configuration file flag at
compilation time.

COB_LS_DOS=[Y/N]
Default is N.

When set to Y/YES, the record delimiter for LINE SEQUENTIAL files is set to CR/LF. The
COB_LS_DOS runtime environment variable is evaluated when the OPEN statement is executed
by the runtime. Changes to the COB_LS_DOS runtime environment variable can be made during
the runtime session.

@ COBOLT Page 147

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COB_LS_FIXED=[Y/N]
Default is N.

When set to Y/YES, LINE SEQUENTIAL files are processed as RECORD SEQUENTIAL FILEs.
The COB_LS_FIXED runtime environment variable is evaluated when the OPEN statement is
executed by the runtime. Changes to the COB_LS_FIXED runtime environment variable can be
made during the runtime session.

COB_LS NULLS=[Y/N]
Defaultis Y

When set to Y, causes LINE SEQUENTIAL files to escape all values less than 0x20 with a null (0)
value. The COB_LS NULLS runtime environment variable is evaluated when the OPEN
statement is executed by the runtime. Changes to the COB_LS NULLS runtime environment
variable can be made during the runtime session.

COB_NO_DOT_DAT

The COB_NO_DOT_DAT runtime environment variable, when set to Y, instructs the VBISAM
indexed file driver to not append .dat to the data file. The index file still is created with a .idx
extension.

COB_NO_SIGNAL=[Y/N]
Default is N.

When set to Y, causes the runtime to not catch the signal which lets the system build a core dump.
Setting COB_NO_SIGNAL can improve performance, while reducing the diagnostic capabilities of
the runtime.

COB_PAD_BUG=[0/1]
Default is 0.

The runtime environment variable COB_PAD_BUG compensates for a bug that was detected in the
handling of variable length RECORD SEQUENTIAL files (REC MODE “V”) created in a
COBOL-IT version prior to version 3.5.8 that was greater than 2GB in size, and that was created
using the compiler configuration flag variable-rec-pad-mf: yes .

When the user had set variable-rec-pad-mf: yes, then when a record sequential file exceeded 2GB in size, all
records whose last character address was larger that 2GB(0x80000000) were written with an additional 4-
byte low-value filler. This anomaly did not occur when record addresses were smaller than 2GB
(0x80000000).

Prior to version 3.5.8, this extra padding was not detected by the COBOL-IT runtime, and did not affect the
handling of the data in the file. However, the extra 4-byte low-value filler did cause errors when using
external tools, such as Syncsort.

With the correction of this problem, the COBOL-IT runtime will detect the extra padding condition, and
these files will not be READable if the environment variable COB_PAD_BUG=1 is not set.

@|COBOUIT Page 148

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Note that while setting the environment variable COB_PAD_BUG=1, the old behavior of adding extra
padding when writing records whose last character address is larger that 2GB is preserved, and the ability to
read these records is preserved.

To rebuild a file that has been corrupted in this manner, set the environment variable COB_PAD_BUG=1,
use the COBOL configuration file setting variable-rec-pad-mf:yes, and run a program which READs
through the file with records containing extra padding, and WRITEs the records back out to a flat file with
non-variable length (REC MODE “F”). Then, set the environment variable COB_PAD_BUG=0, use the
configuration file setting variable-rec-pad-mf:yes, and run a second program which READs the flat file,
computes the length of the variable-length record, and and WRITES the records back out to a flat file with
variable length (REC MODE “V”). Note that two separate programs are required, as COBOL-IT reads the
COB_PAD_BUG environment variable just once when the runtime starts.

The COB_PAD_BUG runtime environment variable is evaluated when the OPEN statement is
executed by the runtime. Changes to the COB_PAD_BUG runtime environment variable can be
made during the runtime session.

COB_PRE_LOAD-=[list of modules]

Iterates a colon —separated "' list of external shared libraries on (Unix,Linux) or a semi-colon-
separated | ;' list of external shared libraries on Windows. The list of shared libraries is preloaded
at start-up.

COB_PROFILING_DIR

When compiling with the -fprofiling compiler flag, the runtime will check for the
COB_PROFILING_DIR environment variable, and generate the profiling data file in that directory
if it is defined. Otherwise, the profiling data file is created in the same directory as the source file.

Note that COB_PROFILING_DIR environment variable requires a trailing slash.
As an example, in Linux/UNIX environments:
>export COB_PROFILING_DIR=mydir/

As a result, the output file is generated as mydir/cob_profiling_<pid>_final.xls

In Windows environments:
>set COB_PROFILING_DIR=mydir\

As a result, the output file is generated as mydir\cob_profiling_<pid>_final.xls

COB_PROFILING_EACH_MODULE

The COB_PROFILING_EACH_MODULE runtime environment variable, when set to Y, causes
the profiler to revert to the old profiling behavior, in which the .xls file is output at the exit of each
module in an application.

@|COBOUIT Page 149

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COB_RTL_CP=<codepage>
Names the code page for Right-to-Left languages such as Hebrew.

Define the environment variable COB_RTL CP=<codepage> where <codepage> is the code page
of the Right To Left Language. Then when displaying a string, the part of the string that must be
written Right to left will be inverted.

Note that in Windows environments, if you define the environment variable
COB_CONSOLE_CP=<codepage>

the codepage of the console is changed at program startup. (This is equivalent to DOS command
chcp<codepage>). Currently for Hebrew (1255, 8859-8, 862) are supported.

COB_RUNTIME_CHECK_TRACE=[Y/N/Module list separated by ; or : (Windows)]
This environment variable should be used with caution.

The COB_RUNTIME_CHECK _runtime environment variable affects the behavior of the
“subscript out of bounds” runtime check that is made when compiling with -g -debug, and
optionally with -fmeme-info.

When set to “Y”, the “subscript out of bounds” will not force the runtime to abort, but to generate a
message referencing the line on which the condition was detected. Messages generated will be
written to the COB_ERROR_FILE if it is defined, otherwise, they will be written to stdout. No
memory dump is produced, even if the COB_DUMP environment variable is set and the program is
compiled with -fmem-info.

Consider a case where a program has a table with 5 elements, but a PERFORM loop increments the
subscript 10 times. When COB_RUNTIME_CHECK_TRACE is set to N (the default), the
“subscript out of bounds” condition forces the runtime to abort when the first out of bounds
condition is detected. If the program is compiled with -fmem-info and the COB_DUMP
environment variable is set, a memory dump is written to the COB_DUMP file.

When COB_RUNTIME_CHECK_TRACE is set to Y, the runtime will continue to run, producing
output as the subscript continues to increment, as seen below:

C:/COBOL/COBOLIT/Samples/test.cbl:20: libcob: Subscript of 'sample-element' out of bounds: 6
C:/COBOL/COBOLIT/Samples/test.cbl:20: libcob: Subscript of 'sample-element’ out of bounds: 7
C:/COBOL/COBOLIT/Samples/test.cbl:20: libcob: Subscript of 'sample-element’ out of bounds: 8
C:/COBOL/COBOLIT/Samples/test.cbl:20: libcob: Subscript of 'sample-element’ out of bounds: 9
C:/COBOL/COBOLIT/Samples/test.cbl:20: libcob: Subscript of 'sample-element’ out of bounds: 10

When set to Module list separated by “;” or “:” (Windows)
COB_RUNTIME_CHECK_TRACE is set to Y only with the listed modules.

Note that the module list must be surrounded by single-quotes in Linux/UNIX, and not surrounded

@ COBOLT Page 150

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

by single-quotes in Windows.

In Linux/UNIX, the module list must be surrounded by single-quotes:
Example:
>export COB_ RUNTIME CHECK TRACE="modulel;module2’

In Windows, the module list must not be surrounded by single-quotes, and both the “;” and “:”
characters are accepted as module delimiters.

Example:

>SET COB_RUNTIME_CHECK_TRACE=modulel;module2

or

>SET COB_RUNTIME_CHECK_TRACE=modulel:module2

COB_SCREEN_DISABLE_REFORMAT=[Y/N]

Default is N.

When set to Y, disables the reformatting associated by default with the
COB_SCREEN _UPDATE_FIRST_KEY_ERASE behavior.
COB_SCREEN_ESC=[Y/N]

Default is N.

When set to “Y”, enables use of the escape key. When COB_SCREEN_ESC=Y, and
COB_SCREEN_EXCEPTIONS=Y, the COBOL-IT runtime will return the CRT Status value as
described in the table below:

Condition Key Pressed Cit Value returned to
CRT-STATUS-VAR
Where COB_SCREEN_ESC=Y Esc 2005

COB_SCREEN_EXCEPTIONS=[Y/N]
Default is N.

When set to “Y”, enables the use of the Page Up, Page Down, Up Arrow, and Down Arrow keys
on Field-level ACCEPT statements. Also enables the use of the escape key when
COB_SCREEN_ESC=Y.

When COB_SCREEN_EXCEPTIONS=Y, the COBOL-IT runtime will return the CRT Status
values as described in the table below. Note that Page Up, Page Down, Up Arrow, and Down
Arrow are enabled by default when ACCEPTIing a Screen:

Condition Key Pressed Cit Value returned to
CRT-STATUS-VAR

@ COBOLT Page 151

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

On ACCEPT <Screen> or On Page Up 2001
ACCEPT <Field> where
COB_SCREEN_EXCEPTIONS=Y

Page Down 2002

Up Arrow 2003

Down Arrow 2004
When COB_SCREEN_ESC=Y Escape Key 2005

Print 2006

COB_SCREEN_INPUT_BOLDED=[Y/N]
Default is N.
When set to Y, causes all input fields to be displayed in bold.

COB_SCREEN_INPUT_FILLER=[char]
When set to [char], changes the PROMPT character to [char].

COB_SCREEN_INPUT_INSERT_TOGGLE=[Y/N]

Default is N.

When set to Y, causes the INS Key to toggle between Overwrite and Insert mode. The default
behavior of the INS key is to insert a SPACE at the current cursor position.
COB_SCREEN_INPUT_REVERSED=[Y/N]

Default is N.

When set to Y, causes all input fields to be displayed in REVERSE.

COB_SCREEN_INPUT_UNDERLINED=[Y/N]
Default is N.
When set to Y, causes all input fields to be displayed with UNDERLINE.

COB_SCREEN_RAW_KEYS=[Y/N]

Default is N.
When set to Y, enables use of the “raw keys”.

The “raw keys” are the Home, End, Insert, Delete, and Erase EOL keys. When
COB_SCREEN_RAW_KEYS=Y, the COBOL-IT runtime will return CRT Status values as
described in the table below:

Condition Key Pressed Cit Value returned to
CRT-STATUS-VAR

@ COBOLT Page 152

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Where Home 2007
COB_SCREEN_RAW_KEYS=Y
End 2008
Ins 2009
Del 2010
Erase EOL \2011

COB_SCREEN_UPDATE_FIRST_KEY_ERASE=[Y/N]

Default is N.
When set to Y, causes all field-level ACCEPT WITH UPDATE statements to behave as described
below:

If the first key pressed when entering the field is an alpha/number key the field is erased, and the
keystroke recorded. Reformatting rules are applied when exiting the field if the number of
characters entered is fewer than can be held by the field.

Consider an example:

A field-level ACCEPT WITH UPDATE is being done on a numeric data element described as PIC
9(4). The user enters a single digit “1”, and exits the field. The environment variable
COB_SCREEN UPDATE FIRST KEY ERASE is set to “Y”.

Prior to recording the keystroke, the runtime initializes the field to zeroes. Then, the runtime
records the keystroke of “1” in the first character position, then exits the field.

In many (perhaps most) cases, the user will expect the data item to reformat from 1000 to 0001.
This reformatting is the default behavior when COB_SCREEN_UPDATE_FIRST_KEY_ERASE is
setto “Y™.

For the cases where this reformatting is not desired, the user can disable this default behavior with
the COB_SCREEN_DISABLE_REFORMAT behavior, as described below.

The runtime environment variable COB_SCREEN_DISABLE_REFORMAT, whensetto Y,
disables the reformatting associated by default with the
COB_SCREEN_UPDATE_FIRST_KEY_ERASE behavior.

COB_STDUNIX=[Y/N]

Default is N.

Windows-only. When set to Y/YES, stdin, stdout, and stderr are opened in binary mode. This
means that the EOL (end of line) character used is LF (line-feed) only, as opposed to CR/LF,
which is the default in Windows operating environments.

@ COBOLT Page 153

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COB_SWITCH_0... COB_SWITCH_16

Setting any of the COB_SWITCH_1 thru COB_SWITCH_16 environment variables provides a
way for the user to set the corresponding SWITCH 0 thru SWITCH 16 declared in SPECIAL-
NAMES to either an ON or OFF state.

For example :
SET COB_SWITCH_1=0ON
>cobcrun switchtest

provides a way for the program switchtest, in which SWITCH 1 is declared in SPECIAL-NAMES,
to run with SWITCH 1 set to an ON STATUS.

COB_SYNC=[Y/N]
Default is N.

When set to Y, causes all WRITE operations to be followed by a flush to disk. Warning- this
option may degrade the performance of your program. The COB_SYNC runtime environment
variable is evaluated when the OPEN statement is executed by the runtime. Changes to the
COB_SYNC runtime environment variable can be made during the runtime session.

COB_VAR_REC_PAD=[Y/N]
Default is N.

The COB_VAR_REC_PAD runtime environment variable affects padding rules applied to variable
length sequential records. When set to yes, variable size RECORD SEQUENTIAL records (REC
MODE “V’) are stored with padding characters at the end to ensure that the next record starts on a 4
byte boundary. The COB_VAR_REC_PAD runtime environment variable is evaluated when the
OPEN statement is executed by the runtime. Changes to the COB_VAR_REC_PAD runtime
environment variable can be made during the runtime session.

COBLPFORM="n:n:n:::::::::n"
Provides a way to emulate printer channels CO1 through C12 by line feeds and form feeds.

With the implementation of the environment variable COBLPFORM, COBOL-IT can emulate the
printer channels CO1 through C12 by line feeds and form feeds. The environment variable
COBLPFORM provides a syntax that allows the user to define line numbers on the form, and to
associate printer channels with those line numbers.

Syntax: >COBLPFORM="n:n:n:::::::::n"; export COBLPFORM

Parameters:

@|COBOUIT Page 154

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

n: are colon-delimited numeric digits which assign a line number to a printer channel. Note
that the colon “:” position represents the printer channel number, while n represents the line number
assigned to that printer channel. Printer channels that have been assigned line number 0, or
described with one of the mnemonics S01, S02, CSP are set to line 1, at the beginning of the page.
Up to 12 printer channels can be described in this fashion.

Example: To set channel 1 to line 2, channel 2 to line 3, and channel 12 to line 60.

>COBLPFORM="2:3::::::::::60"
>export COBLPFORM

COBOLITDIR=<directory>

Default is /opt/COBOL-1t on UNIX/Linux-based systems and C : \COBOL\COBOLIT on
Windows-based systems.

Names the directory in which COBOL-IT is installed.

TMPDIR or TMP=<directory>

Default is /tmp on UNIX/Linux-based systems and the local user’s
AppData\Local\Temp directory on Windows-based systems.

Designates the directory where temporary files are stored.
Note- The default TMPDIR setting is returned in the command “cobc —V”.

Note- When compiling with the -save-temps compiler flag, temporary files are stored in the current
directory.

@ COBOLT Page 155

@

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

File Status Codes

COBOL-IT produces the same file status codes for VBISAM, CISAM, DISAM, and BerkeleyDB
indexed files. For information on how to map COBOL-IT file status codes to custom file status
codes, see the fstatus-map compiler flag. The -fstatus-map compiler flag may be repeated as many
times as necessary for cases where more than one file status code needs to be re-mapped.

00 Success
The file operation was successfully executed.

02 Success- Duplicate
The file allows duplicate keys and a duplicate key
has been detected on a READ NEXT operation; or has
been created on a WRITE or REWRITE operation.
(READ, WRITE, REWRITE)

04 Success—- Incomplete
In a record sequential file with fixed record size,
the READ of the last record returns fewer bytes than
requested.
(READ)

05 Success- Optional
The SELECT statement for the file contains the
OPTIONAL phrase and the file does not exist, but the
operation being executed does not require the
existence of the file.
(OPEN, DELETE)

07 Success—- No Unit
A CLOSE UNIT WITH NO REWIND or CLOSE UNIT REMOVAL
statement detected the absence of a UNIT, but does
not require it.
(CLOSE)

10 End of file.
A READ NEXT or READ PREVIOUS statement has detected
the end (or beginning) of the file.
(READ)

14 Out of KeyRange
A READ operation on a relative file failed when the
key number was larger than permitted by the
definition of the relative key data item.
(READ)

21 Invalid Key
A WRITE operation on a relative file failed when the
key number was inconsistent with the definition of
the relative key data item.
A DELETE, or READ on key operation failed because the
record did not exist.

@ COBOLT Page 130

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

A REWRITE operation failed because the key was
changed.
(WRITE, DELETE, READ, REWRITE)

22

If the environment variable COB KEY DUP ALWAYS 22 is
set to “Y”:

Key Exists / Duplicate Key

The File does not allow duplicate keys and a
duplicate key has been detected as the result of a
WRITE or REWRITE operation.

(WRITE, REWRITE)

23

Record not found.

A READ on key, REWRITE, DELETE, or READ NEXT after
START failed because the record was not found.

(READ, REWRITE, DELETE)

30

Permanent Error
An error at the level of the operating system has
occurred.

35

File Not Found
(OPEN, SORT)

37

Permission Denied

The OPEN statement being executed is not permitted.
The user may not have permissions on the system to
create a file in a given directory, or the OPEN
operation requested may be not permitted. A PRINT
file for example, may not be OPENed INPUT.

(OPEN)

38

Closed with Lock

An OPEN statement failed on a file that was CLOSEd
with LOCK by the current run unit.

(OPEN)

39

Conflict Attribute

An OPEN statement failed when a difference between
the attributes of the file being OPENed and the file
description was detected.

(OPEN)

41

File Already Open

An OPEN statement failed because the file is already
open.

(OPEN)

42

File Already Closed

A CLOSE statement failed because the file is already
closed.

(CLOSE)

@|COBOLIT Page 157

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

43

Read not Done

When ACCESS MODE is SEQUENTIAL, A REWRITE or DELETE
statement failed because it was not preceded by a
READ statement.

(REWRITE, DELETE)

44

Record overflow

A READ operation on a variable size record or a LINE
SEQUENTIAL file failed because the read record is
greater than the declared Record

A WRITE operation fail because the value of the field
of the clause SIZE DEPENDING ON is smaller than the
minimum record size or greater than the maximum size
A REWRITE operation fail when ACCESS MODE is
SEQUENTIAL because the new record size 1s different
from the original record size

46

Read Error

A READ NEXT/PREVIOUS statement failed because there
is no file pointer of reference.

(READ)

47

Input Denied

An input file operation failed either because the
file was not open, or not open in the mode required.
(READ, START)

48

Output Denied

An output file operation failed either because the
file was not open, or not open in the mode required.
(WRITE)

49

I O Denied

An IO file operation failed either because the file
was not open, or not open in the mode required. (
REWRITE, DELETE)

51

Record Locked

A READ operation failed because the record is locked
by another process.

(READ)

52

EOP

A WRITE operation on a PRINT file failed after End-
of-Page.

(WRITE)

57

I O Linage

An OPEN operation failed because the LINAGE
description was incorrect.

(OPEN)

61

File Sharing
An OPEN operation failed because the file was locked

@|COBOLIT Page 158

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual

by another process.
(OPEN)

91

Not Available

The operation requested is not available for the
file. Returned when operations that are specific to
indexed files are executed on record/line sequential
files.

(START, READ on key, REWRITE, DELETE)

Runtime Error Codes

128 CALL Unresolved

129 NULL name parameter passed to 'cobcancel'"
130 'cobcall' - Runtime has not been initialized"
131 Invalid number of arguments to 'cobcall'"

132 NULL name parameter passed to 'cobcall'"

133 'cobfunc' - Runtime has not been initialized"
134 NULL name parameter passed to 'cobsavenv'"
135 NULL name parameter passed to 'coblongjmp'"
136 Cannot acquire %d bytes of memory - Aborting"
137 BASED/LINKAGE item '%s' has NULL address"

138 '$s' not numeric: '%s'"

139 OCCURS DEPENDING ON '$s' out of bounds: %d"
140 Subscript of '%s' out of bounds: %d"

141 Offset of '$s' out of bounds: %d"

142 Length of '%s' out of bounds: %d"

143 EXTERNAL item '%s' has size > %d"

144 'cobcommandline' - Runtime has not been initialized"
145 Parameter to SYSTEM call is larger than 8192 characters"
146 Invalid context file %s for reading"

147 Can't open context file %s for reading"

148 Can't write context file %s key "

149 Can't open context file %s for writing"

150 Unexpected context mode %d"

151 Context file not open for read/write"

152 Can't read context file %s data"

@|COBOLIT

Page 159

Version 4.1

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

153 Runtime is unable to acquire temporary file"

154 extfh indexed open : invalid open mode %d for %s
155 extfh indexed start : invalid condition

156 extfh read : invalid read option %d"

157 extsm/SORT : maximum USING/GIVING clauses exceeded"
158 extfh/extsm Internal error

159 Failed to initialize curses"

160 cob init () has not been called"

161 Codegen error - Please report this to support@COBOL-it.com"
162 ERROR - Recursive call of chained program"

163 Stack overflow, possible PERFORM depth exceeded"
164 CBL xxx CALL Insufficient parameters count

253 Function only available in enterprise version

254 see messages

255 Undefined error

COBOLUIT

Page 160

@

COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

Data Memory allocation

Find Here after the memory allocation for every USAGE clause

“Format Native” means that the data may be stored in either little or big-endian
representation, depending on the platform on which the program is running.

BINARY,
COMPUTATIONAL

Size

Format

Negative value
allowed
PICTURE
allowed

BINARY-CHAR,
BINARY-CHAR SIGNED

Size

Format
Negative value
allowed
PICTURE
allowed

Depends on number of “9”s in PICTURE and the ”binary-
size” setting of the configuration file used to compile
the program. See “binary-size” description for more
detail.

Depending of the “bin-opt:[yes/no]

Defaultis bin-opt:no.
When set to yes,

Enables binary operation optimization. The —bin-opt optimizations are
enabled by use of the —O
compiler flag.

bin-opt-strict:[yes/no]
When set to yes,
Causes -fbin-opt binary operation optimization to be strictly respected.

binary-byteorder” setting of the configuration file used
to compile the program

If PICTURE contains “S”

Yes

1 Byte
Native

Yes

No

BINARY-CHAR UNSIGNED

Size

Format
Negative value
allowed
PICTURE
allowed

BINARY-C-LONG,

1 Byte
Native

No

No

@ COBOLT

Page 161

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

BINARY-C-LONG SIGNED

Size

Format
Negative value
allowed
PICTURE
allowed

Allocates the same amount of storage as does the C
language “long” data type on that computer; typically
this is 32 bits but it could be 64 bits

Native

Yes

No

BINARY-C-LONG UNSIGNED

Size

Format
Negative
value allowed
PICTURE
allowed

BINARY-DOUBLE,

Allocates the same amount of storage as does the C language
“long” data type on that computer; typically this is 32
bits but it could be 64 bits

Native

No

No

BINARY-DOUBLE SIGNED

Size

Format
Negative value
allowed
PICTURE
allowed

Allocates a “traditional” double-word of storage (64
bits)
Native

Yes

No

BINARY-DOUBLE UNSIGNED

Size

Format
Negative value
allowed
PICTURE
allowed

BINARY-LONG,

Allocates a “traditional” double-word of storage (64
bits)
Native

No

No

BINARY-LONG SIGNED,

SIGNED-LONG,
SIGNED-INT

Size

Format
Negative value
allowed
PICTURE
allowed

BINARY-SHORT

32 Bits
Native

Yes

@ COBOLT

Page 162

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1
BINARY-SHORT SIGNED
SIGNED-SHORT
Size 16 Bits
Format Native
Negative wvalue v
allowed s
PICTURE N
allowed ©
Page 163

@|COBOLIT

@

COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1
BINARY-SHORT UNSIGNED
UNSIGNED-SHORT
Size 16 Bits
Format Native
Negative wvalue No
allowed
PICTURE No
allowed
COMPUTATIONAL-1
Size Allocates a word of storage (32 bits)
Format Single-precision floating-point
Negative value Yes
allowed
PICTURE No
allowed
COMPUTATIONAL-2
Size Allocates a double-word of storage (64 bits)
Format Double-precision floating-point
Negative value Yes
allowed
PICTURE No
allowed
COMPUTATIONAL-3
PACKED-DECIMAL
Size Allocates 4 bits per “9” in the PICTURE plus a (trailing)
4-pbits field for the sign, rounded up to the nearest byte
Format Packed decimal

Negative value
allowed
PICTURE
allowed

COMPUTATIONAL-4

Size

Format

If PICTURE contains “S”

Yes

If “pack-comp-4” setting of the configuration is set to
yes, the size is computed like a COMPUTATIONAL as if the
"binary-size” setting of the configuration is set to “1—
8”.

If “pack-comp-4” setting of the configuration is set to
No, the size is identical to COMPUTATIONAL

See "binary-size” for more detail.

Depends on setting of bin—optiyeyn0]

Default is bin-opt :no.
When set to yes,

Enables binary operation optimization. The —bin-opt optimizations are
enabled by use of the -O
compiler flag.

COBOLUIT

Page 164

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Negative wvalue
allowed
PICTURE
allowed

COMPUTATIONAL-5

Size

Format
Negative value
allowed
PICTURE
allowed

COMPUTATIONAL-6

Size

Format
Negative value
allowed
PICTURE
allowed

COMPUTATIONAL-X

Size

Format

bin-opt-strict:[yes/no]
When set to yes,
Causes -fbin-opt binary operation optimization to be strictly respected.

binary-byteorder” setting of the configuration file used to
compile the program.

If PICTURE contains “S”

Yes

Depends on number of “9”s in PICTURE and the ”“binary-
size” setting of the configuration file used to compile
the program. See ”“binary-size” description for more
detail

Native

If PICTURE contains “S”

Yes

Allocates 4 bits per “9” in the PICTURE, as is done with
COMPUTATIONAL-3 data items. However, the data may not be
SIGNed, so there is no trailing 4-bit field for the sign.
When the number of digits is odd, the high-order 4-bits
contains a 0. To calculate the size of a comp-6 data
item, divide the PICTURE size by 2 and round up.

Packed Decimal

No

Yes

The size is computed like Signed COMPUTATIONAL as if the
"binary-size” setting of the configuration is set to “1—
8” and Signed rule are used event if the Picture do not
include “S”

Depending of the “bin-opt:[yes/no]
Defaultis bin-opt:no.

When set to yes,

Enables binary operation optimization. The —bin-opt optimizations are
enabled by use of the -O
compiler flag.

COBOLUIT

Page 165

Version 4.1

COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

Negative wvalue
allowed
PICTURE
allowed

DISPLAY

Size

Format
Negative value
allowed
PICTURE
allowed

INDEX

Size

Format
Negative value
allowed
PICTURE
allowed

POINTER
PROGRAM-POINTER

Size

Format
Negative value
allowed
PICTURE
allowed

bin-opt-strict:[yes/no]
When set to yes,
Causes -fbin-opt binary operation optimization to be strictly respected.

binary-byteorder” setting of the configuration file used to
compile the program

If PICTURE contains “S”

Yes

Depends on PICTURE - One character per X, A, 9, period,
$, z, 0, *, S (if SEPARATE CHARACTER specified), +, - or
B symbol in PICTURE; Add 2 more bytes if DB or CR symbol
used

Byte

If PICTURE contains “S”

Yes

32 Bits
Native

No

No

32 Bits or 64 Bits depending memory model used
Native

No

No

@ COBOLT

Page 166

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Using EXTFH-Compliant Indexed File Systems

COBOL-IT includes EXTFH Libraries

The COBOL-IT distribution includes EXTFH drivers for the BerkeleyDB, D-ISAM and VBISAM
file systems. The EXTFH drivers and libraries for the C-Tree ISAM ISAM File engine can be
acquired through COBOL-IT, and C-Tree is also supported. Enabling the use of any of these file
systems can be done either with the use of a compiler flag, or with a setting of the COB_EXTFH
runtime environment variable.

File System | Compiler Flag | Compiler COB_EXTFH environment var
Configuration File
BerkeleyDB | -fbdb bdb:yes >export COB_EXTFH=bdbextfh

(UNIX/Linux)
>set COB_EXTFH=bdbextfh (Windows)

D-ISAM -fdisam disam:yes >export COB_EXTFH=disamextfh
(UNIX/Linux)
>set COB_EXTFH=disamextfh (Windows)

C-Tree -fctree Ctree:yes >export COB_EXTFH=ctextfh
(UNIX/Linux)
>set COB_EXTFH=ctextfh (Windows)

VBISAM -fvbisam vbisam:yes >export COB_EXTFH=vbisamextfh
(UNIX/Linux)

>set COB_EXTFH=vbisamextfh
(Windows)

When the COB_EXTFH environment variable is defined (and no additional variables are included
to specify what library to load), the runtime looks for lib$(COB_EXTFH) on UNIX and
$(COB_EXTFH)_dlIl.dll on Windows in the COBOL-IT installation directory and all directories
indicated in the COB_LIBRARY_PATH.

As an example, to use D-ISAM through EXTFH (UNIX/Linux):
>export COB_EXTFH=disamextfh
Libdisamextfh.so will be found and loaded into the CIT distribution directory (COBOLITDIR).

These file systems can be used with all COBOL-IT tools including CitSORT.

VBISAM

The VBISAM file system is the default indexed file system used by COBOL-IT.

-fvbisam

The -fvbisam compiler flag forces use of the VBISAM Extfh indexed file engine.

This is the default setting in version 3.x and prior versions of COBOL-IT. However, in the future
release of COBOL-IT version 4.x, VBISAM will be deprecated and D-ISAM will become the
default. At that time, continued use of VBISAM files will require that the VBISAM Extfh indexed
file engine be activated either by using the -vbisam compiler flag, or with the use of the

@ COBOLT Page 167

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COB_EXTFH=vbisamextfh runtime environment variable setting.

vbisam: [yes/no]

Defaultis vbisam: yes.
When set to yes, forces use of the BerkeleyDB Extfh indexed file engine.

BerkeleyDB

BerkeleyDB is licensed by Oracle. For information on how to install, and license your BerkeleyDB
file system, visit www.oracle.com.

-fbdb
The -fbdb compiler flag forces use of the BerkeleyDB Extfh indexed file engine.

bdb: [yes/no]

Defaultis bdb: no.
When set to yes, forces use of the BerkeleyDB Extfh indexed file engine.

D-ISAM

The D-ISAM engine is more widely used than the VBISAM engine, and is fully compatible with
IBM C-ISAM 7.2. Unfortunately, VBISAM files are not readable by D-ISAM and will require
conversion. The VBISAM engine will be deprecated in the next major release (4.x) and replaced by
the D-ISAM indexed file engine.

-fdisam

The -fdisam compiler flag forces use of the D-ISAM Extfh indexed file engine. In the next major
release (4.x), the -fdisam compiler flag will be set by default.

disam: [yes/no]

Defaultis disam: no.
The disam compiler configuration flag when set to yes, forces use of the D-ISAM Extfh indexed
file engine. In the next major release (4.x), the default will be set to yes.

dcheck

The D-ISAM indexed file engine includes a check utility: dcheck. Dcheck is available on all Linux,
UNIX and Windows systems.

Usage: dcheck [-hifbB] isamfile [...]

h display isam header information only
I just check indexes, ignore data file

@ COBOLT Page 168

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

f fix corrupt indexes
b rebuild all indexes
B rebuild specific index

NOTES

The option string, preceded by a dash, can be placed anywhere on the command line. All options
must be specified in one string, and all options apply to all files specified.

The -B option is a little different. It can be specified multiple times, and each occurance must be
followed by an index number. A value of 1 denotes the primary index, 2 the next, etc. You cannot
specify -B on multiple files.

dcheck is not interactive, and will ask no questions, so it can be safely used in batch and script files
without operator intervention.

dcheck has been designed to run co-operatively (unless -f or -b specified) on files in active use, but
note that other processes will be blocked for the duration of some of the check cycles.

Example:

In the example below, the dcheck utility is used with no options, and returns information about the
holidaysIX data file. Here, we can see that the record length is 70 character, and there are two
indexes, a primary index that begins at offset zero, and is 25 bytes long, and an alternate index that
allows duplicate keys, begins at offset 25 and is 24 bytes long.

C:\COBOL\COBOLIT\Samples>dcheck holidaysIX
holidaysIX structure

data record length: 70

index block size: 1024

index dup width: 4

index 1: uniq char@0/25

index 2: dups char@25/24

data file: 19 slots allocated, O free

index file: 4 slots allocated, O free

checking data..ok
checking index 1..0k

C-Tree ACE

Documentation

Documentation for the complete c-Tree ACE engine is available at
http://www.faircom.com/ace/support_doc_t.php

@ COBOLT Page 169

http://www.faircom.com/ace/support_doc_t.php

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

Installation

Download the c-Tree ACE engine from the www.COBOL-it-online.com site.
You will find 2 different database engines:

- ISAM : Provides all ISAM data services.

- SQL.: Provides ISAM services and the ability to query the stored table
with SQL.

Ensure you download the version corresponding to the license key you have received.
By default the c-Tree engine will store data files in a sub directory of the c-Tree root installation

directory. It is helpful to take that into consideration when selecting the install directory for the C-
Tree distribution. Ensure that you will have enough space for your future COBOL data files.

Windows:
Just double click on the .msi file and follow the instructions.

Unix/Linux :
Move the Package to the selected installation directory (example /opt)
Decompress the package:

gunzipctreeACE-xxxxx.tar.gz

Un-tar the package:

tar xfctreeACE-xxxxx.tar
This will create a root installation directory for c-Tree ACE. (Example /opt/linux.x64.64bit)

Set COB_CTREE_PATH

The COBOL-IT Runtime requires the environment variable COB_CTREE_PATH to be set on the
path where the c-Tree runtime library is located. In Windows, the c-Tree runtime library is called
mtclient.dll, and in Unix the c-Tree runtime library is called libmtclient.so.

Windows
<Root c-Tree path> is C:\FairCom\VV9.3.0 in Windows installations.

Mtclient.dll is located in:
- <Root c-Tree path>\win32\bin\ace\sgl\ for the SQL database engine

installation

- <Root c-Tree path>\win32\bin\ace\isam for the ISAM database engine
installation.

Typicalsettings will be:

SET COB_CTREE PATH=C:\FairCom\V9.3.0\win32\bin\ace\sqgl

@ COBOLT Page 170

http://www.cobol-it-online.com/

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

SET COB_CTREE PATH=C:\FairCom\V9.3.0\win32\bin\ace\isam

Unix/Linux
<Root c-Tree path> varies in Linux/Unix installations, according to the platform.

By default, libmtclient.so is located in:
- <Root c-Tree path>/bin/ace/sql for the SQL database engine installation

- <Root c-Tree path>/bin/ace/isam for the ISAM database engine
installation.

An example for a 64-bit Linux installation would be:
export COB CTREE PATH=/opt/linux.x64.64bit/bin/ace/sql

export COB CTREE PATH=/opt/linux.x64.64bit/bin/ace/isam

Compiling
The c-Tree database engine is not required to compile your programs for use with c-Tree ACE.

-fctree
Use the compilation flag —fctree to activate the usage of c-tree or add “ctree:yes” to your compiler
configuration file.

Running
A program compiled to use c-Tree (with the —fctree compiler flag) requires the environment
variable COB_CTREE_PATH to be set.

Start/Stop Engine

Windows
On Windows, the SQL/ISAM engine is installed as a service. Please refer to the c-Tree ACE
documentation for details.

Unix/Linux
In the c-Tree root directory you will find 2 scripts :
- startace : Start the engine

- stopace : Stop the engine

Data file location

By default, the c-Tree data directory is located in the data subdirectory of the database engine.
Specifically:

- <Root c-tree directory>/bin./ace/sql/data for the SQL database
engine

@ COBOLT Page 171

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

- <Root c-tree directory>/bin./ace/isam/data for the ISAM database
engine

Fileswhose location is described with a fully qualified path name, for example, /usr/data/ on a Unix
system, or C:\data on a Windows system, are stored in that location.

Files whose location is described with a relative path are stored in a location relative to the c-Tree
data directory.

Note that for both fully qualified pathes, and for relative pathes, the directories named will not be
created by c-Tree if they do not exist. Make sure that all directories named in c-Tree file pathes
exist.

File name transformation follows the same rule as with the normal COBOL-IT file handles.
DD_[filename] and COB_FILE_PATHare used to transform file names before calling c-Tree.

@ COBOLT Page 172

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

Reserved Word List
ABEND ARGUMENT-VALUE BINARY-SHORT
ACCEPT AS BIT
ACCESS ASCENDING BLANK
ADD ASSIGN BLINK
ADDRESS AT BLOCK
ADVANCING AUTO BOTTOM
AFTER AUTO-SKIP BY
ALL AUTOMATIC BYTE-LENGTH
ALLOCATE AUTOTERMINATE CALL
ALPHABET B-AND CANCEL
ALPHABETIC B-EXOR CDECL
ALPHABETIC-LOWER B-NOT CENTURY-DATE
ALPHABETIC-UPPER B-OR CENTURY-DAY
ALPHANUMERIC B-XOR CHATIN
ALPHANUMERIC-EDITED BACKGROUND-COLOR CHAINING
ALSO BACKGROUND-COLOUR CHANGED
ALTER BASED CHARACTER
ALTERNATE BEEP CHARACTERS
AND BEFORE CHECKPOINT
ANY BELL CLASS
APPLY BINARY CLOSE
ARE BINARY-C-LONG CODE
AREA BINARY-CHAR CODE-SET
AREAS BINARY-DOUBLE COL
ARGUMENT-NUMBER BINARY-LONG COLLATING

@ COBOLT Page 173

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1
COLS CONTENT DELTITMITER
COLUMN CONTINUE DEPENDING
COLUMNS CONTROL DESCENDING
COMMA CONTROLS DESCRIPTOR
COMMAND-LINE CONVERT DETAIL
COMMIT CONVERTING DIR-SEPARATOR
COMMON COPY DISK
COMP CORE-INDEX DISPLAY
COMP-1 CORR DISPLAY-1
COMP-2 CORRESPONDING DIVIDE
COMP-3 COUNT DIVISION
COMP-4 CRT DOWN
COMP-5 CURRENCY DUPLICATES
COMP-6 CURSOR DYNAMIC
COMP-X CYCLE EBCDIC
COMPUTATIONAL DATA ECHO
COMPUTATIONAL-1 DATE ELSE
COMPUTATIONAL-2 DAY EMPTY-CHECK
COMPUTATIONAL-3 DAY-OF-WEEK ENCODING
COMPUTATIONAL-4 DE END
COMPUTATIONAL-5 DEBUGGING END-ACCEPT
COMPUTATIONAL-X DECIMAL-POINT END-ADD
COMPUTE DECLARATIVES END-CALL
CONFIGURATION DEFAULT END-COMPUTE
CONSTANT DELETE END-DELETE
CONTAINS DELIMITED END-DISPLAY

Page 174

@|COBOLIT

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

END-DIVIDE ERASE FREE
END-EVALUATE ERROR FROM
END-EXHIBIT ESCAPE FULL
END-TF EVALUATE FUNCTION
END-MULTIPLY EXCEPTION FUNCTION-ID
END-OF-PAGE EXCLUSIVE GENERATE
END-PERFORM EXHIBIT GIVING
END-READ EXIT GLOBAL
END-RETURN EXTEND GO
END-REWRITE EXTERNAL GOBACK
END-SEARCH FATLURE GREATER
END-START FALSE GROUP
END-STRING FD GROUP-USAGE
END-SUBTRACT FILE HEADING
END-UNSTRING FILE-CONTROL HIGH
END-WRITE FILE-ID HIGH-VALUE
END-XML FILLER HIGH-VALUES
ENTRY FINAL HIGHLIGHT
ENVIRONMENT FIRST I-0
ENVIRONMENT-NAME FLOAT-LONG I-O-CONTROL
ENVIRONMENT-VALUE FLOAT-SHORT ID
EOL FOOTING IDENTIFICATION
EOP FOR IF
EOS FOREGROUND-COLOR IGNORE
EQUAL FOREGROUND-COLOUR IGNORING
EQUALS FOREVER IN

@ COBOL-T Page 175

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual

Version 4.1

INDEX

INDEXED

INDICATE

INITIAL

INITIALISE

INITIALISED

INITIALIZE

INITIALIZED

INITIATE

INPUT

INPUT-OUTPUT

INSPECT

INTO

INTRINSIC

INVALID

IS

JUST

JUSTIFIED

KEPT

KEY

LABEL

LAST

LEADING

LEFT

LENGTH

LENGTH-AN

LENGTH-CHECK

LESS

LIKE

LIMIT

LIMITS

LINAGE

LINAGE-COUNTER

LINE

LINES

LINKAGE

LOCAL-STORAGE

LOCALE

LOCK

LOW

LOW-VALUE

LOW-VALUES

LOWLIGHT

MANUAL

MEMORY

MERGE

MINUS

MODE

MOVE

MULTIPLE

MULTIPLY

NAMED

NATIONAL

NATIONAL-EDITED

NATIVE

NEGATIVE

NEXT

NO

NO-ECHO

NOT

NULL

NULLS

NUMBER

NUMBERS

NUMERIC

NUMERIC-EDITED

OBJECT-COMPUTER

OCCURS

OF

OFF

OMITTED

ON

ONLY

OPEN

OPTIONAL

OR

ORDER

ORGANISATION

@|COBOLIT

Page 176

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

ORGANIZATION PROGRAM REPORTS
OTHER PROGRAM-ID REPOSITORY
OUTPUT PROGRAM-POINTER REQUIRED
OVERFLOW PROMPT RESERVE
OVERLINE QUOTE RETURN
PACKED-DECIMAL QUOTES RETURNING
PADDING RANDOM REVERSE
PAGE RD REVERSED
PARAGRAPH READ REVERSE-VIDEO
PARSE RECORD REWIND
PERFORM RECORD-OVERFLOW REWRITE
PIC RECORDING RIGHT
PICTURE RECORDS ROLLBACK
PLUS RECURSIVE ROUNDED
POINTER REDEFINES RUN
POSITION REEL SAME
POSITIVE REFERENCE SCREEN
PRESENT RELATIVE SCROLL
PREVIOUS RELEASE SD
PRINTER REMATINDER SEARCH
PRINTING REMOVAL SECTION
PROCEDURE RENAMES SECURE
PROCEDURE-POINTER REORG-CRITERIA SEGMENT-LIMIT
PROCEDURES REPLACING SELECT
PROCEED REPORT SENTENCE
PROCESSING REPORTING SEPARATE

@ COBOL-T Page 177

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual

Version 4.1

SEQUENCE

SEQUENTIAL

SET

SHARING

SIGN

SIGNED

SIGNED-INT

SIGNED-LONG

SIGNED-SHORT

SIZE

SORT

SORT-MERGE

SOURCE

SOURCE-COMPUTER

SPACE

SPACES

SPECIAL-NAMES

STANDARD

STANDARD-1

STANDARD-2

START

STATIC

STATUS

STDCALL

STOP

STRING

SUBTRACT

SUCCESS

SUM

SUPPRESS

SYMBOLIC

SYNC

SYNCHRONIZED

TAB

TALLYING

TAPE

TERMINATE

TEST

THAN

THEN

THROUGH

THRU

TIME

TIMEOUT

TIMES

TO

TOP

TRAILING

TRANSFORM

TRUE

TYPE

TYPEDEF

UNDERLINE

UNIT

UNLOCK

UNSIGNED

UNSIGNED-INT

UNSIGNED-LONG

UNSIGNED-SHORT

UNSTRING

UNTIL

UP

UPDATE

UPON

USAGE

USE

USING

VALUE

VALUES

VARYING

WAIT

WHEN

WITH

WORDS

WORKING-STORAGE

WRITE

WRITE-ONLY

XML

@|COBOLIT

Page 178

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

YYYYDDD

YYYYMMDD

ZERO

ZEROES

Intrinsic Function List

ZEROS

Function name
ABS

ACOS

ANNUITY

ASIN

ATAN
BOOLEAN-OF-INTEGER
BYTE-LENGTH
BYTE-OF

CHAR

CHAR-NATIONAL
COMBINED-DATETIME

CONCATENATE

COoSs

Arguments
arg-1

arg-1
arg-1l,arg-2

arg-1
arg-1
Not supported
arg-1
arg-1
arg-1

Not supported

arg-1l, arg-2

arg-1

arg-1

Type of fn
Numeric
Numeric

Numeric

Numeric
Numeric
NA

Numeric
Numeric

Numeric

NA

Numeric

Alphanumeric

Numeric

Returning
Absolute value of arg-1
Arccosine of arg-1

Ration of annuity paid for
arg-2 periods at interest
of arg-1 to initial
investment of one

Arcsine of arg-1
Arctangent of arg-1

NA

Size in bytes of arg-1
Size in bytes of memory

Character in position of
arg-1 of the alphanumeric
collating sequence

NA

accepts two arguments - a
date in integer date form,
and a time in standard
numeric time form - and
returns a numeric value in
which the date occupies
the integer part of the
value and the time
represents the fractional
part, according to the
expression argument-1 +
(argument-2 / 100000) .
For example, given the
integer date form value
143951 (representing the
date February 15, 1995)
and the standard numeric
time form value
18867.812479168304
(representing the time
05:14:27.812479168304),
the returned value would
be exactly
143951.18867812479168304

Concatenation of
alphanumeric
representation of arg-x

Cosine of arg-1

@|COBOLIT

Page 179

Version 4.1

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

(optional)

CURRENT-DATE None
DATE-OF-INTEGER arg-1
DATE-TO-YYYYMMDD arg-1
DAY-OF-INTEGER arg-1
DAY-TO-YYYYDDD arg-1
DISPLAY-OF arg-1,
arg-2
E None
EXCEPTION-FILE None

EXCEPTION-FILE-N
EXCEPTION-LOCATION None

EXCEPTION-LOCATION-N Not supported

EXCEPTION-STATEMENT None

EXCEPTION-STATUS None
EXP arg-1
EXP10 arg-1

Not supported

Alphanumeric

Numeric

Numeric

Numeric

Numeric

Alphanumeric

Numeric

Alphanumeric

NA

Alphanumeric

NA

Alphanumeric

Alphanumeric

Numeric

Numeric

Current date and time and
difference from Grennwich
Mean Time

Standard date equivalent
(YYYYMMDD) of integer date

arg-1 is converted from
YYMMDD to YYYYMMDD based
on the value of arg-2

Julian date equivalent
(YYYYDDD) of integer date.

arg-1l converted from YYDDD
to YYYYDDD based on the
value of arg-2

An alphanumeric character
string consisting of the
content of argument-1
converted to a specific
code page representation
defined by arg-2

arg-1l must be class
NATIONAL

If arg-2 is omitted, the
code page specified at
compilation time is used

Returns the wvalue of e,
the natural base

pos. 1-2: I-O-status
pos. 3-134: file-name
only for I-O conditions

NA

Three parts, separated by
LI A\l

*1. program, function, or
method name

* 2. paragraph name,
including qualification if
applicable

*3. an implementor-
defined identifier of the
source line containing
causing the exception

NA

name of the verb causing
the exception condition

name of the exception
condition

E raised to the power or
arg-1

10 raised to the power of
arg-é&

@|COBOLIT

Page 180

Version 4.1

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

FACTORIAL
FRACTION-PART
HIGHEST-ALGEBRAIC
INTEGER

INTEGER-OF-BOOLEAN
INTEGER-OF-DATE

INTEGER-OF-DAY

INTEGER-PART
LENGTH

LENGTH-AN

LOCALE-COMPARE
LOCALE-DATE

LOCALE-TIME

arg-1
arg-1
Not supported
arg-1

Not supported
arg-1

arg-1

arg-1
arg-1

arg-1

Not supported
arg-1, arg-2

arg-1l, arg-2

Numeric
Numeric
NA

Numeric

NA

Numeric

Numeric

Numeric

Numeric

Numeric

NA

Alphanumeric

Alphanumeric

Factorial of arg-1
Fraction part of arg-1
NA

The greatest integer not
greater than arg-1

NA

The integer equivalent of
the standard date
(YYYYMMDD)

The integer date
equivalent of the Julian
Date (YYYYDDD)

Integer part of arg-1

Length of arg-1 in
character positions

Length of arg-1 in
alphanumeric character
positions. It may be
applied to an
alphanumeric, national, or
numeric data item, or
literal.

NA

A character string
containing a date in a
culturally-appropriate
format specified by a
locale.

arg-1 must be alphanumeric
8 character positions in
length.

arg-1l must be a date in
the same format as the
year, month, and day
returned in character
positions 1 through 8 by
the CURRENT-DATE function.
arg-2 must be associated
with a locale in the
SPECIAL-NAMES paragraph.

A character string
containing a time in a
culturally-appropriate
format specified by a
locale.

arg-1l must be alphanumeric
13 character positions in
length.

arg-1l must be in the same
format as the hours,
minutes, and seconds

@|COBOLIT

Page 181

Version 4.1

COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual

Version 4.1

LOCALE-TIME-FROM-
SECONDS

LOG
LOG10
LOWER-CASE

LOWEST-ALGEBRAIC
MAX
MEAN

MEDIAN

MIDRANGE

MIN
MOD
NATIONAL-OF

NUMVAL

NUMVAL-C

NUMVAL-F

ORD

ORD-MAX

ORD-MIN

PT
PRESENT-VALUE

RANDOM

arg-1, arg-2

arg-1
arg-1
arg-1

Not supported

arg-1
arg-1

arg-1

arg-1

arg-1
arg-1, arg-2

arg-1l, arg-2
arg-1

arg-1, arg-2

Not supported

arg-1

arg-1

arg-1

None

arg-1

Optional arg-1

Alphanumeric

Numeric
Numeric

Alphanumeric

NA
Numeric

Numeric

Numeric

Numeric

Numeric
Numeric

National

Numeric

Numeric

NA

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

returned in character
positions 9 through 21 by
the CURRENT-DATE function.
arg-2 must be associated
with a locale in the
SPECIAL-NAMES paragraph.

Same as LOCAL-TIME

arg-1l is numeric and
represent number of second
from Midnight

Natural log of arg-1
Log to base 10 of arg-1

All letters in arg-1 are
set to lower-case

NA
Value of maximum argument

Arithmetic mean of
arguments

Arithmetic median of
arguments

Mean of minimum and
maximum arguments

Value of minimum argument

arg-1 modulo arg-2
National character string

Numeric value of simple
numeric string

Numeric value of numeric
string with optional
commas and currency string

NA

Ordinal position of the
argument in the collating
sequence

Ordinal position of
maximum argument

Ordinal position of
minimum argument

Value of Pi

Preset value of a series
of future period-end
amounts, arg-2, at a
discount rate of arg-1

Random number.
If arg-1l is provided, it
will be used to

reinitialize the ‘pseudo’

COBOLUIT

Page 182

COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual

Version 4.1

RANGE arg-1
REM arg-1,
REVERSE arg-1
SECONDS-FROM- arg-1,
FORMATTED-TIME
SECONDS-PAST- None
MIDNIGHT

SIGN arg-1
SIN arg-1
SORT arg-1

STANDARD-COMPARE

STANDARD-DEVIATION arg-1.
STORED-CHAR-LENGTH arg-1
SUBSTITUTE arg-1
SUBSTITUTE-CASE arg-1
SUM arg-1
TAN arg-1
TEST-DATE-YYYYMMDD arg-1

arg-2

arg-2

Not Supported

Numeric

Numeric

Alphanumeric

Numeric

Numeric

Numeric
Numeric
Numeric
NA

Numeric

Numeric

Alphanumeric

Alphanumeric

Numeric
Numeric

Numeric

random sequence.

If no argument is
provided, the next random
number is returned.

The returned number is
between 0 and 1 with 10
significant decimal. It
should be assigned to a
PIC 9V9(10).

Value of maximum argument
minus value of minimum
argument

Remainder of arg-1 /arg-2

Reverse order of the
characters of the argument

accepts two parameters - a
literal that is either a
time format or a combined
date and time format, and
a data item whose content
is in the specified format
- and returns a value in
standard numeric time
form.

number of second from

Midnight

The sign of arg-1
Sine of arg-1

Square root of arg-1
NA

Standard deviation of
arguments

The length of a string
arg-1l ignoring trailing
spaces

Copy of arg-1 where
partial string arg-2 is
replaced by value of arg-
3, arg-4 by value of arg-
5,

Idem SUBSTITUTE but
comparison are done case
independent

Sum of arguments
Tangent of arg-1

It returns a zero if the
argument is a valid date;
the value 1 if the year
subfield content is out of
range; the value 2 if the

COBOLUIT

Page 183

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

TEST-DAY-YYYYDDD

TEST-NUMVAL
TEST-NUMVAL-C
TEST-NUMVAL-F
TRIM

TRIML

TRIMR

UPPER-CASE

VARIANCE

WHEN-COMPILED

YEAR-TO-YYYY

arg-1

Not supported
Not supported
Not supported
arg-1l, arg-2

arg-1

arg-1

arg-1

arg-1...

None

arg-1l, arg-2

Numeric

NA
NA
NA

Alphanumeric

Alphanumeric

Alphanumeric

Alphanumeric

Numeric

Alphanumeric

Numeric

month subfield content is
out of range; or the wvalue
3 1if the day subfield
content is out of range
for the given year and
month.

arg-1 must be standard
date form (YYYYMMDD)

It returns a zero if the
argument is a valid date;
the value 1 if the year
subfield content is out of
range; or the value 2 if
the day subfield content
is out of range for the
given year.

Arg-1 must be in Julian
date form (YYYYDDD)

NA
NA
NA

The given string arg-1
with any leading and
trailing blanks removed,
or if arg-2 if given:

0 trim spaces both before
and after

1 trim spaces before only
2 trim spaces after only

Equivalent to:
TRIM (arg-1, 1)
Equivalent to:
TRIM (arg-1, 2)

All letters in the
argument are set to upper
case

Variance of argument

Date and time program was
compiled

arg-1l converted from YY to
YYYY based on the value of
arg-2

@|COBOLIT

Page 184

Version 4.1

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

COBOL-IT® Library Routines

COBOL-IT supports a number of library routines, which are built into the compiled objects, and
can be CALL’ed directly.

These library routines cover a range of functionalities, including:

Bytestream routines
o Bytestream routines allow for file handling without having FD and SELECT
statements for a file.
File/Directory routines
o File/Directory routines allow for the creation and deletion of files and directories,
and various other functionalities such as COPY functionality, and RENAME
functionality, and routines which can be used to retrieve information about given
files.
Logical Operation routines,
o Logical Operation routines allow for the application of logical operators such as
AND, OR, XOR, NOT, to parameters provided by the user,
Text String routines
o Text String routines allow for the case transformation and justification of given
strings of text,
Linkage-oriented routines
o Linkage-oriented allow the user to check the number of parameters passed from a
CALLing program, as wells as parameter size,
System-level routines,
o System-level routines include calls to “SYSTEM?”, as well as to “Sleep” routines,
which can be used to pause the system.
Debugging-oriented routines,
o Debugging-oriented routines allow the user to pause the runtime so that it may be
restarted in the debugger,
Error and Exit routines
o Error and Exit routines allow the user to direct control to routines set up to handle
error- and exit- procedure code.
Call-by-number routines
o Call-by-number routines provide compatibility with the commonly used X”91”,
X”F4” and X”F5” function.

COBOUIT Page 185

Version 4.1

@

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Notes applying to Library Routines generally:

The General Format for callable Library Routines is:

CALL library-routine [USING { parameter-n,... }]
[GIVING call-status].

library-routine is represented as an alphanumeric literal, or, in some cases, as a variable.
Note that the “SYSTEM” routine, and library routines that are prefixed with

“C$” (example: CSCOPY) can be dynamically called. In a dynamic CALL, the library
name is replaced by a variable name, which can be populated anywhere prior to the
execution of the CALL statement.

Format 1
CALL “library routine” USING parameter-1, GIVING call-status.
Format 2
77 function-call PIC X(20).
MOVE “library routine” to function-call.
CALL function-call.

The GIVING phrase is always optional. If the GIVING phrase is omitted, then the return
value from the CALL to the library routine will be returned to the return-code register.

In this document, supported Library Routines are listed alphabetically.
Runtime Abort Codes

o CALLs to Library Routines return a 0 when successful. For the behavior of a
Library Routine when unsuccessful, check the documentation for the specific
routine. Most commonly, you will find that file-oriented routines return file-status
codes that can be instructive as to why an operation has failed, and other routines
will return a 128 (Call Unresolved).

o Ifyour CALL returns an error code that is not mentioned in this documentation,
check the full list of runtime abort codes in the COBOL-IT Reference Manual for
further clarification.

@ COBOLT Page 180

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

C$CALLERNAME
C$CALLERNAME returns the program-id name of the CALLing program in a CALL’ed program.

Usage

CALL "CSCALLERNAME'" USING calling-program-name.

Parameters
calling-program-name PIC X(n)
Syntax
calling-program-name IS the program-id name of the program that CALL’ed the

currently running program.

General Rules
1. The function does note update return-code.

2. When executed from within a CALL’ed program, the function returns the program-id
name of the CALLing program. When executed from within a MAIN program that has
not been called, the function returns the string “UNDEFINED”.

Code Sample

* CSCALLERNAME
77 CALLINGPGM-NAME PIC X (30).

*

INITIALIZE CALLINGPGM-NAME.
CALL "C$CALLERNAME" USING CALLINGPGM-NAME.

@ COBOLT Page 187

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

C$CHDIR

C$CHDIR changes the current working directory to the directory named in new-dir.

Usage

new-dir,
CALL "CSCHDIR" USING di
GIVING call-status.

Parameters

new-dir PIC X(n)
call-status PIC S9(9).

Syntax

new-dir is the name of the new current working directory.
call-status is updated with the success or failure status.

General Rules
3. When the function is successful, call-status is set to 0.

4. When the function fails, call-status is set to 128.

Code Sample
* CSCHDIR
77 NEW-DIR PIC X (6) .
77 CALL-STATUS PIC S9(9).

INITIALIZE NEW-DIR, CALL-STATUS.
MOVE "SUBDIR" TO NEW-DIR.

CALL "CSCHDIR" USING NEW-DIR,
GIVING CALL-STATUS.

@ COBOLT Page 188

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

C$COPY

C$COPY copies a source file to a target filename.
Usage

CALL '"CSCOPY"

USING src-file,
target-file,
file-type,

GIVING call-status.

Parameters

source-file PIC X(n)
target-file PIC X(n)
file-type PIC X.
call-status PIC S9(9).

Syntax

source-file s the original file to be copied.

target-file is the new file which is a copy of source-file.
file-type Permissible values are:

“S” Sequential

“R” Relative

“I” Indexed

“T” Text

call-status is updated with the success or failure status.

General Rules
1. When the function is successful, call-status is set to 0.

2. When the function fails, call-status is set to 128.

Code Sample

* CSCOPY VARIABLES

77 SRC-FILE PIC X (11).

77 TARGET-FILE PIC X (10).

77 FILE-TYPE PIC X VALUE "T".
77 CALL-STATUS PIC S9(9).

INITIALIZE CALL-STATUS.
MOVE "LIBTEST.CBL" TO SRC-FILE.
MOVE "NEWFIL.CBL" TO TARGET-FILE.

CALL "CS$SCOPY" USING SRC-FILE,
TARGET-FILE,
FILE-TYPE,
GIVING CALL-STATUS.

@ COBOLT

Page 189

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

C$DEBUG

C$DEBUG is a library routine which can be called using either the PID of the runtime session, or
the value of the environment variable COB_DEBUG _ID. Prior to calling CSDEBUG, the program
should acquire the value of the PID / COB_DEBUG _ID.

You may acquire the value of the PID of the runtime session by calling the C$PID library routine,
using a PIC 9(n) parameter. The parameter must be numeric, and large enough to hold the value of
the Process ID.

For example :
77 ws-pid PIC 9(5).

CALL « C$PID » USING ws-pid.
CALL « C$DEBUG » USING ws-pid.

You may also call CSDEBUG USING the value of the runtime environment variable
COB_DEBUG _ID. Using the runtime environment variable COB_DEBUG _ID to hold the value of
this parameter has an advantage if you prefer to set the value of the parameter yourself. Acquire
the value of COB_DEBUG_ID programmatically before calling the CS$DEBUG library routine.

The parameter must be numeric, and large enough to hold the value of the value of the runtime
environment variable COB_DEBUG_ID.

For example :

77 ws-did PIC 9(5).

A.C-:.CEPT ws-did FROM ENVIRONMENT « COB_DEBUG_ID ».
CALL «C3$DEBUG » USING ws-did.

After a call to CSDEBUG is made, the executing program, or subprogram is paused. In this state,
the COBOL-IT Debugger may be attached to this runtime process from the COBOL-IT Developer
Studio.

Key concepts

e In order to attach to the COBOL-IT Debugger, the program containing the call to CSDEBUG
library routine must be compiled with —g.

e The COBOL-IT Developer Studio will request the location of the source file associated with the
program/subprogram that has been paused by the CSDEBUG command, for purposes of
debugging.

e The COBOL-IT Developer Studio attaching to the paused runtime session requires a COBOL
Project, and requires that some configuration. Recommended settings are :

o Window>Preferences>Run/Debug>Perspectives>Open the associated perspective when
lauching (Always)

Demonstration

For our test, we have a program, debugid.cbl, which calls a subprogram, subpgm.cbl, which
retrieves the PID of the runtime session, and then calls CSDEBUG to pause the runtime session.
We will run these programs from a batch file, as follows :

@ COBOLT Page 190

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

Launch and pause the runtime using “C$DEBUG”
runit.bat

SET COB_LIBRARY_PATH=.\object

cobcrun debugid

This will return the screen below. Note that in your case, the Process ID will likely be different.

@8 COBOL-IT COBOL Compiler Suite Enterprise build for Microsoft Visual € (tm) - runit (| ol e S

CSDEBUG Usage

Process ID: B19%6
PAUSING IN SUBFGHM_

@ COBOLT Page 191

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Attach the Debugger from the Developer Studio

When this program is paused, we will open the Developer Studio, configure :

Window>Preferences>Run/Debug>Perspectives>Open the associated perspective when launching (

Select Always) .
FrieeeT N o
type filter text Perspectives f=ln - v
General
e These settings control perspectives for running and debugging. A perspective can automatically
Ui open when launching or when an application suspends.
COBOL
Dynamic Languages Open the associated perspective when launching
Help (0) Never () Prompt
Install/Updat
f:ﬂsla Fpdate Open the associated perspective when an application suspends
ylyn . _ _

Remaote Systems © Always © Never @ Prompt
Run/Debug . . . _—

c | These settings assign perspectives to each application type or launcher and launch mode set.

ansale Select "Mone” to indicate that a perspective should not be opened.

External Tocls

Launching Application Types/Launchers: Modes/Perspectives:

Perspectives [T] C/C++ Application

String Substitution GDB (DSF) Create Process Launch [Debug]: | COBOL-IT Debugger -

View Management Standard Create Process Launche

View Performance [T] C/C++ Attach to Application
Team [E] C/C++ Postmortem Debugger
Terminal [E] C/C++ Remote Application
Usage Data Cellector (@} Cobol Pregram

= Launch Group
@, Program
4 m | ¢
[Restore Qefaults] [Apply]
@j [QK] l Cancel]

@|COBOLIT

Page 192

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Create a new project

File

Edit Mavigate

Search Project Run

Window Help

W Q- F~ i L - - T} % COBOL-IT De.. |[@} COBOL-IT D...
P . T
§ [Project.. [©] New Project @
| & COBOL Program Select a wizard Create a COBOL project
[Folder Creates a new COBOL project. Create a COBOL project in the workspace or in an external location
[File
e . .
=7 Untitled Text File Wizards: . :
Project name: | projectl]|
4 Other.. Ctrl+N
Contents
s [General
s 2= C/C++ (@ Create new project in workspace
4 (= COBOL () Create project at existing location (from existing source)
|@ COBOL Project
. = CVS Huast: Localhost
Directory: | CANCOBOL\Support\DebugAttach!projectl Browse...
Working sets
[] Add project to working sets
Working sets: Select...
@ = Back
&
COBOL-IT Compiler i
N
| [Enish]|

COBOLUIT

Page 193

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Select Debug Attach Function

In the Navigator Window, right-click on the Project, and select COBOL>Debug Attach from the
dropdown list :

@ COBOL-IT Developer Studio - COBOL-IT Developer Studio

|| File Edit Mavigate Search Project Run Window Help

Open in New Window
5 Copy

Paste
¥ Delete

Move...

Rename...

Impeort...

G &

Export...

Build Project
Refresh

ﬁO

Close Project
Close Unrelated Projects

Show in Remote Systems view
Run As

Debug As

Profile As

Team

Compare With

Restore from Local History...
Caobol

Source Control

Properties

! Remove from Context

Ctrl+Alt+5hift+Down

i B - iefL-iA-F-eero- £ %5 COBOL-IT De... ({¢] COBOLITD...
o5 Mavigator &3 =08 = 0O|[3= outline &2 @ - - 0O
@l BE|lws ™ An outline is not available.
I [I= projectl Mew
Go Into

Ll

Bpi®E-r3-=0

Build

Clean
Rebuild
Debug Attach

-

Eﬂ

@|/COBOLIT

Page 194

@ CO BO |_-|T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Select ID

In the Debug Configuration for Reverse Attach Window, select the entry with the PID that matches

the PID of the paused runtime session . Click Debug.

[@] Debug Configuration for Reverse Attach O | B .
Select ID
dids -------- pid: 1956 module: subpgm

Update IDs List

SetID
1956

Debug command

cobedb -p

Use Project Settings

H%COBOLITDIR % setenv_cobolit.bat

Debug] l Cancel

@|COBOLIT

Page 195

@ CO BO |_—|T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Edit Source Lookup Path

The Developer Studio opens in the Debugger Perspective. Note that there is a message, in red, that
Source Not Found. To associate the the source code of subpgm.cbl with the project, click on the

Edit Source Lookup Path... button.

@] COBOL-IT Debugger - So

'Ei\e Edit Navigate Search Project Run Window Help

a- 5-0-Q-iGA D B SR oe o)
%5 Debug 32 % &7 O | = | i T ¥ T O||6d=Variables 3 . % Breakpomtqs’:&" Expre;sions}EInteractiva Consola\l =08
[@ hello [Cobol Program] =R ‘ £ % l_'_“l ey <

1@ Cobol Program
P Thread[1]
= subpgm (line: 13
= debugid (] line: 9
s /C:/COBOL/Support/Debughttach/projectl/.cobolittmp192.168.1.7/cobolit.exec_

Narne Value
[4 WORKING-STORAGE

4] (K

= subpgm () line: 13 22 = OBz Outline 2

Source not found,

Edit Source Lookup Path...

An outline is not available.

s ¥ =0

El Console 2 E.Tasks}l}_\ Prob\quo E(ECLItEbIEq A 5 | En 5ﬂ|) =2~ [“j ~=0

[Debug Console] .hello [Cobol Program] /C:/COBOL/Suppert/DebugAttach/projectl/.cobolit tmp.192.168.1.7/cobolit.exec_script.5.bat (May 22, 2014 2:14:37 PM)

€:\COBOL\Support\DebugAttach\project1>CALL C:\Cobol\CobolIT\setenv_cobolit.bat
Setting environment for using Microsoft Visual Studioc 2818 %86 tools.
Setting Cobol-IT to C:\Cobel\CobolIT

4

m

e
n}

[alo &% <

@|/COBOLIT

Page 196

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

On the Edit the Source Lookup Path Screen, the Default setting is your current Project Path. If the
source files are not in your Project Path, click the Add button.

-
|@} Edit Source Lookup Path

==

Edit the source lookup path

Add, edit or remove source containers

Source Lookup Path:

i 4

» =% Default

Add...
Edit...
Ug
Down

Restore Default

[Search for duplicate source files on the path

®@

OK Cancel

Select File System Directory, Click Ok.

(@] Add Source

T —

i

Add a container to the source lookup path
A directory in the local file system

% Absolute File Path

) Archive

[Compilation Directory
) External Archive
=i
{ Path Mapping

[Program Relative File Path

=FProject

1=+ Project

=g Project - Path Relative to Source Folders
r[\‘_jWDrking set

=+ Workspace

[=>Workspace Folder

@

[ok

Cancel

/|

COBOLUIT

Page 197

@

COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1
Use the Browse button to locate the Source Location
(€} Add File System Directory s S =5
File system folder .
Specify folder and whether subfolders should be searched i If
Directory:
CACOBOL\Support\cdebugid
[7] Search subfelders
I @:l OK] [Cancel
Your selection will appear in ithe Source Lookup Path window . Click OK.
r@ Edit Source Lockup Path a— M-‘
Edit the source lookup path =
Add, edit or remove source containers
Source Lookup Path:
= cdebugid - CACOBOL\Support i Add..
= Default
Ug
Restore Default
[] Search for duplicate source files on the path
@) oK] [Cancel l
@ COBOLT Page 198

. CO BOL—'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
Debug in the Developer Studio
You are now ready to debug in the Developer Studio :
R— —
[S] COROLIT Debugger - C/COEOL/Supporyedebugid/subpgem.<bl - COBOL TT Developer Studio RN T - e & (s s e
File Edit Source Mavigate Search Project Run Window Help
i~ (SR A I N =R I = I v v T 3% COBOLAT De.. |{ ™
%5 Debug 2 (= L] LI 4 i 3 7 T O |[e9= Variables i3 9% Breakpaints| 67" Expressions | %] Interactive Console =0
@ .hello [Cobol Pregram] =t [[=
12 Cobol Program
0=
N Val
i Thread[1] ame e
= cubpgm (line: 13 @ WORKING-STORAGE
= debugid (line: 9
g /C/COBOL/Support/DebugAttach/projectl/.cobolittmp.192.168.1.7/ cobolit.exec_
4 n 3 4 [’
& | subpgm.chl 3 = B[5% outline 2 &~ =08
DATA DIVISION. . @ IDENTIFICATION
WORKING-5TORAGE SECTION. @ subpgm
77 ws-process-id PIC 9(5). © ENVIRONMENT
::?EEDURE DIVISION. © DATA
! .
CALL "C3PID" USING ws-process-id. © WORKING-STORAGE
DISPLAY "Process ID: ", ws-process-id LINE 18 COL 18. | @ PROCEDURE
DISPLAY "PAUSING IN SUBPGM"™ LINE 12 COL 18&. = a MAIN
CALL "C3DEBUG" USING ws-process-id.
b | DISPLAY "YOU CAN DEBUG NOW" LINE 16 COL 18.
DISPLAY "AND" LINE 17 COL 1@.
DISPLAY "FIND THE PROBLEM" LINE 18 COL 1@.
EXIT PROGRAM. &
F)
El Console &2 ¥ Tasks | [2(Problems = % kE| o B-ri-=0
[Debug Console] .helle [Cobol Program] /C:/COBOL/Support/DebugAttach/projectl/.cobolit.tmp.192.168.1.7/cobolit.exec_script.5.bat (May 22, 2014 2:14:37 PM)
C:\COBOL\Support\DebugAttach\projectl>CALL C:\Cobel\CobolIT\setenv_cobelit.bat
Setting environment for using Microsoft Visual Studio 2818 x86 tools.
Setting Cobol-IT to C:\Cobol\CobolIT
P)
o Read-Only Smart Insert 13:1 <A -
Use the Debugger toolbar buttons to debug your program.
Ex COBOL-IT COBOL Compiler Suite Enterprise build for Microsoft Visual € (tm) - runit
CSDEBUG Usage
Process ID: 81956
PAUSING IN SUBPGH
¥YOU CAN DEBUG NOW
AND
FIND THE PROBLEM
Back in DebuglD...
COBOLIT Page 199

@ CO BOL—'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

Terminate the Debugger by clicking on the Terminate button.

'Eile Edit Source Mavigate Search Project Run Window Help

i FTrO-Qr o Fr v El e oo T (35 COBOL-TT De... |[
5 Debug I3 ® &1 O || | R %| i 3 T T O||ed= variables 2 %% Breakpointq%‘f Expressionswglnteractive Console] =08
4 (@) hello [Cobel Program] Terminate (Cui-F2) =4 B & | 4 (,\| Fieg ¥

a ([Cobol Program
4 ® Thread[1]
|= debugid 0 line:11 |
p /C/COBOL/Support/DebugAttach/projectl /.cobolittmp.192.168.1.7/ cobolit.exec |

MName Value
@ WORKING-STORAGE

»

4 M 3 K +
& | debugid.chl 2 = B[5= outline 2 @A ~=0
IDENTIFICATION DIVISION. - 0 IDENTIFICATION
PROGRAM-ID. debugid. o debugid
ENVIRONMENT DIVISION.
DATA DIVISION. © ENVIRONMENT
WORKING-STORAGE SECTION. O DATA
PROCEDURE DIVISION. (2 WORKING-STORAGE
MAIN. © PROCEDURE
DISPLAY "C3DEBUG Usage”, LINE 6 COL 1@. @ MAIN
CALL "subpgm".
DISPLAY "Back in DebugID..." LINE 2& COL 18.
¥ STOP RUN.
€ ’
E Consale 52 ZTasqu_\ Problems} 0 Executableq N R | 5 @'—E| = =~ rﬁ - =08
[Debug Conscle] .hello [Cobol Program] /C:/COBOL/Support/DebugAttach/projectl/.cobelit.tmp.192.168.1.7/ cobolit.exec_script.5.bat (May 22, 2014 2:14:37 PM) |
-
C:\COBOL\Support\DebugAttach\projectl>CALL C:\Cobol\CobolIT\setenv_cobolit.bat
Setting environment for using Microsoft Visual Studio 2818 x86 tools.
Setting Cobol-IT to C:\Cobol\CobolIT
4 »
0* EIEELES

%

Programs used in this sample

debugid.cbl

IDENTIFICATION DIVISION.

PROGRAM-ID. debugid.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

PROCEDURE DIVISION.

MAIN.
DISPLAY "CS$DERUG Usage", LINE 6 COL 10.
CALL "subpgm".
DISPLAY "Back in DebugID..." LINE 20 COL 10.
STOP RUN.

@|/COBOLIT Page 200

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

subpgm.cbl

IDENTIFICATION DIVISION.

PROGRAM-ID. subpgm.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 ws-process-id PIC 9(5).

PROCEDURE DIVISION.

MAIN.
CALL "C$PID" USING ws-process-id.
DISPLAY "Process ID: ", ws-process-id LINE 10 COL 10.
DISPLAY "PAUSING IN SUBPGM" LINE 12 COL 10.
CALL "C$DEBUG" USING ws-process-id.
DISPLAY "YOU CAN DEBUG NOW" LINE 16 COL 10.
DISPLAY "AND" LINE 17 COL 10.
DISPLAY "FIND THE PROBLEM" LINE 18 COL 10.
EXIT PROGRAM.

runit.bat
SET COB_LIBRARY_PATH=.\object
cobc -0 .\object -g debugid.cbl

cobc -0 .\object -g subpgm.cbl
cobcrun debugid

C$DELETE

C$DELETE deletes a source file.

Usage

CALL "CSDELETE" USING DEL-FILE-NAME,
DEL-FILE-TYPE,
GIVING call-status.

Parameters

del-file-name PIC X(n)
del-file-type PIC X.
call-status PIC S9(9).

Syntax

del-file-name is the file to be deleted.
del-file-type is the type of file. Permissible values are:

@ COBOLT

Page 201

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

“S” Sequential

“R” Relative
“1° Indexed
“T” Text

call-status is updated with the success or failure status.

General Rules
1. When the function is successful, call-status is set to 0.

2. When the function fails, call-status is set to 128.

Code Sample
* CSDELETE
77 DEL-FILE-NAME PIC X (20).
77 DEL-FILE-TYPE PIC X VALUE "T".

77 CALL-STATUS PIC S9(9).

INITIALIZE CALL-STATUS.
MOVE "NEWFIL.CBL" TO DEL-FILE-NAME.

CALL "CS$DELETE" USING DEL-FILE-NAME,
DEL-FILE-TYPE,
GIVING CALL-STATUS.

CS$FILEINFO

CS$FILEINFO retrieves the size and date/time stamp of a file.

Usage

CALL "CSFILEINFO" USING file-name,
file-info,
GIVING call-status.

Parameters
info-file-name PIC X(n)
info-file-info A group item with the following elements:
file-size PIC X(8) COMP-X.
file-date PIC 9(8) COMP-X.
file-time PIC 9(8) COMP-X.
call-status PIC S9(9).
Syntax
info-file-name must be terminated with a space.
info-file-info receives data if file-name exists.

@ COBOLT Page 202

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

call-status is updated with the success or failure status.

General Rules
1. When the function is successful, call-status is set to 0.

2. When the function fails, call-status is set to 35.

Code Sample

* CSFILEINFO
77 INFO-FILENAME PIC X (16).
01 INFO-FILE-INFO.

05 FILE-SIZE PIC X(8) COMP-X.

05 FILE-DATE PIC 9(8) COMP-X.
05 FILE-TIME PIC 9(8) COMP-X.
77 CALL-STATUS PIC S9(9).

INITIALIZE CALL-STATUS.
MOVE "NEWFIL.CBL" TO INFO-FILENAME.

CALL "CSFILEINFO" USING INFO-FILENAME,
INFO-FILE-INFO
GIVING CALL-STATUS.

@ COBOLT Page 203

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

C$JUSTIFY

CSJUSTIFY performs left/right/center justification of data by removing leading and/or trailing
spaces.

Usage

CALL "CSJUSTIFY" USING SOURCE-DATA-1,
JUSTIFY-TYPE.

Parameters

source-data-1 Any data type
justify-type PIC X

Syntax

source-data-1 contains the data to be justified.
justify-type indicates whether justification is L (left), R (right), or C (center).

General Rules

The source-data item is transformed by the routine, as leading/trailing spaces are

manipulated.
Code Sample
* CSJUSTIFY
77 SOURCE-DATA-1 PIC X (20).
77 JUSTIFY-TYPE PIC X.
MOVE " ABCDEFGHIJ " TO SOURCE-DATA-1.

MOVE "L" TO JUSTIFY-TYPE.
CALL "CS$JUSTIFY" USING SOURCE-DATA-1, JUSTIFY-TYPE.
MOVE "R" TO JUSTIFY-TYPE.
CALL "CS$JUSTIFY" USING SOURCE-DATA-1, JUSTIFY-TYPE.
MOVE "C" TO JUSTIFY-TYPE.

CALL "CS$JUSTIFY" USING SOURCE-DATA-1, JUSTIFY-TYPE.

C$MAKEDIR

C$MAKEDIR creates a directory.

@ COBOLT Page 204

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Usage

CALL "CSMAKEDIR" USING dir-name
GIVING call-status.

Parameters

make-dir-name PIC X(n)
call-status PIC S9(9).

Syntax

make-dir-name is the name of the directory to be created.
call-status is updated with the success or failure status.

General

1.

2.
3.
4

Rules
When the function is successful, call-status is set to 0.

When the function fails, call-status is set to 128.
make-dir-name can contain full-path or relative-path notations.
CSMAKEDIR cannot be used to create a series of sub-directories.

Code Sample

*

77 MAKE-DIR-NAME PIC X (20).
77 CALL-STATUS PIC S9(9).

INITIALIZE CALL-STATUS.
MOVE "SUBDIR" TO MAKE-DIR-NAME.

CALL "CS$MAKEDIR" USING MAKE-DIR-NAME
GIVING CALL-STATUS.

@ COBOLT

Page 205

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CSNARG

C$NARG returns the number of parameters that have been passed through linkage to the executing
program.

Usage

CALL "CSNARG'" USING number-of-parameters.

Parameters

number-of-parameters Numeric data item.

Syntax

number-of-paramters is returned as a result of the call.

General Rules
1. Number-of-parameters is returned the number of USING items in the CALL statement
that are in the CALLing program.

Code Sample
*
77 NUM-PARAMS PIC S9.
LINKAGE SECTION.
01 LK-NAME PIC X (25).
01 LK-ADDR PIC X (25).

01 LK-CUSTOMERID PIC X (5).

PROCEDURE DIVISION USING LK-NAME, LK-ADDR, LK-CUSTOMERID.
MAIN.
CALL "CS$SNARG" USING NUM-PARAMS.

@ COBOLT Page 200

@ CO BO L—lT COBOL-IT Compiler & Runtime

Reference Manual

Version 4.1

C$PARAMSIZE

C$PARAMSIZE takes the ordinal number of a parameter as input in a USING phrase, and returns

its size in bytes in a parameter named in the GIVING phrase.

Usage

CALL "CSPARAMSIZE" USING param-num,
GIVING param-size.

Parameters
param-num PIC 9(n), or any numeric data item.
param-size PIC 9(n).
Syntax
param-num represents the ordinal position of parameter
param-size receives from the function the number of bytes in the named data item

General Rules
There are no general rules.

Code Sample

*

77 FIRST-PARAM-SIZE PIC 99.
LINKAGE SECTION.

01 LK-NAME PIC X (25).
01 LK-ADDR PIC X (25).
01 LK-CUSTOMERID PIC X (5).

MAIN.
CALL "CS$SPARAMSIZE" USING 1, GIVING FIRST-PARAM-SIZE.

PROCEDURE DIVISION USING LK-NAME, LK-ADDR, LK-CUSTOMERID.

@ COBOLT

Page 207

@

COBOL-IT Compiler & Runtime

CO BO |-_|T Reference Manual

Version 4.1

C$PID

C$PID retrieves the Process ID of the current process.
Note that C$PID is not currently available on Windows platforms.

Usage

CALL "CSPID" USING process-id.

Parameters

process-id PIC 9(n).

Syntax

process-id is a numeric data item which must be large enough to hold the process-id.
Code Sample

*

77 PROCESS-ID PIC 9(7).

CALL "CS$PID" USING PROCESS-ID.

@ COBOLT

Page 208

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

C$SLEEP

C$SLEEP causes the program to “sleep” in a defined interval that is represented in seconds, or

fractions of seconds.

Usage

CALL "CSSLEEP” USING number-seconds.

Parameters

number-seconds Numeric literal or data item

Syntax

number-seconds is the elapsed time in seconds to sleep
Code Sample

*

CALL "CS$SLEEP" USING 1.5.

@ COBOLT

Page 209

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

C$TOLOWER
C$TOLOWER translates a text string into lower-case.

Usage

CALL "CSTOLOWER" USING ctl-source-data,
VALUE ctl-source-length.

Parameters
ctl-source-data PIC X(10).
ctl-source-length USAGE UNSIGNED-INT.
Syntax
ctl-source-data is the data to translate to upper-case.
ctl-source-length is the number of characters to translate.

General Rules
1. The string in ctl-source-data is transformed by the operation, with all characters being

translated to lower-case.
2. Return-code is not updated following the operation.

Code Sample

*

77 CTL-SOURCE-DATA PIC X (10).
77 CTL-SOURCE-LENGTH USAGE UNSIGNED-INT.

MOVE "ABCDEFGHIJ" TO CTL-SOURCE-DATA.
MOVE 10 TO CTL-SOURCE-LENGTH.
CALL "CS$STOLOWER"
USING CTL-SOURCE-DATA,
VALUE CTL-SOURCE-LENGTH.

@ COBOLT Page 210

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

C$TOUPPER

C$TOUPPER translates a text string into upper-case.

Usage

CALL "CSTOUPPER" USING ctu-source-data,
VALUE ctu-source-length.

Parameters
ctu-source-data PIC X(n)
ctu-source-length USAGE UNSIGNED-INT, or a numeric literal
Syntax
ctu-source-data is the data to translate to upper-case.
ctu-source-length is the number of characters to translate.

General Rules
1. The string in ctu-source-data is transformed by the operation, with all characters being

translated to upper-case.
2. Return-code is not updated following the operation.

Code Sample

*

77 CTU-SOURCE-DATA PIC X (10).
77 CTU-SOURCE-LENGTH USAGE UNSIGNED-INT.

MOVE "ABCDEFGHIJ" TO CTU-SOURCE-DATA.
MOVE 10 TO CTU-SOURCE-LENGTH.
CALL "CS$STOUPPER"
USING CTU-SOURCE-DATA,
VALUE CTU-SOURCE-LENGTH.

CBL_ALLOC_DYN_MEM

CBL_ALLOC _DYN_MEM dynamically allocates memory, returning an address (MEMORY -
POINTER) and a size..

Usage:

@ COBOLT Page 211

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CALL "CBL ALLOC DYN MEM" USING memory-pointer,

BY VALUE memory-size,
BY VALUE memory-flags,
RETURNING call-status.

Syntax:

memory-pointer

memory-size

memory-flags

call-status

General Rules

is a data element described as USAGE POINTER. Memory-pointer
must be described as an 01-level data item. The memory allocated is
not initialized.

represents the size of the memory being allocated, in bytes.
memory size is described as PIC x(4) comp-5.

describe the type of memory being allocated. This is done by setting
of bits on a 4-byte field. See the table below for guidelines on setting
bits to describe a type of memory.

memory-flags is described as PIC x(4) comp-5.

bits 0-1 Reserved. Must be set to 0

bit 2 Allocate this memory
independently from any calling
program

bits 4-31 Reserved. Must be set to 0.

If bit 2 is not set, the memory allocated is freed when the currently
running program is cancelled from memory. If bit 2 is set, the
memory allocated is freed when the runtime session terminates.
Memory allocated can also be freed by the CBL_FREE_DYN_MEM
library routine.

is a return code. Call-status settings are:

0 successful allocation of memory
157 unsuccessful allocation of memory
181 contradictory setting of flags

The General Rules are described above.

COBOLT

Page 212

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_ALLOC_MEM

CBL_ALLOC_MEM dynamically allocates memory, returning an addres (MEMORY -POINTER)
and a size..

Usage:
CALL "CBL ALLOC MEM" USING memory-pointer,
BY VALUE memory-size,
BY VALUE memory-flags,
RETURNING call-status.
Syntax:

memory-pointer is a data element described as USAGE POINTER. Memory-pointer
must be described as an 01-level data item.

memory-size represents the size of the memory being allocated, in bytes.
memory size is described as PIC x(4) comp-5.

memory-Flags describe the type of memory being allocated. This is done by setting
of bits on a 4-byte field. See the table below for guidelines on setting
bits to describe a type of memory. Memory-flags is described as PIC

X(4) comp-5.

bit 0 Allocate the memory as shared
memory

bit 1 Reserved. Must be set to 0.

bit 2 Allocate this memory
independently from any calling
program. If bit 3 is set it will be
freed automatically when the
calling thread ends. If bit 3 is unset
it will be freed when the run-unit
ends.

bit 3 Allocate this memory as thread
local. If bit 2 is unset and there is a
direct or indirect (in a mixed
language environment) calling
COBOL program, it will be freed
when the calling program is
canceled or the thread ends -
whichever comes first.

bits 4-31 Reserved. Must be set to 0.

@ COBOLT Page 213

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

Gener

call-status is a return code. Call-status settings are:
0 successful allocation of memory
157 unsuccessful allocation of memory
181 contradictory setting of flags

al Rules

- Use the memory allocation functions with caution. Updates to shared
memory allocated to this function are not serialized or protected by the run-time system. It
is advised that you use semaphores to maintain the integrity of the data.

- If the memory is allocated by a thread, it is freed when the thread
terminates.

- Bit 1 and bit 2 or bit 3 are mutually exclusive. The contradictory setting
of flags (error 181) is returned otherwise.

- If there is no calling program (directly or indirectly in a mixed language
environment) bit 2 is ignored.

If a COBOL program is directly or indirectly the caller of
CBL _ALLOC_MEM, then all standard memory allocated by CBL_ALLOC_MEM is freed
when the program that allocated it is canceled (logically or physically) if bit 2 is not set.

COBOLIT Page 214

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_AND

CBL_AND performs a logical AND operation on bits of param-1 and param-2, over the course of a
byte-length which is given in param-3.

Usage

CALL "CBL AND" USING and-param-1,
and-param-2,
BY VALUE and-length-in-bytes.

Parameters
and-param-1 PIC X(n)
and-param-2 PIC X(n)

and-length-in-bytes PIC 9(n)

Syntax
and-param-1 may be an alphanumeric literal or data item.
must be at least 1 byte in length.
and-param-2 must be a data item.

must be at least 1 byte in length.
is transformed by the operation, as it will hold the result of the logical AND operation.
and-length-in-bytes must be passed “by value”.
General Rules
A logical AND operation is performed on corresponding bits in param-1 and param-2, with
the result of the logical AND operation written to param-2.

The AND operation uses the following “truth table™:

AND 0 1
0 0 0
1 0 1
Code Sample
77 AND-PARAM-1 PIC X VALUE "A".
77 AND-PARAM-2 PIC X VALUE "B".
77 AND-LENGTH-IN-BYTES PIC 9 VALUE 1.

MOVE "A"™ TO AND-PARAM-1.
MOVE "B" TO AND-PARAM-2.

CALL "CBL AND" USING AND-PARAM-1,
AND-PARAM-2,
BY VALUE AND-LENGTH-IN-BYTES.

@ COBOLT Page 215

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

|

COBOLUIT

Page 216

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_CHANGE_DIR

CBL_CHANGE_DIR changes the current working directory to the directory named in new-

dir.

Usage

CALL "CBL CHANGE DIR" USING new-dir

GIVING call-status.

Parameters

new-dir
call-status

Syntax

new-dir
call-status

General Rules

PIC X(n)
PIC S9(9).

is the name of the new current working directory.
is updated with the success or failure status.

1. When the function is successful, call-status is set to 0.
2. When the function fails, call-status is set to 128.

Code Sample

*

77 NEW-DIR PIC XX.
77 CALL-STATUS PIC S9(9).

MOVE ".." TO NEW-DIR.
CALL "CBL CHANGE DIR" USING NEW-DIR
GIVING CALL-STATUS.

@ COBOLT Page 217

COBOL-IT Compiler & Runtime

@ COBOLIT =cterence Manun

Version 4.1
CBL_CHECK_FILE EXIST
CBL_CHECK_FILE_EXIST checks to see if a file exists.
Usage
CALL "CBL CHECK FILE EXIST" USING ccfe-file-name,
ccfe-file-details.
Parameters
ccfe-file-name PIC X(n)
ccfe-file-details A group item with the following elements:
file-size PIC X(8) COMP-X.
file-date A group item with the following elements:
f-day PIC X COMP-X.
f-month PIC X COMP-X.
f-year PIC X(2) COMP-X.
file-time A group item with the following elements:
f-hours PIC X COMP-X.
f-minutes PIC X COMP-X.
f-seconds PIC X COMP-X.
f-hundredths PIC X COMP-X.
Syntax
ccfe-file-name must be terminated with a space.
ccfe-file-details is populated with data if file-name exists.
General Rules
When the function is successful, return-code is set to 0.
When the function fails, return-code is set to 35.
Code Sample
77 CCFE-FILENAME PIC X (15).
01 CCFE-FILE-DETAILS.
05 FILE-SIZE PIC X (8) COMP-X.
05 FILE-DATE.
10 F-DAY PIC X COMP-X.
10 F-MONTH PIC X COMP-X.
10 F-YEAR PIC X (2) COMP-X.
05 FILE-TIME.
10 F-HOURS PIC X COMP-X.
10 F-MINUTES PIC X COMP-X.
10 F-SECONDS PIC X COMP-X.
10 F-HUNDREDTHS PIC X COMP-X.
INITIALIZE RETURN-CODE.
MOVE "NEWFIL.CBL " TO CCFE-FILENAME.
CALL "CBL7CHECK7FILE7EXIST"
Page 218

@ COBOLT

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1
USING CCFE-FILENAME,
CCFE-FILE-DETAILS.
COBOLT Page 219

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_CLOSE_FILE

CBL_CLOSE_FILE closes a file that was created with either the CBL_OPEN_FILE or
CBL_CREATE_FILE function.

Usage

CALL "CBL CLOSE FILE" using my-file-handle.

Parameters

my-file-handle PIC X(4) COMP-5.

Syntax

my-file-handle is returned after a successful Create, or Open.

General Rules
1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to an ANSI-74 file-status code according to the
nature of the error.

Code Sample

*

77 MY-FILE-HANDLE PIC X (4) COMP-5.

CALL "CBL CLOSE FILE" USING MY-FILE-HANDLE.

@ COBOLT Page 220

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_COPY _FILE

CBL_COPY _FILE copies a source file to a target filename.

Usage

CALL "CBL COPY FILE" USING CCF-SOURCE-FILE,
CCF-TARGET-FILE.

Parameters
ccf-source-file PIC X(n)
ccf-target-file PIC X(n)
Syntax
ccf-source-file is the original file to be copied.
ccf-target-file is the new file which is a copy of source-file.

General Rules
1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to -1.

Code Sample
*
77 CCF-SOURCE-FILE PIC X (20).
77 CCF-TARGET-FILE PIC X (20).

MOVE "COPYFIL.CBL" TO CCF-SOURCE-FILE.

MOVE "NEWFIL.CBL" TO CCF-TARGET-FILE.

CALL "CBL COPY FILE" USING CCF-SOURCE-FILE,
CCF-TARGET-FILE.

@ COBOLT Page 221

@ CO BO |_—|-|_ COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

CBL_CREATE_DIR

CBL_CREATE_DIR creates a directory.

Usage

CALL "CBL CREATE DIR" USING CCD-DIR-NAME.

Parameters

ccd-dir-name PIC X(n)

Syntax

ccd-dir-name is the name of the directory to be created.

General Rules

1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to 128.

3. ccd-dir-name can contain full-path or relative-path notations.

4. TIf path notations are part of dir-name, then the parent directory to the last directory must
exist.

5. CBL_CREATE DIR cannot be used to create a series of sub-directories.

Code Sample

*

77 CCD-DIR-NAME PIC X (20).

INITIALIZE RETURN-CODE.
MOVE "SUBDIR" TO CCD-DIR-NAME.

CALL "CBL CREATE DIR" USING CCD-DIR-NAME.

@ COBOLT Page 222

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_CREATE_FILE

CBL_CREATE_FILE creates a sequential file with READ/WRITE permissions described by the
parameters passed.

Usage

CALL "CBL CREATE FILE" USING my-file-name,
my-file-permissions,
my-file-restrictions,
my-device,
my-file-handle.

Parameters
my-file-name PIC X(n).
my-file-permissions PIC X COMP-X.
my-file-restrictions PIC X COMP-X.
my-device PIC X COMP-X.
my-file-handle PIC X(4) COMP-5.
Syntax
my-file-name is a null-terminated character string.
file-permissions describes Read/Write permissions. It must be one of the following:

1 Read-only
2 Write-only
3 Read-Write
64 Read-Write for large files (> 4GB)
my-file-restrictions describes Read/Write restrictions.
It must be one of the following:
0 Write-only

1 No write

2 No read

3 No read/write restrictions

my-device must be set to 0.

my-file-handle is stored after a successful Create, or Open.

General Rules

When the function is successful, return-code is set to 0.

When the function fails, return-code is set to an ANSI-74 file-status code according to the nature of
the error.

Code Sample

*

* CBL_CREATE FILE
77 MY-FILE-NAME PIC X (11).

@ COBOLT Page 223

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

77 MY-ACCESS-MODE PIC X COMP-X VALUE 3.
77 MY-DENY-MODE PIC X COMP-X VALUE 3.
77 MY-DEVICE PIC X COMP-X VALUE O.
77 MY-FILE-HANDLE PIC X (4) COMP-5.

INITIALIZE RETURN-CODE.

STRING "AAAAAA.TXT" DELIMITED BY SIZE,
X"00", DELIMITED BY SIZE,
INTO MY-FILE-NAME.

CALL "CBL CREATE FILE"
USING MY-FILE-NAME,
MY-ACCESS-MODE,
MY-DENY-MODE,
MY-DEVICE,
MY-FILE-HANDLE.

COBOLUIT

Page 224

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_DEBUGBREAK

CBL_DEBUGBREAK is a synonym for CSDEBUG. CBL_DEBUGBREAK is a library routine
which can be called using either the PID of the runtime session, or the value of the environment
variable COB_DEBUG _ID.

For example :
77 ws-pid PIC 9(5).

CALL « C$PID » USING ws-pid.
CALL « CBL_DEBUGBREAK » USING ws-pid.

For more details, see the documentation of the C$DEBUG library routine.

@ COBOLT Page 225

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_DELETE DIR
CBL_DELETE_DIR deletes the named directory.

Usage

CALL "CBL DELETE DIR" USING del-dir-name.

Parameters

del-dir-name PIC X(n).
Syntax
del-dir-name is the name of the directory to be deleted.

General Rules
When the function is successful, return-code is set to 0.
When the function fails, return-code is set to 128.

Code Sample

*

77 DEL-DIR-NAME PIC X (20).

INITIALIZE RETURN-CODE.
MOVE "SUBDIR" TO DEL-DIR-NAME.

CALL "CBL DELETE DIR" USING DEL-DIR-NAME.

Page 226

@ COBOLT

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_DELETE FILE
CBL_DELETE_FILE deletes the named file.

Usage

CALL "CBL DELETE FILE" USING CDF-FILE-NAME.

Parameters
cdf-file-name PIC X(n).

Syntax

cdf-file-name is the name of the file to be deleted.

General Rules
1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to 128.

Code Sample

*

77 CDF-FILE-NAME PIC X (20) .

INITIALIZE RETURN-CODE.
MOVE "README.TXT" TO CDF-FILE-NAME.

CALL "CBL DELETE FILE" USING CDF-FILE-NAME.

Page 227

@ COBOLT

@

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_ERROR_PROC

CBL_ERROR_PROC installs or uninstalls an error procedure, which is run when a program-ending

error o

ccurs. The Error Routine allows the user to register procedures that will automatically be

executed either when a program-ending error occurs.

Usage

call "CBL ERROR PROC" using error-proc-flag,
error-proc-addr.

Parameters

e error-proc-flag
o setto 0 to install error proc
o setto 1 to uninstall error proc
01 ERROR-PROC-FLAG PIC X COMP-X VALUE 0.

e error-proc-addr address of error proc
01 ERROR-PROC-ADDR USAGE PROCEDURE-POINTER.

e EIror-proc-msg message from error
LINKAGE SECTION.
01 ERROR-PROC-MSG PIC X(ERROR-PROC-MSG-LEN).

Syntax
error-proc-flag set to 0 to install error proc

set to 1 to uninstall error proc
error-proc-addr address of error proc
error-proc-msg message returned through linkage
Code Sample

78 ERROR-PROC-MSG-LEN VALUE 325.

01 ERROR-PROC-FLAG PIC X COMP-X VALUE 0.

01 ERROR-PROC-ADDR USAGE PROCEDURE-POINTER.
01 STATUS-CODE PIC 9(4) COMP VALUE ZEROS.

LINKAGE SECTION.

01 ERROR-PROC-MSG PIC X(ERROR-PROC-MSG-LEN).
PROCEDURE DIVISION.

MAIN.

SET ERROR-PROC-ADDR TO ENTRY "ERROR-PROC".
CALL "CBL_ERROR_PROC" USING ERROR-PROC-FLAG,

COBOUIT Page 28

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

ERROR-PROC-ADDR
RETURNING STATUS-CODE.

*

ENTRY "ERROR-PROC" USING ERROR-PROC-MSG.
DISPLAY "IN ERROR PROCEDURE".
DISPLAY FUNCTION TRIM(ERROR-PROC-MSG).
DISPLAY FUNCTION EXCEPTION-LOCATION.
EXIT PROGRAM.
STOP RUN.

@ COBOLT

Page 229

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_EQ

CBL_EQ performs a logical EQUAL operation on bits of param-1 and param-2, over the course of
a byte-length which is given in param-3.

Usage

CALL "CBL EQ" USING eg-param-1,
eg-param-2,
BY VALUE eqg-length-in-bytes.

Parameters
eq-param-1 PIC X(n)
eq-param-2 PIC X(n)

eg-length-in-bytes PIC 9(n)

Syntax
eq-param-1 may be an alphanumeric literal or data item.
must be at least 1 byte in length.
eq-param-2 must be a data item.

must be at least 1 byte in length.
is transformed by the operation, as it will hold the result of the logical EQ operation.
eg-length-in-bytes must be passed “by value”.
General Rules
A logical EQ operation is performed on corresponding bits in eg-param-1 and eq-param-2,
with the result of the logical EQ operation written to eq-param-2.

The EQ operation uses the following “truth table™:

EQ 0 1

0 1 0

1 0 1
Code Sample

*

77 EQ-PARAM-1 PIC X VALUE "A".
77 EQ-PARAM-2 PIC X VALUE "B".
77 EQ-LENGTH-IN-BYTES PIC 9 VALUE 1.

CALL "CBL EQ" USING EQ-PARAM-1,
EQ-PARAM-2,
BY VALUE EQ-LENGTH-IN-BYTES.

@ COBOLT Page 230

@

COBOL-IT Compiler & Runtime

CO BO I-_lT Reference Manual

Version 4.1

CBL_EXIT_PROC

CBL_EXIT_PROC installs or uninstalls an exit procedure, which is run when the application
terminates either normally or abnormally. The Exit Routine allows the user to register procedures
that will automatically be executed when the program does a normal exit.

Usage

call "CBL EXIT PROC" using exit-proc-flag,
exit-proc-addr.

Parameters
exit-proc-flag PIC X COMP-X value 0.
exit-proc-addr USAGE PROCEDURE-POINTER.

Syntax
exit-proc-flag set to 0 to install exit proc

set to 1 to uninstall exit proc

exit-proc-addr is the address of exit proc

Code Sample

*

01 ERROR-PROC-FLAG PIC X COMP-X VALUE O.
01 ERROR-PROC-ADDR USAGE PROCEDURE-POINTER.

*

SET EXIT-PROC-ADDR TO ENTRY "EXIT-PROC".

CALL "CBL EXIT PROC" USING EXIT-PROC-FLAG,
EXIT-PROC-ADDR.
STOP RUN.

ENTRY "EXIT-PROC".
DISPLAY "IN EXIT PROCEDURE".
EXIT PROGRAM.
STOP RUN.

@ COBOLT

Page 231

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_FLUSH_FILE

CBL_FLUSH_FILE causes any file buffers that have not been flushed to disk to be flushed.

Usage

CALL "CBL FLUSH FILE" USING my-file-handle.

Parameters

my-file-handle PIC X(4) COMP-5.

Syntax

my-file-handle is returned after a successful Create, or Open.

General Rules
1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to an ANSI-74 file-status code according to
the nature of the error.

Code Sample

*

77 MY-FILE-HANDLE PIC X (4) COMP-5.
INITIALIZE RETURN-CODE.

CALL "CBL FLUSH FILE" USING MY-FILE-HANDLE.

CBL_FREE_MEM

CBL_FREE_MEM frees memory allocated by the CBL_ALLOC_MEM routine.

Usage

CALL “CBL FREE MEM” USING BY VALUE memory-pointer
RETURNING call-status.

Parameters

memory-pointer USAGE POINTER.
call-status PIC S9(9).

@ COBOLT Page 232

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

Syntax

memory-pointer is a data element described as USAGE POINTER, which has been
populated with a value by the CBL_ALLOC_ MEM routine.

call-status is a return code.

CBL_FREE DYN_MEM
CBL_FREE_DYN_MEM frees memory allocated by the CBL_ALLOC_DYN_MEM routine.

Usage

CALL “CBL FREE DYN MEM” USING BY VALUE memory-pointer
RETURNING call-status.

Parameters

memory-pointer USAGE POINTER.
call-status PIC S9(9).

Syntax

memory-pointer is a data element described as USAGE POINTER, which has been
populated with a value by the CBL_ALLOC_DYN_MEM routine.

call-status is a return code.

@ COBOLT Page 233

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
CBL_GET _CURRENT_DIR
CBL_GET_CURRENT _DIR returns the full path of the current directory.
Usage
CALL "CBL GET CURRENT DIR"
USING BY VALUE FLAGS
BY VALUE LENGTH-OF-DIRNAME
BY REFERENCE DIRECTORY-NAME.
Parameters
flags PIC X COMP-X VALUE 0.
length-of-dirname ~ PIC 9(n)
directory-name PIC X(n)
Syntax
flags must be set to 0.
length-of-dirname corresponds to the length of directory-name.
directory-name must contain enough characters to store the full path name of the current

directory. The function call returns the full path into directory-name.

General Rules
1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to an 128.

Code Sample
*
77 FLAGS PIC X COMP-X VALUE O.
77 LENGTH-OF-DIRNAME PIC 99 VALUE 50.
77 DIRECTORY-NAME PIC X (50) VALUE SPACES.

CALL "CBL GET CURRENT DIR"
USING BY VALUE FLAGS
BY VALUE LENGTH-OF-DIRNAME
BY REFERENCE DIRECTORY-NAME.

@|COBOUIT Page 234

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_IMP

CBL_IMP performs a logical IMPLIES operation on bits of param-1 and param-2, over the course
of a byte-length which is given in param-3.

Usage
CALL "CBL IMP" USING IMP-PARAM-1,
IMP-PARAM-2,
BY VALUE IMP-LENGTH-IN-BYTES.
Parameters
imp-param-1 PIC X(n)
imp-param-2 PIC X(n)

imp-length-in-bytes PIC 9(n)

Syntax
imp-param-1 may be an alphanumeric literal or data item.
must be at least 1 byte in length.
imp-param-2 must be a data item.

must be at least 1 byte in length.
is transformed by the operation, as it will hold the result of the logical IMP operation.
Imp-length-in-bytes must be passed “by value”.

General Rules

A logical IMP operation is performed on corresponding bits in param-1 and param-2, with
the result of the logical IMP operation written to param-2.

The IMP operation uses the following “truth table”:

IMP 0 1

0 1 1

1 0 1
Code Sample

*

77 IMP-PARAM-1 PIC X VALUE "A".
77 IMP-PARAM-2 PIC X VALUE "B".
77 IMP-LENGTH-IN-BYTES PIC 9 VALUE 1.

MOVE "A" TO IMP-PARAM-1.
MOVE "B" TO IMP-PARAM-2.

CALL "CBL IMP" USING IMP-PARAM-1,
IMP-PARAM-2,
BY VALUE IMP-LENGTH-IN-BYTES.

@ COBOLT Page 235

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

|

COBOLUIT

Page 236

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_NIMP

CBL_NIMP performs a logical NOT IMPLIES operation on bits of param-1 and param-2, over the
course of a byte-length which is given in param-3.

Usage

CALL "CBL NIMP" USING NIMP-PARAM-1,
NIMP-PARAM-2,
BY VALUE NIMP-LENGTH-IN-BYTES.

Parameters
nimp-param-1 PIC X(n)
nimp-param-2 PIC X(n)
nimp-length-in-bytes PIC 9(n)
Syntax
nimp-param-1 may be an alphanumeric literal or data item.
must be at least 1 byte in length.
nimp-param-2 must be a data item.

must be at least 1 byte in length.
is transformed by the operation, as it will hold the result of the logical NIMP operation.
nimp-length-in-bytes must be passed “by value”.

General Rules

A logical NIMP operation is performed on corresponding bits in param-1 and param-2, with
the result of the logical NIMP operation written to param-2.

The NIMP operation uses the following “truth table™:

IMP 0 1

0 0 0

1 1 0
Code Sample

*
77 NIMP-PARAM-1 PIC X VALUE "A".

77 NIMP-PARAM-2 PIC X VALUE "B".

77 NIMP-LENGTH-IN-BYTES PIC 9 VALUE 1.

CALL "CBL NIMP" USING NIMP-PARAM-1,
NIMP-PARAM-2,
BY VALUE NIMP-LENGTH-IN-BYTES.

@ COBOLT Page 237

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_NOR

CBL_NOR performs a logical NOR operation on bits of param-1 and param-2, over the course of a
byte-length which is given in param-3.

Usage

CALL "CBL NOR" USING nor-param-1,
nor-param-2,
BY VALUE nor-length-in-bytes.

Parameters
nor-param-1 PIC X(n)
nor-param-2 PIC X(n)

nor-length-in-bytes PIC 9(n)

Syntax
nor-param-1 may be an alphanumeric literal or data item.
must be at least 1 byte in length.
nor-param-2 must be a data item.

must be at least 1 byte in length.
is transformed by the operation, as it will hold the result of the logical NOR operation.
nor-length-in-bytes must be passed “by value”.
General Rules
A logical NOR operation is performed on corresponding bits in param-1 and param-2, with
the result of the logical NOR operation written to param-2.

The NOR operation uses the following “truth table”:

NOR 0 1

0 1 0

1 0 0
Code Sample

*

77 NOR-PARAM-1 PIC X VALUE "A".
77 NOR-PARAM-2 PIC X VALUE "B".
77 NOR-LENGTH-IN-BYTES PIC 9 VALUE 1.

CALL "CBL NOR" USING NOR-PARAM-1,
NOR-PARAM-2,
BY VALUE NOR-LENGTH-IN-BYTES.

@ COBOLT Page 238

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_NOT

CBL_NOT performs a logical NOT operation on bits of param-1 and over the course of a byte-
length which is given in param-1.

Usage

CALL "CBL NOT" USING not-param-1,
BY VALUE not-length-in-bytes.

Parameters

not-param-1 PIC X(n)
not-length-in-bytes ~ PIC 9(n)

Syntax

not-param-1 may be an alphanumeric literal or data item.
must be at least 1 byte in length.
is transformed by the operation, as it will hold the result of the logical NOT operation.
not-length-in-bytes must be passed “by value”.

General Rules

A logical NOT operation is performed on bits in param-1, with the result of the logical NOT
operation written to param-1.

The NOT operation uses the following “truth table™:

NOT

0 1

1 0
Code Sample

*

77 NOT-PARAM-1 PIC X VALUE "A".
77 NOT-LENGTH-IN-BYTES PIC 9 VALUE 1.

CALL "CBL NOT" USING NOT-PARAM-1,
BY VALUE NOT-LENGTH-IN-BYTES.

@ COBOLT Page 239

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_OC_NANOSLEEP

CBL OC NANOSLEEP causes the program to “sleep” in a defined interval that is represented in
nanoseconds.

Usage

CALL "CBL OC NANOSLEEP” USING number-nanoseconds.

Parameters

number-nanoseconds Numeric literal or data item

Syntax

number-nonoseconds is the elapsed time in nanoseconds to sleep
Code Sample

*

CALL “CBL OC NANOSLEEP” USING 250000000.

@/ COBOLIT Page 240

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_OPEN_FILE

CBL_OPEN_FILE opens a sequential file with READ/WRITE permissions described by the
parameters passed.

Usage

CALL "CBL OPEN FILE” USING my-file-name,
my-file-permissions,
my-file-restrictions,
my-device,
my-file-handle.

Parameters
my-file-name PIC X(n).
my-file-permissions PIC X COMP-X.
my-file-restrictions PIC X COMP-X.
my-device PIC X COMP-X.
my-file-handle PIC X(4) COMP-5.
Syntax
my-file-name is a null-terminated character string.
my-file-permissions describes Read/Write permissions. It must be one of the following:
1 Read-only
2 Write-only
3 Read-Write
64 Read-Write for large files (> 4GB)
my-file-restrictions describes Read/Write restrictions. It must be one of the following:
0 Write-only
1 No write
2 No read
3 No read/write restrictions
my-device must be set to 0.
my-file-handle is stored after a successful Create, or Open.

General Rules

When the function is successful, return-code is set to 0.

When the function fails, return-code is set to an ANSI-74 file-status code according to the nature of
the error.

My-file-name may include an environment variable notation, for purposes of locating the file, as
follows: (See the code sample below, for more details on the usage of CBL_OPEN_FILE).

01 my-file-name pic x(40) value "$MYPATH/workfile.txt".

@|COBOLIT Page 241

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

In this case, the SMYPATH notation would cause the value of the “MYPATH”
environment variable to be prepended to workfile.txt, for purposes of locating the

file.
Code Sample

*
77 MY-FILE-NAME PIC X (11).
77 MY-FILE-PERMISSIONS PIC X COMP-X VALUE 3.
77 MY-FILE-RESTRICTIONS PIC X COMP-X VALUE 3.
77 MY-DEVICE PIC X COMP-X VALUE O.
77 MY-FILE-HANDLE PIC X (4) COMP-5.

STRING "MYTEXTFILE" DELIMITED BY SIZE,
X"00", DELIMITED BY SIZE,
INTO MY-FILE-NAME.

CALL "CBL OPEN FILE"

USING MY-FILE-NAME,
MY-FILE-PERMISSIONS,
MY-FILE-RESTRICTIONS,
MY-DEVICE,
MY-FILE-HANDLE.

COBOLT Page 20

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_OR

CBL_OR performs a logical OR operation on bits of param-1 and param-2, over the course of a
byte-length which is given in param-3.

Usage

CALL "CBL OR" USING or-param-1,
or-param-2,
BY VALUE or-length-in-bytes.

Parameters
or-param-1 PIC X(n)
or-param-2 PIC X(n)

or-length-in-bytes ~ PIC 9(n)

Syntax
or-param-1 may be an alphanumeric literal or data item.
must be at least 1 byte in length.
or-param-2 must be a data item.

must be at least 1 byte in length.
is transformed by the operation, as it will hold the result of the logical OR operation.
or-length-in-bytes ~ must be passed “by value”.
General Rules
A logical OR operation is performed on corresponding bits in param-1 and param-2, with
the result of the logical OR operation written to param-2.

The OR operation uses the following “truth table”:

OR 0 1

0 0 1

1 1 1
Code Sample

*

77 OR-PARAM-1 PIC X VALUE "A".
77 OR-PARAM-2 PIC X VALUE "B".
77 OR-LENGTH-IN-BYTES PIC 9 VALUE 1.

CALL "CBL OR" USING OR-PARAM-1,
OR-PARAM-2,
BY VALUE OR-LENGTH-IN-BYTES.

*

@|COBOUIT Page 243

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
CBL_READ FILE
CBL_READ_FILE READs a number of bytes from an offset of a file into a buffer.
Usage
CALL "CBL_READ_FILE " USING my—file—handle,
my-file-offset,
my-byte-count,
my-read-flag,
my-read-buffer.
Parameters
my-file-handle PIC X(4) COMP-5.
my-file-offset PIC X(8) COMP-X.
my-byte-count PIC X(n) COMP-X.
my-read-flag PIC X COMP-X.
my-read-buffer PIC X(n).
Syntax
my-file-handle is required, and obtained by performing a successful CREATE or OPEN.
my-file-offset is the offset to begin the READ operation, beginning the file at offset 0.
my-byte-count is the number of bytes to read from the file.
my-read-flag must be one of the following:

0 Standard read
128 Return the current file size in file-offset
my-read-buffer is the data that is being read from the file.

General Rules
1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to an ANSI-74 file-status code according to
the nature of the error.

Code Sample
*
77 MY-FILE-HANDLE PIC X (4) COMP-5.
77 MY-FILE-OFFSET PIC X (8) COMP-X VALUE O.
77 MY-BYTE-COUNT PIC X (4) COMP-X VALUE 11.
77 MY-READ-FLAG PIC X COMP-X VALUE O.
77 MY-READ-BUFFER PIC X(11) VALUE SPACES.

INITIALIZE MY-READ-BUFFER.
CALL "CBL READ FILE"
USING MY-FILE-HANDLE,
MY-FILE-OFFSET,
MY-BYTE-COUNT,
MY-READ-FLAG,
MY-READ-BUFFER.

@|COBOLIT Page 244

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COBOLUIT

Page 245

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_RENAME_FILE
CBL_RENAME_FILE renames the named source file.

Usage

CALL "CBL_RENAME_FILE" USING source-filename,
renamed-filename.

Parameters

source-filename PIC X(n).
renamed-filename PIC X(n).

Syntax

source-filename is the name of the original source file.
renamed-filename is the name to which it is renamed.

General Rules
1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to 128.

Code Sample
*
77 SOURCE-FILENAME PIC X (20).
77 RENAMED-FILENAME PIC X (20).

MOVE "HELLO.CBL" TO SOURCE-FILENAME.
MOVE "WORLD.CBL" TO RENAMED-FILENAME.
CALL "CBL RENAME FILE"
USING SOURCE-FILENAME,
RENAMED-FILENAME.

@|COBOUIT Page 246

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

CBL_TOLOWER

CBL_TOLOWER translates a text string into lower-case.

Usage

CALL "CBL TOLOWER" USING source-data,
VALUE source-length.

Parameters

source-data PIC X(n)
source-length USAGE UNSIGNED-INT, or a numeric literal

Syntax

source-data s the data to translate to upper-case.

is transformed by the CBL_TOLOWER operation, with all characters being translated to lower-
case.

source-length is the number of characters to translate.

General Rules
1. Return-code is not updated following the operation.

Code Sample

*

77 SOURCE-DATA PIC X (10).
77 SOURCE-LENGTH USAGE UNSIGNED-INT.

MOVE "ABCDEFGHIJ" TO SOURCE-DATA.
MOVE 10 TO SOURCE-LENGTH.
CALL "CBL TOLOWER"
USING SOURCE-DATA, VALUE SOURCE-LENGTH.

@|COBOLIT Page 247

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_TOUPPER
CBL_TOUPPER translates a text string into upper-case.

Usage

CALL "CBL TOUPPER" USING source-data, VALUE source-length

Parameters

source-data PIC X(n)
source-length USAGE UNSIGNED-INT, or a numeric literal

Syntax

source-data s the data to translate to upper-case.
is transformed by the CBL_TOUPPER operation, with all characters being translated to upper-case.
source-length is the number of characters to translate.

General Rules
1. Return-code is not updated following the operation.

Code Sample

*

77 SOURCE-DATA PIC X (10).
77 SOURCE-LENGTH USAGE UNSIGNED-INT.

MOVE "ABCDEFGHIJ" TO SOURCE-DATA.
MOVE 10 TO SOURCE-LENGTH.
CALL "CBL TOUPPER"
USING SOURCE-DATA,
VALUE SOURCE-LENGTH.

@|COBOUIT Page 248

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
CBL_WRITE_FILE
CBL_WRITE_FILE is WRITEs a number of bytes to an offset of a file from a buffer.
Usage:
CALL "CBL_WRITE_FILE" USING my—file—handle,
my-file-offset,
my-byte-count,
my-write-flag,
my-write-buffer.
Parameters
my-file-handle PIC X(4) COMP-5.
my-file-offset PIC X(8) COMP-X.
my-byte-count PIC X(n) COMP-X.
my-write-flag PIC X COMP-X.
my-write-buffer PIC X(n).
Syntax
my-file-handle Required, and can only be obtained by performing a successful CREATE or
OPEN.
my-file-offset The offset to begin the WRITE operation on;- the beginning of the file is offset 0.
my-byte-count The number of bytes to write to the file.
my-write-flag Must be one of the following:

0 Standard write
128 Return the current file size in file-offset
my-write-buffer The data that is being written to the file.

General Rules
1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to an ANSI-74 file-status code according to
the nature of the error.

Code Sample
*
77 MY-FILE-HANDLE PIC X (4) COMP-5.
77 MY-FILE-OFFSET PIC X (8) COMP-X VALUE O.
77 MY-BYTE-COUNT PIC X (4) COMP-X VALUE 11.
77 MY-WRITE-FLAG PIC X COMP-X VALUE O.
77 MY-WRITE-BUFFER PIC X(11) VALUE SPACES.

MOVE “HELLO WORLD” TO MY-WRITE-BUFFER.
CALL "CBL WRITE FILE"
USING MY-FILE-HANDLE,
MY-FILE-OFFSET,
MY-BYTE-COUNT,

@|COBOUIT Page 249

@ COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

MY-WRITE-FLAG,
MY-WRITE-BUFFER.

COBOLUIT

Page 250

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CBL_XOR

CBL_XOR performs a logical XOR operation on bits of param-1 and param-2, over the course of a
byte-length which is given in param-3.

Usage

CALL "CBL XOR" USING xor-param-1,
Xor-param-2,
BY VALUE xor-length-in-bytes.

Parameters
xor-param-1 PIC X(n)
Xor-param-2 PIC X(n)

xor-length-in-bytes PIC 9(n)

Syntax
Xor-param-1 may be an alphanumeric literal or data item.
must be at least 1 byte in length.
Xor-param-2 must be a data item.

must be at least 1 byte in length.
is transformed by the operation, as it will hold the result of the logical XOR operation.
xor-length-in-bytes must be passed “by value”.
General Rules
A logical XOR operation is performed on corresponding bits in param-1 and param-2, with
the result of the logical XOR operation written to param-2.

The XOR operation uses the following “truth table”:

XOR 0 1

0 0 1

1 1 0
Code Sample

*

77 XOR-PARAM-1 PIC X VALUE "A".
77 XOR-PARAM-2 PIC X VALUE "B".
77 XOR-LENGTH-IN-BYTES PIC 9 VALUE 1.

CALL "CBL XOR" USING XOR-PARAM-1,
XOR-PARAM-2,
BY VALUE XOR-LENGTH-IN-BYTES.

@ COBOLT Page 251

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

SYSTEM

SYSTEM provides a means of executing command-line commands from within the COBOL
program. The program is paused until the command is complete.

Usage

CALL "SYSTEM" USING command,
GIVING exit-status.

Parameters

command PIC X(n)
exit-status ~ Any numeric data item

Syntax

command is the command-line command that is executed.
exit-status returns the called program'’s exit status, or -1 if the command failed.

General Rules
1. When the function is successful, return-code is set to 0.

2. When the function fails, return-code is set to 128.

Code Sample

*

CALL “SYSTEM” USING “NOTEPAD.EXE”.

@ COBOLT Page 252

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

X’91” function 11

X”91” function 11 sets the Special-Names programmable switches.

Usage

call x"91" using fn-status,
x91-function,
group-item.

Parameters
fn-status PIC X COMP-X
x91-function PIC X COMP-X
group-item group-item with
switch-flags PIC X COMP-X occurs 8
debug-flag PIC X COMP-X
Syntax
fn-status set to O if the function is successful, else 1.
X91-function setto 11.
group-item group-item with
switch-flags values (0 or 1) for each of the 8 switches
debug-flag setto 0.
Code Sample

*

77 FN-STATUS PIC X COMP-X.
77 X91-FUNCTIONPIC X COMP-X VALUE 11.
01 GROUP-ITEM.
05 SWITCH-FLAGS PIC X COMP-X OCCURS 8.
05 DEBUG-FLAGPIC X COMP-X.

MOVE 1 TO SWITCH-FLAGS (1) .
CALL X"91" USING FN-STATUS, X91-FUNCTION, GROUP-ITEM.

@ COBOLT Page 253

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

X’91” function 12

X”91” function 12 reads the Special-Names programmable switches.

Usage

call x"91" using fn-status,
x91-function,
group-item.

Parameters
fn-status PIC X COMP-X
x91-function PIC X COMP-X
group-item group-item with
switch-flags PIC X COMP-X occurs 8
debug-flag PIC X COMP-X

Syntax
fn-status set to O if the function is successful, else 1.
X91-function set to 12.
group-item group-item to receive:
switch-flags value of each of the switches set
debug-flag setto 0.

Code Sample

*

SPECIAL-NAMES.
SWITCH 1 IS SWITCH-1.

77 EFN-STATUS PIC X COMP-X.
77 X91-FUNCTIONPIC X COMP-X VALUE 12.
01 GROUP-ITEM.
05 SWITCH-FLAGS PIC X COMP-X OCCURS 8.
05 DEBUG-FLAGPIC X COMP-X.

SET SWITCH-1 TO ON.
CALL X"91" USING FN-STATUS, X91-FUNCTION, GROUP-ITEM.

@|COBOUIT Page 254

@ COBOLIT

Reference Manual

COBOL-IT Compiler & Runtime

Version 4.1

X’91” function 15

X”91” function 15 checks to see if a program exists.

Usage

call x"91" using fn-status,

x91-function,
param.

Parameters

fn-status
x91-function
param

PIC X COMP-X
PIC X COMP-X
Group Item containing

length-of-progname PIC X COMP-X

program-name

Syntax

fn-status

Code Sample

PIC X(N).

set to program-name if successful, 0 if program not found.
X91-function set to 15.

param group item containing length of program-name, and program-name.

77 FN-STATUS PIC X COMP-X.
77 X91-FUNCTION PIC X COMP-X VALUE 15.
01 PARAM.

05 LWNGTH-OF-PROGNAME PIC X COMP-X.

05 PROGNAME PIC X (6) .

PROCEDURE DIVISION.
MOVE 6 TO LENGTH-OF-PROGNAME.

MOVE “TESTIT” TO PROGRAM-NAME.
CALL X"91" USING FN-STATUS, X91-FUNCTION,

PARAM.

@ COBOLT

Page 255

@ CO BO L—lT COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

X’91” function 16

X”91” function 16 returns the number of parameters passed through linkage to a sub-program.

Usage

call x"91" using fn-status,
x91-function,
num-params.

Parameters
fn-status PIC X COMP-X
x91-function PIC X COMP-X
num-params PIC X COMP-X
Syntax
fn-status set to O if the function is successful, else 1.
X91-function set to 16.
num-params receives the number of parameters on the Procedure Division USING statement.
Code Sample
%%.FN—STATUS PIC X COMP-X.

77 X91-FUNCTIONPIC X COMP-X VALUE 16.
77 NUM-PARAMS PIC X COMP-X.

LINKAGE SECTION.

01 LK-NAME PIC X (25).

01 LK-ADDR PIC X (25).

01 LK-CUSTOMERID PIC X(5).

PROCEDURE DIVISION USING LK-NAME, LK-ADDR, LK-CUSTOMERID.

CALL X"91" USING FN-STATUS, X91-FUNCTION, NUM-PARAMS.

@ COBOLT Page 250

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

X”F4”

X”F4” builds a byte (or bytes), bit-by-bit, using the least significant bits of bytes that have been
supplied in a table.

Usage

CALL X"F4" using new-byte,
byte-array.

Parameters

new-byte PIC X COMP-X
byte-array A group-item table with:

tbl-byte USAGE BINARY-CHAR OCCURS 8
Syntax
new-byte contains the new byte.

byte-array array of eight bytes.

General Rules

The least significant bit of each byte in byte-array will form a bit in new-byte. To
manufacture the letter “A”, which consists of the bits 0100 0001 for example, the least
significant bit of tblbyte(1) must be 0, the least significant bit of tbbyte(2) must be 1, and in
so forth. In this fashion, the byte is constructed from left to right, adding O, then 1, then O,
then 0, then 0, then 0, then 0, then 1 to build 0100 0001, or the character “A”.

Code Sample

*
01 NEW-BYTE PIC X COMP-X.
01 BIT-TABLE.
05 TBL-BYTE OCCURS 8 TIMES USAGE BINARY-CHAR.

MOVE 0 TO TBL-BYTE (1)
MOVE 1 TO TBL-BYTE (2)
MOVE 0 TO TBL-BYTE (3) .
MOVE 0 TO TBL-BYTE (4) .
MOVE 0 TO TBL-BYTE (5)
MOVE 0 TO TBL-BYTE (6)
MOVE 0 TO TBL-BYTE (7).
MOVE 1 TO TBL-BYTE (8)

CALL X"F4" USING NEW-BYTE, BIT-TABLE.

@ COBOLT Page 257

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

X”F5”

X”F5” unpacks a byte (or bytes), bit-by-bit, into an array of bytes, mapping the first bit of the byte
into the least significant bit of the first item in the array, the second bit into the least significant bit
of the second byte in the array, and so forth...

Usage

CALL X"F5" using source-byte,
byte-array.

Parameters

source-byte PIC X COMP-X
byte-array A group-item table with:
tbl-byte USAGE BINARY-CHAR OCCURS 8

Syntax

source-byte contains the new byte.
byte-array array of eight bytes.

General Rules
1. To unpack the letter “A”, for example, which consists of the bits 0100 0001 the most

significant bit (0) is written to the least significant bit of tblbyte(1), then moving from
left to right, the next most significant bit (1) is written to the least significant bit of
tblbyte(2) and so forth. In this fashion, the byte is unpacked, from left to right, adding 0,
then 1, then 0, then 0, then 0, then 0, then 0, then 1 to transform the table such that the
least significant bits of each of its entries hold the bits 0, 1, 0, 0, 0, 0, 0 ,1.

Code Sample

*

01 SRC-BYTE PIC X VALUE "A".
01 SOURCE-BYTE REDEFINES SRXC-BYTE PIC X COMP-X.
01 BYTE-ARRAY.

05 TBL-BYTE OCCURS 8 TIMES USAGE BINARY-CHAR.

CALL X"F5" USING SOURCE-BYTE, BYTE-ARRAY.

@ COBOLT Page 258

@ COBOLIT

COBOL-IT Compiler & Runtime

Reference Manual Version 4.1
The Runtime Data Structure (rtd)
From C use Runtime Data Structure (rtd)
#include <libcob.h>
COB_RTD =cob_get _rtd();
Define cit_runtime_t * const rtd
Representing Runtime Flags in the Runtime Data Structure
COB_NO_SIGNAL=1 rtd->cob_disable_signal_handler = 1;
COB_ERROR_FILE=<Filename> rtd->cob_err_file = stderr;
COB_WARNING=N rtd->warning_disable = 1;
COB_LOAD_CASE ->doc UPPER : rtd->name_convert = 1;
LOWER: rtd->name_convert = 2;
rtd->load_match_exact_case = 1/0;
rtd->load_match_upper_case = 1/0;
rtd->load_match_lower_case = 1/0;
COB_CALL_CASE ->doc rtd->load_match_exact_case = 1/0;
rtd->load_match_upper_case = 1/0;
rtd->load_match_lower_case = 1/0;

COB_LOAD_PRIORITY

rtd->call_flag |= COB_LOAD_PRIORITY;

COB_FULL_CANCEL

rtd->call_flag |= COB_FULL_CANCEL;

COB_PRE_LOAD=<Iib list>

cob_load_shared_lib (rtd, s);

COB_EXTFH=<Name>

rtd->default_extfh_entry =<Name>
extfh:<name>

COB_EXTFH_INDEXED=<Name>
isam-extfh:name

rtd->default extth indexed entry =...

COB_EXTFH_FLAT=<Name>
flat-extfh:name

rtd->default extth flat entry = ...

COB_EXTFH_LIB=<Library Name>
isam-extfh-lib:lib_name
flat-extfh-lib:lib_name

cob_load_shared_lib (rtd,s);

COB_SYNC=Y

rtd->cob_do_sync =1,

@ COBOLT

Page 259

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COB_SORT_MEMORY=<Bytes> rtd->cob_sort_memory = n;

COB_LS_NULLS=Y/N YES : rtd->cob_Is_nulls = 1;
NO: rtd->cob_Is_nulls = -1;
I THIS overwrite the line-seg-mf:yes/no

COB_LS DOS=Y/N YES : rtd->cob_Is dos = 1;
NO: rtd->cob_Is dos =-1;
I THIS overwrite the line-seg-dos:yes/no

The COBOL-IT Region Interface

Overview

For the purposes of this documentation, there are 4 sample programs, and a compile script which
are designed to highlight key information about the COBOL Region Interface.

The upper limit on the number of regions that can be processed concurrently by CICS is 100
concurrent regions.

When implementing the COBOL-IT Region Interface, programs must be compiled with the
—fthread-safe compiler flag. Compiling with —fthread-safe provides region isolation, which is
implemented in the same way as thread isolation.

The sample programs are:

comp.sh The compile script

testregion.c The main program

proga.cob COBOL program CALL’ed by testregion.c
progb.cob COBOL program CALL’ed by proga.
progfail.cob

The compile script used, and the sample programs are all included at the end of this chapter.

The compile script-

comp.sh

cobc -fthread-safe -m proga.cob
cobc -fthread-safe -m progb.cob
cobc -fthread-safe -m progfail.cob
cobc -x testregion.c

Please note that all of the programs used in the demo are compiled with the —fthread-safe compiler
flag. Itis arequirement that all programs that are involved with regions MUST be compiled the
the —fthread-safe compiler option. For more information on the —fthread-safe compiler flag, please

@ COBOLT Page 200

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

reference “Guidelines for thread-safe programs” in “Getting Started with COBOL-IT”.

To enable debugging of the “C” code, the compiler flags —G —save-temps should be added to each
of the compile commands in comp.sh.

After compiling the programs, run the testregion executable:
>testregion
Testregion calls a COBOL program called “proga”, which calls a subprogram “progb”.
The demo shows :
- How to initialize a region, and call a program in that region

- How to cancel a program
- How to use cob_set exit_rtd proc with setjmp/longjmp

The REGION API

All API functions get as a parameter the runtime data from region O (the main program region).
The runtime data from region 0 is retrieved with a call to cob_get_rtd() at program startup. Note
that “rtd” is an abbreviation of “runtime data”.

The API functions:
unsigned int cob_enterprise_get current region (cit_runtime_t * rOrtd);

Returns the current region number.
Input
cit runtime t * rOrtd Region 0 (main region) rtd

cit_runtime_t * cob_enterprise set current region (cit runtime t * rOrtd,
unsigned int region);

Returns an rtd of the region number 'region'. The region is initialized if

needed.

Input

cit runtime t * rOrtd Region 0 (main region) rtd

unsigned int region Requested region, number between 0 and
15

void cob_enterprise cancel_ region(COB_RTD, unsigned int region, int full cancel)

’

@ COBOLT Page 261

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
Cancels all programs started in a region
Input
cit runtime t * rOrtd Region 0 (main region) rtd
unsigned int region Region number to cancel between 0 and
15
int full cancel If not 0, the programs are unloaded
from memory and memory allocated is
freed.
Examples for performing Logical/Full Cancels in Region 1:
cob enterprise cancel region(rtd, 1,0) The last parameter must be set to 0
to perform a “Logical Cancel”.
cob _enterprise cancel region(rtd, 1,1) The last parameter must be set to 1
to perform a “Full Cancel”.

How to call a progam (and all sub programs) in a region

When a region is set to be the current active region, it returns an rtd that must be used as the first
parameter for all calls to the runtime library.

To call a program in a region :

o Set the current active region
o Use the returned rtd to resolve and call the program

For example:

union {

int (*func) () ;

void *func void;

} unifunc;

cit runtime t * rtd region;

rtd region = cob enterprise set current region (RO _rtd, region);
unifunc.func void = cob resolve (rtd region, "proga");
if (unifunc.func void == NULL) {

cob _call error (rtd region);

}
unifunc.func (NULL,NULL,NULL) ;

WARNING: As a general rule, you should never call a runtime function giving as a first
parameter an rtd that does not reference runtime data of the current active region.

The sole exception to this rule would be a call to cob_enterprise_cancel_region.

SetJump/LongJump

In the Region 0 the C program may call 'cob_set_exit_rtd_proc' to set up a C function that will be
called if for any reason the runtime aborts. Note that this may also be called if the COBOL
program executes a STOP RUN.

@ COBOLT Page 262

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Used with setjmp/longjmp this provides a way to recover from an error.

The sample program below shows how to recover from an error which is caused by CALL’ing a
subprogram that does not exist:

void cob_set_exit_rtd_proc (cit_runtime_t * rOrtd, cob_rtd_exit_proc cob_exit_proc);

Input :

cit runtime t * rOrtd Region 0 (main region) rtd

cob_rtd exit proc Followed by the pointer to the exit
proc

cob_exit proc A pointer to a C function getting as

its first parameter the rtd of the
current region and as its second
parameter an int representing the exit
status.

The Sample Programs

comp.sh

cobc -fthread-safe -m proga.cob
cobc -fthread-safe -m progb.cob
cobc -fthread-safe -m progfail.cob
cobc -fthread-safe -x testregion.c

testregion.c

#include <stdio.h>
#include <assert.h>
#include "libcob.h"

jmp buf jump buffer;

void cob exit proc (COB _RTD, int status)
{

/* terminate the current region */
cob terminate exec(rtd);

/* then go back to call*/
longjmp (jump buffer, 1);

@ COBOLT Page 263

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

void call prog (COB RTD, int region, char *prog name, char *
mess) |

union {
int (*func) () ;
void *func void;

} unifunc;
cit runtime t * rtd region;

rtd region = cob enterprise set current region(rtd, region);
unifunc.func void = cob resolve (rtd region, prog name);
if (unifunc.func void == NULL) {

cob call error (rtd region);
}
printf ("\nregion %s\n", mess);
unifunc.func (NULL,NULL,NULL);

int main (int argc, char **argv)

COB_RTD = cob get rtd():;
cit runtime t * rtd regionl;
cit runtime t * rtd region2;

cob init (rtd, 0, NULL);

/* set up termanate Proc in Region 0*/
cob set exit rtd proc(rtd,cob _exit proc);

/* test Long jump*/
if (setjmp (jump buffer) == 0) {

call prog(rtd, 0, "proga", "main");
call prog(rtd, 0, "proga", "main");

call prog(rtd, 1, "proga", "rl");

call prog(rtd, 1, "proga", "rl");

call prog(rtd, 2, "proga", "r2");

printf ("\n cancel region 1\n");

cob enterprise cancel region(rtd, 1, 0);
call prog(rtd, 0, "proga", "main");

call prog(rtd, 1, "proga", "rl");

call prog(rtd, 2, "proga", "r2");

cob _enterprise cancel region(rtd, 2, 0);
call prog(rtd, 2, "proga", "r2");

call prog(rtd, 2, "progfail", "rl");
printf ("We should never display this message");

@ COBOLT Page 264

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
} else {
printf ("After long jump");
call prog(rtd, 1, "proga", "rl");
}
}
proga.cob
IDENTIFICATION DIVISION.
PROGRAM-ID. proga.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
WORKING-STORAGE SECTION.
01 fa PIC X (30) VALUE "INITITAL VALUE".
PROCEDURE DIVISION.
DISPLAY "PROGRAM A " fa
MOVE "New data" TO fa.
CALL "progb"
CALL "progb"
DISPLAY "PROGRAM A CANCEL ProgB"
CANCEL "progb".
CALL "progb"
progb.cob
IDENTIFICATION DIVISION.
PROGRAM-ID. progb.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
WORKING-STORAGE SECTION.
01 fa PIC X(30) VALUE "INITITAL VALUE".
PROCEDURE DIVISION.
DISPLAY "PROGRAM B " fa
MOVE "New data" TO fa.
progfail.cob
IDENTIFICATION DIVISION.
PROGRAM-ID. progfail.
Page 265

@|COBOLIT

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
WORKING-STORAGE SECTION.
01 fa PIC X (30)

PROCEDURE DIVISION.
DISPLAY "PROGRAM Fail " fa
MOVE "New data" TO fa.
CALL "FAIL"

What cobc does

VALUE "INITITAL VALUE".

To get a better feel for exactly what cobc does, add the —v and —save-temps compiler flags to your
command line. Follow the output, and step through the separate processes of :

Precompiling the COBOL program
Translating the COBOL program to “C”
Compiling the “C” program

Linking the executable object (shared object/DLL or native executable)
Embedding the manifest file in the executable object

After examining the two cases of created a DLL, and a native executable in Windows, we will
examine a third case, in which cobc is used to compile a “C” program, and explain what is taking
place “under the hood”.

For the purpose of this exercise, we have created a table, with the output in the column on the left,
and commentary in the column on the right.

Creating a shared object/dll (Windows)

1 C:\lab4>cobc -v -save-temps hello.cbl

Compiling hello.cbl with —v and —save-
temps. —save-temps causes a subfolder
called “c” to be created, in which
intermediate files are stored, in the step of
translating COBOL to “C”. The absence of
any other compiler options will assume the
default of —m, and create a shared
object/DLL as the executable object.

2 cobc:0:

Temps files to 'C:\lab4\c'

When translating COBOL to “C”,
intermediate files will be stored in a “c”
subfolder.

3 cobc:0: preprocessing C:\lab4\hello.cbl into

C:\lab4\c/hello.i

cobc begins by preprocessing the COBOL
program, expanding copy files, setting
constant values that have been defined in
level 78s, applying conditional compile
directives, and so forth. The preprocessed
COBOL program is stored in a temporary

COBOLT

Page 266

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

COBOL program file with a .i extension.

cobc:0: Processing hello

Informational message marking the
transition from preprocessing to processing.

cobc:0: translating C:\lab4\c/hello.i into
C:\lab4\c/hello.c

cobc translates the preprocessed COBOL
program into “C”. Note that cobc can be

directed to stop here, using the command
>cobc -C hello.cbl

cobc:0: cl /c /I C:\COBOL\CobolIT64\include
/DCOB_HAS THREAD /W0 /nologo /GF /MD
/Fo"hello.obj" "C:\lab4\c/hello.c"

cobc compiles the “C” program to an .obj
file in the current directory. These are the
default flags passed to the “C” compiler, and
can be changed by changing the compiler
environment variable COB_CFLAGS.
Note- On Windows platforms, the default
setting for COB_CFLAGS is:

/1 C:\Cobol\CobollT\include
/DCOB_HAS_THREAD /WO /nologo /GF
/MD. These are the flags added after “cl /c”
and before /Fo “hello.obj” [¢ file].

hello.c

Informational message.

cobc:0: Exit code = 0

Informational message. The operation was
successful.

cobc:0:
/nologo "hello.obj"
C:\COBOL\CobolIT64\1ib\libcobit dll.lib
/DEFAULTLIB:MSVCRT.LIB

link /DLL /MANIFEST /out:"hello.dll"

Links hello.obj with libcobit_dll.lib. Creates
output files hello.lib, hello.exp,
hello.dll.manifest, hello.dll.

10

Creating library hello.lib and object
hello.exp

Informational message

11

cobc:0: Exit code = 0

Informational message. The operation was
successful.

12

cobc:0: mt /nologo /manifest
"hello.dll.manifest"
"/outputresource:hello.dll; #2"

Embeds the manifest file in the compiled
object.

13

cobc:0: Exit code = 0

Informational message. The operation was
successful.

Creating an executable (.exe) (Windows)

C:\lab4>cobc -v -save-temps -x hello.cbl

Compiling hello.cbl with —v —save-temps -x.
—save-temps causes a subfolder called “c” to
be created, in which intermediate files are
stored, in the step of translating COBOL to
“C”. It also ensures that intermediate files
in the working directory will be saved. A
native executable will be created by the
compiler.

cobc:0: Temps files to 'C:\lab4d\c'

When translating COBOL to “C”,
intermediate files will be stored in a “c”

COBOLIT

Page 267

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

subfolder.

cobc:0: preprocessing C:\lab4\hello.cbl into
C:\lab4\c/hello.i

cobc begins by preprocessing the COBOL
program, expanding copy files, setting
constant values that have been defined in
level 78s, applying conditional compile
directives, and so forth. The preprocessed
COBOL program is stored in a temporary
COBOL program file with a .i extension.

cobc:0: Processing hello

Informational message marking the
transition from preprocessing to processing.

cobc:0: translating C:\lab4\c/hello.i into
C:\lab4\c/hello.c

cobc translates the preprocessed COBOL
program into “C”. Note that cobc can be

directed to stop here, using the command
>cobc -C hello.cbl

cobc:0: cl /c /I C:\COBOL\CobolIT64\include
/DCOBiHAsiTHREAD /WO /nologo /GF /MD
/Fo"hello.obj" "C:\lab4\c/hello.c"

cobc compiles the “C” program to an .obj
file in the current directory. These are the
default flags passed to the “C” compiler, and
can be changed by changing the compiler
environment variable COB_CFLAGS.
Note- On Windows platforms, the default
setting for COB_CFLAGS is:

/1 C:\Cobol\CobollT\include
/DCOB_HAS_THREAD /WO /nologo /GF
IMD. These are the flags added after “cl /c”
and before /Fo “hello.obj” [¢ file].

hello.c

Informational message

cobc:0: Exit code = 0

Informational message. The operation was
successful.

cobc:0: Building main entry point

Generates hello_main.c in the current
directory.

10

cobc:0: cl /c /I C:\COBOL\CobolIT64\include
/DCOB_HAS_THREAD /W0 /nologo /GF /MD
/Fo"hello main.obj" "hello main.c"

Compiles hello_main.c to hello_main.obj
using COB_CFLAGS (or default settings, as
in this case).

11

hello main.c

Informational message.

12

cobc:0: Exit code = 0

Informational message. The operation was
successful.

13

cobc:0: link /SUBSYSTEM:CONSOLE /MANIFEST
"/out:hello.exe" /nologo "hello.obj"
C:\COBOL\CobolIT64\1ib\libcobit dll.1lib
"hello main.obj" /DEFAULTLIB:MSVCRT.LIB

Creates hello.lib, hello.exp, hello.exe,
hello.exe.manifest.

14

Creating library hello.lib and object
hello.exp

Informational message.

15

cobc:0: Exit code = 0

Informational message. The operation was
successful.

16

cobc:0: mt /nologo /manifest
hello.exe.manifest
/outputresource:hello.exe; #2

Embeds the manifest file in the executable
hello.exe.

17

cobc:0: Exit code = 0

Informational message. The operation was
successful.

COBOLIT

Page 268

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Compiling a “C” program with cobc (Windows)

In the Interoperability topics, we see examples of using cobc to compiler “C” programs. This
may seem odd at first, but it is important to remember that cobc translates COBOL into “C”, and
then invokes the host “C” compiler. When compiling a “C” program, cobc skips the COBOL
preprocessing, and translation steps, and proceeds directly to the “C” compilation step. Again, let’s
examine what that looks like in an example, using the -v -save-temps compiler flags.

C:\lab4d>cobc -v -save-temps say.cC

Compiling say.c with —v and —save-temps.
—save-temps causes a subfolder called “c” to
be created. Note that in this case, no
intermediate files will be created in the “c”
subdirectory. However, the —save-temps
compiler flag will prevent the .obj file, which
is referenced in the —v output, from being
deleted. The absence of any other compiler
options will assume the default of —m, and
create a shared object/DLL as the executable
object.

2 cobc:0: Temps files to 'C:llabdic! The “c” subfolder is created, but no files are
created in it.

‘ cobc:0: Processing say Informational message. Note that the
preprocessing and translation steps were
skipped, as there was no COBOL to
preprocess or translate into “C”.

6 cobc:0: cl /c /I C:\COBOL\CobolIT64\include

/DCOB_HAS THREAD /W0 /nologo /GF /MD
/Fo"say.obj" "C:\lab4\say.c"

cobc compiles the “C” program to an .obj
file in the current directory. These are the
default flags passed to the “C” compiler, and
can be changed by changing the compiler
environment variable COB_CFLAGS.
Note- On Windows platforms, the default
setting for COB_CFLAGS is:

/I C:\Cobol\CobollT\include
/DCOB_HAS_THREAD /W0 /nologo /GF
/MD. These are the flags added after “cl /c”
and before /Fo “hello.ob;” [c file].

7 say.c Informational message.
8 cobc:0: Exit code = 0 Informational message. The operation was
successful.
9 cobc:0: link /DLL /MANIFEST /out:"say.dll" H 1 Wi i i i
e oae i voey Links say.obj with libcobit_dll.lib. Creates

64\1ib\libcobit dll.1lib
/DEFAULTLIB:MSVCRT.LIB

output files say.lib, say.exp, say.dll.manifest,
say.dll.

10

Creating library say.lib and object say.exp

Informational message

11

cobc:0: Exit code = 0

Informational message. The operation was
successful.

COBOLT

Page 269

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
12| cobe:0: mt /nologo /manifest Embeds the manifest file in the compiled
say.dll.manifest A
"/outputresource:say.dll; #2" Object.
13 | cobe:0: Exit code =0 Informational message. The operation was
successful.

Compatibility Topics

cobmf

Overview of cobmf

cobmf provides the user with an emulator that recognizes an

important subset of the compiler flags supported by the Micro

Focus COBOL compiler cob. When using cobmf, it is important to

understand the following:

e Cobmf is not a perfect emulator. It has limitations. Some cob
flags are supported and some are ignored. See the Table of
Compiler Flags below for a guide to supported options.

e In cases where a cob flag is ignored, there may be a work-around
using the —-CIT “COBOLIT compiler flag” device. We have included
some suggestions in the Table of Options below, and also
included remarks on using -CIT with cobmf. See “Using the -CIT
option with cobmf” for more details.

e There are minor differences in the implementation of the -C
directive with cobmf. As an example:

o In Micro Focus COBOL: cob -C sign”ebcdic” programl.cbl
o Using cobmf:
= cobmf -C sign\”ebcdic\” programl.cbl , or
= cobmf -C sign="ebcdic” programl.cbl
See “How cobmf handles the -C “[directive]” compiler flag below
for more details.

e In the end, it is very useful to understand what cobmf does.

As an emulator, cobmf translates your Micro Focus COBOL command
line into a COBOL-IT command line. Some compiler flags will be
translated into command-line compiler flags. Some will be
translated into settings in a compiler configuration file that
is generated along with the command.

For details, see “What cobmf does” below for more details.

>cobmf [return]

Note- for a full list of the [options] supported by cobmf, type
cobmf [return] at the command line.

@ COBOLT Page 270

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
Usage: cobmf [options] files
Cobmf options
Cobol-IT MF compatible cob
Cobol-IT MF compatible caller usage :
cob [options] files
options are :
-a ignored
-C directive Pass syntax-check phase directive to the Compiler
-CC option Pass option to the C Compiler
-CIT option Pass option to the CIT cobc Compiler
-Q option Pass option to the Linker
-C Compile no further than a linkable object module (.0)
-g Create debugging information
-I dir Where are stored copy book
-i Compile to .int code for unlinked environment
-k cobol-file Recognize COBOL source file with non-standard filename extension
-L dir Pass option to system linker,
changing search algorithm and maintaining relative ordering
-1 1ib Pass option to system linker, maintaining relative ordering
-m symb=newsym Map text symb onto newsym
-0 Enable optimization
-o filename Specify output filename
-P Produce COBOL compilation listing file
-u Compile to .gnt code for unlinked environment
-V Report version number
-v Set verbose mode
-W err-level Control error level for cob termination
-X Process to system executable file
-Z Process to shared library

Using the —CIT option with cobmf

The —CIT command line option is used to pass additional commands to the COBOL-IT compiler
when using cobmf command line emulator.

Usage : cobmf -CIT “-v -Os -O” myprog.cob

Note that after including the —CIT option, you just list the COBOL-IT compiler flags, inside quotes,
that you would like the COBOL-IT compiler to use in addition to those implied by the usage of the
listed Micro Focus compiler flags.

What cobmf does

To examine what cobmf does, an example:

First, compile a simple hello.cbl program using cobmf:
In Windows:

> cobmf -L%COBOLITDIR%\lib hello.cbl

@ COBOLT Page 271

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Cobol-IT MF compatible cob
Running : cobc -1 citextth dll.lib -LC:\Cobol\CobolIT\lib -conf=hello.mfconf -fmf-int hello.cbl
cob1D5F8608 1.c

Creating library hello.lib and object hello.exp

Breaking down the command line, we see:

cobc

The emulator has substituted the COBOL-IT compiler for cobmf

-1 citextth_dll.lib In Micro Focus emulation mode, the extth interface is enabled

-LC:\Cobol\CobolIT\lib In Windows, you must point to the library where the extth interface

library is located. Since COBOL-IT supports the —L <lib> compiler flag, no
translation was necessary.

-conf=hello.mfconf hello.mfconf is a compiler configuration file that is generated by the

emulator, and which, at a minimum, references the Micro Focus compatibility
mode, and may, depending on the compiler options selected, contain other
entries. This is a minimal case, so the contents of hello.mfconf are simply:

include "mf.conf"

-fmf-int In Micro Focus emulation mode, an output file with a .int extension is

created. The output file with the .int extension is an abbreviated list file.

hello.cbl The name of the program.

How cobmf handles the —C “[directive]” compiler flag

As you use the —C”’[directive]” compiler flag with cobmf, follow these rules:

e Place a forward slash “/” before quotes

e Directives are translated into equivalent compiler configuration file entries. After running the
command, check the contents of the “conf” file generated by the emulator, to view how your
directive has been translated.

Consider the common case where the defaultbyte"0" directive is passed to the compiler on the
command-line.

In Micro Focus:
cob —C defaultbyte”0” hello.cbl

In COBOL-IT, construct the command as follows:
C:\COBOL\CobollT>cobmf -C defaultbyte\"O\" -L%COBOLITDIR%\lib hello.cbl

Cobol-IT MF compatible cob

Running : cobc -1 citextfh_dll.lib -L C:\Cobol\CobolIT\lib
-conf=hello.mfconf -

fmf-int hello.cbl

@

COBOLIT Page 272

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

cob4AAT78944 1.c
Creating library hello.lib and object hello.exp

Check the contents of hello.mfconf

Note that the key adjustment that has been made by the emulator is in the compiler configuration
file, which now has the following contents:

include "mf.conf"
use-defaultbyte:yes
defaultbyte:0

COBOL-IT requires that two compiler configuration file entries be set for the DEFAULTBYTE
directive, the use-defaultbyte entry, and the defaultbyte entry, which captures the value of the
defaultbyte.

COBOPT

The COBOPT environment variable is supported by cobmf. The COBOPT environment variable
stores command-line compiler flags, for use with cobmf.

Table of equivalents to cob compiler flags

Cob flag Function COBOL-IT Equivalent

-A [as option] Pass as_option to Assembler Not supported.

-a Compile for animation -g

-C [directive] Pass syntax-check phase [directive] to the Difference. Cobmf provides a limited
Compiler ability to use. However, best practice

is to determine the analogous
compiler configuration setting, and

update your compiler configuration

file. See “Table of Directives”

-CC [cc option] Pass [cc option] to the “C” Compiler -Wc [cc option]

@ COBOLT Page 213

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-d [symb]

-e [symbol]

g

-1 [symbol]

-k [COBOL src file]

-L [dir]

+L [dir]

-1 [lib]

+ [lib]

-m symb=newsymb

Compile no further than linkable object module

(.0)

Dynamically load [symb]

Set initial entry point to [symbol]

Produce debugging information

Include [symbol] in executable module

Compile to .int code

Compile [COBOL src file] with non-standard
extension

Pass [dir] to system linker, changing search
algorithm and maintaining relative ordering

Pass [dir] to system linker after all other
options, changing search algorithm

Pass [lib] to system linker, maintaining relative
ordering

Pass option to system linker after all other
options

Map symb to newsymb

C

Difference. Use COB_LIBRARY_PATH
to locate dynamically loaded module.

Not required.

g

Difference. Statically link [symb]:
>cobc -x -0 hello [symb1][symb2]

—| [dir] directs the compiler to folders
containing copy files or include files.

Creates a shared object with a .int
extension. The shared object is only
renamed.

Not required.

-L [dir]

Not supported

-1 [lib]

Not supported

Not supported

@ COBOLT

Page 274

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-N [directive]

-0
o [file]

-p

P

-Q [Id option] or

-Q, 1 [Id option] or

-Q, 2 [Id option]

-t

-V

-W [error level]

-X [symb]

-x,CC

Y

Pass generate-phase [directive] to compiler

Enables optimization
Specifies output [file] name

Produce COBOL listing file with compilation

Instructs “C” compiler to use profiling routines.

Pass [ld option] to linker

Creates multi-threading programs
Dynamically load unresolved symbols
Compile to .gnt code

Returns version number

Sets verbose mode

Sets [error level] at which compiler aborts

Excludes [symb] from executable output file

Produce executable file
Produce executable file with C++ support

Produce self-contained callable shared object.

Produce callable shared object

Difference. Cobmf provides a limited
ability to use. However, best practice
is to determine the analogous
compiler configuration setting, and
update your compiler configuration
file. See “Table of Directives”

-0
-o [file]

-t

-fprofiling

-WI [Id option]

-fthread-safe

Not supported
-fmf-gnt

-V

-V

—w compiler flags

Not supported

X
Not required

@ COBOLT

Page 275

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-z,U Produce callable shared object and issue error
if there are undefined symbols

-z,CC Produce callable shared object with C++
support.

-Z Produce shared library

-Z,CC Produce shared library with C++ support.

-m

Table of equivalents to compiler directives

Micro Focus
Directive

ACCEPTREFRESH

ALIGN

ALTER

ANIM

APOST

ARITHMETIC

ASSIGN

AUTOLOCK

BOUND

CALLFH

What it does

Causes data areas associated with Screen
Section itemsto be updated from their
corresponding Working-Storage Section
items before an ACCEPT statement.

Sets memory boundaries on which data
items of level-01 or level-77 are aligned.
Permits ALTER statements in your
program.

Adds extra information to the compiled
object, for use by the Debugger.

Causes the Compiler to interpret the
figurative constant QUOTE as the single-
quote character (').

Affects how arithmetic expressions are
evaluated.

Affects how to assign a filename when
neither EXTERNAL nor DYNAMIC appear in
the SELECT statement.

Sets the default locking to AUTOMATIC
rather than EXCLUSIVE for files opened I-O
or EXTEND in a multi-user environment.
Enforces runtime-checking of subscript
and index values, to make sure they are
within the bounds described by the
OCCURS clause.

Enables the EXTFH interface by causing all
calls for 1/0 operations to be handled by
the Callable File Handler.

COBOL-IT Equivalent

-faccept-with-update compiler flag or
accept-with-update: yes

-falign-8 compiler flag or
align-8:yes
Default behavior

-g compiler flag

quote:[any single character]
quote:

-fcompute-ibm, -fno-compute-ibm
compute-ibm:[yes/no]

assign-clause: [cobol2002 / mf / ibm /
external]

autolock:yes

-debug compiler flag

-use-extfh compiler flag

COBOLT

Page 276

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

CALLSORT

CASE

CHARSET

CHECK

CHECKDIV

COBFSTATCONV

cosIDY

COMP5-BYTE-ORDER

COMP-6

CONSTANT
COPYEXT

COPYLIST

COPYPATH

DATACOMPRESS

DATAMAP

DEFAULTBYTE

Enables the EXTSM interface, allowing a
named program to be called to handle all
SORT and MERGE operations.

Prevents external symbols (such as
Program-ID and names of called

programs) from conversion to upper case.

Indicates the character set used by the
environment.

Causes all run-time checks to be
performed in generated code.
Indicates behavior for case where a
program tries to divide by zero in a

statement that has no exception handling.

Names the user-supplied module to be
used by the Callable File Handler to

convert the file status codes if an 1/O error

is encountered on a file.

Location of the .idy file

Sets the byte ordering used for COMP-5
data.

Indicates if COMP-6 data is stored in
binary or packed decimal format.

Creates a constant for use in the program.

Names the filename extension that the
Compiler can use to identify a COPY file
that is specified without an extension.

Causes the compiler to list the contents
COPY files in a listing. .

Provides a list of directories for the
Compiler to search for copy files.

Sets the level of data compression to be
done on sequential and indexed files.

Causes the compiler to produce a
datamap in the listing.

Causes unitialized data items in Working
Storage to be initialized to a default byte.

-use-extsm compiler flag

Default behavior

ebcdic-charset: [yes/no]
-debug compiler flag

div-check: yes
default is yes

-use-extfh compiler flag

-debugdb=<filename> compiler flag

compb5-byteorder: [native/big-endian]
Default is comp5-byteorder: native.

signed-comp6-as-comp3:[yes/no]

constant "key=value"
-ext=<extension> compiler flag

Default behavior

-I [path] compiler flag, or
COB_COPY_DIR, or COBCPY environment
variable

datacompress:[integer] or
SSET DATACOMPRESS “x” before the
SELECT statement.

"-t" compiler flag.

By default, the datamap is included in
the listing.

defaultbyte:[any integer] Default is
defaultbyte:0 Requires use-
defaultbyte:yes compiler configuration
flag also be set.

COBOLT

Page 277

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

DEFAULTCALLS

DIALECT

EDITOR

FASTCALL

FCDREG

FILESHARE

FOLD-CALL-NAME

FOLD-COPY-NAME

FP-ROUNDING

HOST-
NUMCOMPARE

HOST-NUMMOVE

IBMCOMP

Sets the default calling convention.

Causes the compiler and runtime to
behave in a manner consistent with the
specified dialect.

Causes the compiler output error
messages to a file in a format compatible
with a specified editor.

Optimizes the speed of the CALL
operation by not checking whether it is a
main program. FASTCALL assumes that
the target of a CALL operation is not a
main program. EXIT PROGRAM will
always cause an exit to the calling
program.

Causes the compiler todefine special
registers giving access to File Control
Descriptions (FCD) and Key Definition
Blocks.

Changes the default locking to become
AUTOMATIC instead of EXCLUSIVE for files
in @ multi-user environment.
Automatically locks records on a WRITE or
REWRITE statement when the program is
locking multiple records.

Folds the name of the target of the CALL,
CANCEL, ENTRY, and CHAIN statements
and the program-name in the PROGRAM-
ID paragraph to upper or lower case.
Folds the name of the target of the COPY
statement to upper case or lower case.

Indicates whether one floating-point
receiving item can affect the results of
other, nonfloating-point receiving items.

Affects the comparisons between integer
numeric data items of USAGE DISPLAY and
alphanumeric literals, figurative constants,
or numeric operands.

Prevents run-time error 163 (illegal
characters in numeric fields) when certain
MOVE statements are executed on
numeric display data items or numeric
operands.

Indicates word-storage mode.

Default is defaultcall:0 Designates
default call-convention used when no
CALL-CONVENTION is mentioned in a
CALL statement

-conf=<dialect.conf.

-err <file>

-fcall-opt

fcdreg:yes
-ffcdreg

share-all-autolock:yes

runtime environment variable:
COB_CALL_CASE=xul, where x=exact,
u=upper,l=lower

-ffold-copy-lower compiler flag
-ffold-copy-upper compiler flag

-fround-fp compiler flag
round-fp:[yes/no]
Default is round-fp:no

-mfhostnumcompare compiler flag
hostnumcompare: yes

move-picx-to-pic9:raw

binary-size:2-4-8

COBOLT

Page 278

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

IDENTIFIERLEN

INDD

INITCALL

INITPTR

LIST

LISTPATH

LISTWIDTH, LW

"LNKALIGN

MAKESYN

MFCOMMENT

MOVE-LEN-CHECK

OBJ

ODOSLIDE

OPT (Intel x86
platforms)

OPT (Non-Intel x86
platforms)

OPTIONAL-FILE

OSEXT

Specifies the portion of an identifier name
that the compiler will consider to be
significant.

Allows ACCEPT statements to be read
from a specified file.

Names modules to be called immediately
before the first statement of a program is
executed.

Causes the INITIALIZE statement to
initialize DATA-POINTER, OBJECT-
REFERENCE, and PROGRAM-POINTER data
types.

Name of the source listing file.

Gives the directory location for the list file
to be written. The name of the list file is
source-name.lst.

Limits the width of the list file.

Causes level-01 and level-77 Linkage
Section items to always be aligned on a
machine-dependent favorable boundary.
Makes a reserved word synonymous with
another reserved word.

Causes an asterisk (*) in column 1 to be
treated as a comment line, but does not
show the line in the source listing.
Causes source and target lengths for
alphanumeric MOVE operations.to be
checked by the compiler.

Causes an object file to be generated.

Causes the memory location of data items
that are located after a variable length
table to change as the length of the table
changes.

Set the optimization level of the code
produced by the compiler on Intel x86
platforms.

Set the optimization level of the code
produced by the compiler on platforms
other than the Intel x86 platforms.
Causes the compiler to treat all files
opened for I-O or EXTEND as optional.
Indicates what the file extensions are for
COBOL source files.

identifer-length: <max-length>

-sysin=<input file> compiler flag

-initcall=<program name> compiler flag
initcall: <program-name>

initialize-pointer{yes/no]
Default is yes

-t <filename> compiler flag

-t <directory> compler flag

-ftruncate-listing compiler flag
truncate-listing: yes

-falign-8 compiler flag

align-8: yes

-makesyn oldvalue=newvalue compiler
flag

makesyn: oldvalue=newvalue
-fmfcomment compiler flag
mfcomment: yes

Default behavior

-o compiler flag

-fodo-slide compiler flag
odo-slide: yes

-0 compiler flag

-0 compiler flag

-foptional-file compiler flag

optional-file: yes

Not required. COBOL program extension
can be set in the Developer Studio,
where the compiler needs to build only
COBOL programs

@ COBOLT

Page 279

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

OuTDD

PANVALET

PARAMCOUNTCHECK

PCOMP

PERFORMOPT

PERFORM-TYPE

PREPROCESS, P

PRINT

PROFILE

PROGID-COMMENT

QUAL

QUOTE

RECMODE

REENTRANT

REMOVE

Causes the output of DISPLAY and EXHIBIT
statements to be written to a specified
file.

Allows ++INCLUDE statements in the
source file.

Allows the program to be called with
fewer parameters than are specified in
USING clause.

Allows a user program to be named as a
precompiler for COBOL files.

Optimizes PERFORM operations.

Indicates behavior of return jumps from
nested PERFORM statements.

Causes the source file to be pre-compiled,
and the output file to be compiled.
Names the source listing file.

Includes code in your program for
purposes of generating performance
statistics when the program is run.
Permits comments be included following
the PROGRAM-ID header in the Program-
Id paragraph.

Permits qualified data-names and
procedure-names in your program.

Causes the Compiler to interpret the
figurative constant QUOTE as the double-
quote character (").

Describes the default format of files.

Causes many program areas to be
dynamically allocated, so that it is safe to
have multiple copies of the program
running.

Causes reserved words to be removed
from the reserved word list, so that they
can be used as user-defined words.

—sysout=<output file> [,S/L [,Min [,Max]]]
compiler flag

supported by default

-falloc-unused-linkage
alloc-unused-linkage: yes

supported by default

-freturn-opt compiler flag
return-opt: yes

perform-osvs: yes equivalent to
PERFORM-TYPE (OSVS)
PERFORM-TYPE(COB370)
PERFORM-TYPE(ENTCOBOL)
PEFORM-TYPE(VSC2)
-preprocess compiler flag

-t <filename> compiler flag

-fprofiling compiler flag

default behavior

Qualified data-names are allowed in a
program.

quote: “

-frecmode-f compiler flag
-frecmode-osvs compiler flag
-frecmode-v compiler flag
recmode-f: [yes/no]
recmode-osvs: [yes/no]
recmode-v: [yes/no]
-fthread-safe compiler flag
thread-safe:yes

not-reserved [any reserved word]

COBOLT

Page 280

@

COBOLIT

COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

RESEQ

RTNCODE-SIZE

SEQUENTIAL

SETTING, SETTINGS

SHOW-DIR

SOURCEFORMAT

SOURCETABSTOP

SPZERO

SSRANGE

STDERR

STICKY-LINKAGE

TRACE

TRUNC

UNICODE

USE

VERBOSE

WARNING,
WARNINGS

Causes the compiler to produce line
numbers in the listing file.

Sets the size of the RETURN-CODE register
and its alignment in memory.

Indicates the default file type for files
defined as ORGANIZATION SEQUENTIAL.

Causes the compiler to include a listing of
directives, and their settings in the source
listing.

Causes the compiler show the contents of
directives files in the source listing.
Selects format for COBOL source.

Sets the rule for expanding tab characters
encountered in the source code into
spaces that is used by the compiler.
Causes space characters in USAGE
DISPLAY numeric data items to be treated
as zeros.

Turns on runtime bounds checking for
subscripting, reference modifications, and
indexes.

Causes compiler error messages to be
written to STDERR.

Affects how parameters passed to a
program are handled during a runtime
session in which the program is called
multiple times.

Turns on runtime tracing through READY
TRACE and RESET TRACE statements.
Determines whether data being stored in
USAGE COMP, USAGE BINARY or USAGE
COMP-4 data items is truncated to the
size given by the item's PICTURE clause or
to the maximum size the item can hold.
Describes the encoding used for Unicode
characters.

Causes the compiler to read directives
from afile.

Causes the compiler to be verbose.

Specifies the lowest severity level of
errors to report.

Developer Studio capability

rtncode-size <integer>
Integer may be 2,4,8

sequential-line:[yes/no]

-dump-config compiler flag
default behavior

-dump-config compiler flag
Default behavior
-free , -fixed compiler flags

tab-width: [integer] Default is 8

spzero: yes

-debug compiler flag

-err <file>

sticky-linkage [yes/no/fixed/variable]

-fsimple-trace -ftrace —ftraceall compiler
flags
-fnotrunc compiler flag

-futf16-le compiler flag

utf16-le: [yes/no]

default is utf16-le: no

default is big-endian (portable).
utfl6-le is little-endian (native).
-conf=xxx.conf compiler flag
-std=mf.conf compiler flag
COBITOPT environment variable
-v compiler flag

-w compiler flags

@ COBOLT

Page 281

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

The COBOL-IT Debugger Engine (cobcdb)

The COBOL-IT Debugger Engine (cobcdb) has been designed to operate as an engine, working in
the background, behind a user interface, such as the interface that is provided by the COBOL-IT
Debugging Perspective in the Developer Studio. The COBOL-IT Debugger Engine (cobcdb) runs
shared object files that have been created by the COBOL-IT Compiler (cobc) and that have been
compiled with the —g compiler flag.

Conventions Used

The Debugger Prompt

When you start the COBOL-IT Debugger Engine, the COBOL-IT Debugger Window presents a
prompt, into which a Debugger Command can be entered. After entering a Debugger Command,
the user will see the results of their command returned, with a subsequent debugger prompt.
The default debugger prompt is (cobcdb).

To illustrate:

C:\COBOL\COBOLIT\samples>cobcdb hello

CreateProcess "cobcrun -d hello ".

command:11516

(cobcdb)

event:11516

-event-end-stepping-range #0 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!8
(The debugger prompt is here. As an example, enter the version command:)
version

~"COBOL-IT cobcdb 3.6.4\n"

Adone

(cobcdb)

(Enter a subsequent command here.)

Source Location

Source Location is formatted as:
<Absolute source path name>!<line number>

Example: C:/COBOL/COBOLIT/samples/hello.cbl!21

Variables names

<variable-name> is formatted as:
[@<module-name>.][<section>.][<upper-level-fields >.]<field-name>

@ COBOLT Page 282

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

If no <module-name> is given, current module is searched

If no <section> is given, sections are searched in the following order: file section, working-storage
section, linkage-section.

If no <upper-level-field> is given, the first matching field as presented in the original source is
returned

Example:

WORKING-STORAGE.WrkA.Wrk_G1.Wrk_G1_F1 or Wrk_G1.Wrk_G1_F1
is equivalent to
@PrgA.WORKING-STORAGE.WrkA.Wrk_G1.Wrk_G1_F1

where declarations are:
working-storage section.
01 WrkA.
03 Wrk_F1 PIC 99.
03 Wrk_F2 PIC 99.
03 Wrk_G1.
05 Wrk_G1_F1 PIC 99.
05 rk_G1_F2 PIC99.

@ COBOLT Page 283

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Usage of the COBOL-IT Debugger:

>cobcdb [options] [program name] [command-line parameters]

command-line parameters

are parameters which would be returned to the program through an
ACCEPT from COMMAND-LINE statement.

program name

is the name of the shared object file created by the COBOL-IT Compiler (.dll, .so).

options

are parameters that are passed to the COBOL-IT Debugger. These options include:

-listdid

Causes the COBOL-IT Debugger to list all the running processes by PID, as well as debug-id.
As an example:
C:\COBOL\COBOLIT>cobcdb -listdid

did: -------- pid: 11412 module:
did: -------- pid: 11956 module:
did: 12345 pid: 11536 module: hello
did: -------- pid: 3296 module:
did: -------- pid: 3324 module:
-n
(Windows only). Causes the COBOL-IT Debugger to start the execution of program name
in a new cmd.exe window.
-p <did>

Causes the COBOL-IT Debugger to connect to the running process identified by did. did
the debug-id. did may be a debug-id, set with the runtime environment variable
COB_DEBUG_ID, or it may be the process id (pid) of the currently running process.
When using the -p did parameter, there is no need to specify program name, as the
program is identified by did.

@ COBOLT Page 264

@

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

-r hos

-trace

t:port

Connects two TCP sockets to host:port. Debugger commands, and the results returned are
transmitted via these sockets. Used by the Remote System Explorer in the COBOL-IT
Developer Studio.

Sockets are identified by the first line sent.

Socket1 is used to exchange Command/Result information. As an example, the COBOL-IT
Debugger will READ Commands Socketl, and WRITE the results of the command to that
socket.

Socketl is identified by “command:pid\n” where pid is the process-ID.

Socket?2 is used to write Debugger Events. For more information about Debugger Events,
See the Chapter below titled “Debugger Events”.

Socket?2 is identified by “event:pid\n” where pid is the process-ID.

Causes the COBOL-IT Debugger to write tracing information to cobcdb.out.

-w <did>

y tty

Causes the COBOL-IT Debugger to interrupt the process identified by did and set it into a
“wait for connect” state. did is the debug-id. Did may be a debug-id, set with the runtime
environment variable COB_DEBUG_ID, or it may be the process id (pid) of the currently
running process. A program that has been set into this state can be debugged with the
—p did command. When using the -w did parameter, there is no need to specify program
name, as the program is identified by did.

(UNIX/Linux only). Causes the COBOL-IT Debugger to assign stdout/stdin/stderr to tty.
When running the COBOL-IT Debugger with —y tty, program name is required.

COBOUIT Page 265

@

CO BOL_'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

Debugger Commands

Debugger Commands include:

break

causes a breakpoint to be set in the location that is indicated. With the addition of
the -t flag, breakpoints can be created as temporary breakpoints, which are erased
after they have been reached the first time. The break command requires a
location parameter. Location parameters for the break command are:

module Sets a breakpoint in a module, as identified by program-id.
label Sets a breakpoint at a paragraph name.

line-nr Sets a breakpoint at a line number.

module, label, and line-nr can be combined, with a | notation.

break [-t] label

sets a breakpoint at a paragraph name..

Example:

(cobcdb)

break -t para-1

Breakpoint 1 in para-1 at C:/COBOL/COBOLIT/samples/hello.cbl
(cobcdb)

break [-t] module!label

sets a breakpoint at a paragraph name (label) in a module. module is identified by
source file name. If no module name is specified, then the current module is used.
Since module may not be loaded yet, no validation of module!label is made.
Example:

(cobcdb)

break -t C:/COBOL/COBOLIT/samples/hello.cbl!para-1

Breakpoint 2 in para-1 at C:/COBOL/COBOLIT/samples/hello.cbl

(cobcdb)

break [-t] module!line-nr

sets a breakpoint at a line number in a module. module is identified by source file

name. if no module name is specified, then the current module is used. Since
module

may not be loaded yet, no validation of module!line-nr is made.

Example:

@ COBOLT Page 280

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

(cobcdb)

break -t C:/COBOL/COBOLIT/samples/hello.cbl!22
Breakpoint 3 at C:/COBOL/COBOLIT/samples/hello.cbl!22
(cobcdb)

break [-t] module!O

sets a breakpoint at the entry-point to module. module is identified by source file
name. if no module name is specified, then the current module is used.

Example:

break -t c:/COBOL/COBOLit/samples/subpgm.cbl!0

Breakpoint 1 at c:/COBOL/COBOLit/samples/subpgm.cbl ! 0

(cobcdb)

Or

break -t subpgm.cbl!0

Breakpoint 1 at subpgm.cbl ! 0

(cobcdb)

bt
causes a CALL/PERFORM stack trace to be generated. The format for the stack trace
display is : #<frame-number><module>() at <source-location>
Example:
bt
#0 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!21
#1 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!16
(cobcdb)
frame-number 0 is the current program position

continue

causes execution of program to be continued until the next breakpoint is
encountered, or until the end of the program . An event-continue command is
issued. As seen in the example below, this is interrupted when an event-
breakpoint-hit event takes place.

Example:

break -t para-1

Breakpoint 1 in para-1 at C:/COBOL/COBOLIT/samples/hello.cbl

(cobcdb)

continue

-event-continue

-event-breakpoint-hit (cobcdb)#0 hello () at
C:/COBOL/COBOLIT/samples/hello.cbl!22

@ COBOLT Page 287

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

(cobcdb)

Example :

break -t C:/COBOL/COBOLIT/samples/hello.cbl!22
Breakpoint 1 at C:/COBOL/COBOLIT/samples/hello.cbl | 22
(cobcdb)

continue

-event-continue

-event-breakpoint-hit (cobcdb)#0 hello () at
C:/COBOL/COBOLIT/samples/hello.cbl!122

contreturn

causes execution to continue to the next PERFORM return, or break on the first
breakpoint reached, which ever comes first. An event-contreturn command is
issued. Thisis interrupted when an —event-end-stepping-range event takes place.
Example :

contreturn

-event-contreturn

(cobcdb)-event-end-stepping-range #0 hello () at
C:/COBOL/COBOLIT/samples/hello.

cbl!17

delete <x>

causes breakpoint number x to be deleted.
Example:

(cobcdb)

delete 3

Adone

(cobcdb)

frame <frame-number>

Prints the source location for the designated frame number. The frame numbers of
an application run session are the points at which the application has branched
either due to a PERFORM <paragraph> statement or a CALL <subprogram>
statement.

Example:
(cobcdb)
frame 0

COBOUIT Page 268

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

#0 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!25
(cobcdb)

frame 1

#1 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!17
(cobcdb)

info

causes information to be displayed about the <info parameter> that is indicated.
The info command requires an <info parameter>.

Info parameters for the info command are:

locals Displays a dump of the current variables in memory

sources Displays a list of source files corresponding to loaded
modules.

target Displays the Process ID of the runtime session.

info locals

displays a dump of the values of the fields in the modules currently loaded in
memory.

Example :

(cobcdb)

info locals

@hello. WORKING-STORAGE

@hello. WORKING-STORAGE.RETURN-CODE = [10]"+000000000"

@hello. WORKING-STORAGE.TALLY = [10]"+000000000"

@hello. WORKING-STORAGE.SORT-RETURN = [10]"+000000000"

@hello. WORKING-STORAGE.NUMBER-OF-CALL-PARAMETERS = [10]"+000000000"
@hello.WORKING-STORAGE.message-line = [11]" "
@hello.WORKING-STORAGE.ws-dummy = [1]" "

@hello. WORKING-STORAGE.ctr = [6]"000000"

@hello. WORKING-STORAGE.COB-CRT-STATUS = [4]"0000"

(cobcdb)

Info is returned in a structured tree using SECTION as a header in the form :
<variable name> = [<size>]"<string>"

<variable name> is the full qualified variable name

<size> is the number of characters in the string

<string> is the data in human readable form. Strings may contain null characters.

info profiling

Causes a profiling dump to be produced, dumping profiling information at the current point in the
program. Profiling information is displayed, and then dumped in the .xls file format.

@ COBOLT Page 289

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

Example:
(cobcdb)
info profiling

info sources

displays source files associated with objects loaded in memory
Example:

(cobcdb)

info sources

Source files

C:/COBOL/COBOLIT/samples/hello.cbl

(cobcdb)

info target

displays the pid of the currently running process.

Example:
(cobcdb)

info target
Child PID 19012
(cobcdb)

Kill

Kills the current process.
Example:
(cobcdb)
kill
-event-program-exited (cobcdb)#0 hello () at
C:/COBOL/COBOLIT/samples/hello.cbl!
10

list

Requires that the source file be accessible. The list debugger command allows
you to expand the source you can see inside the console debugger as you
execute your debugger commands:

(cobcdb)
s

@ COBOLT Page 290

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1
-event-step
(cobcdb)
-event-end-stepping-range #0 CUSTOMERO () at /opt/cobol-it-
64/samples/customer0.cbl!99
.0000099> CALL "C$PID" USING PID.
list
.0000094.
.0000095.
3K 3K 3k 3K 3K 3K 3K 5K 3K 3K 3K 3K 3K 3K 3K 5K 5K 5K 5K 3K 3K 3K 3K 5K 5K 5K 3K 3K 3K 3K 3K 3K 5K 5K 3K 3K 3K 3K 3K 3K 3K 5K 5K 5K K 3K 3k 3K 3K 5K 5K 5K K K 3K kK %K K K 5K >k Xk kK Xk %k %k
.0000096. PROCEDURE DIVISION.
.0000097.
.0000098. Main Section.
.0000099> CALL "C$PID" USING PID.
.0000100. DISPLAY "PID = " PID.
.0000101. * CALL "C$DEBUG"
.0000102. ACCEPT W-SYS-DATE FROM DATE.
.0000103. MOVE W-SYS-YY TO CURR-YY.
.0000104. MOVE W-SYS-MM TO CURR-MM.
(cobcdb)
next

causes execution to pass to the next statement- jumping over a CALL or PERFORM
statement before breaking, unless the CALL’ed paragraph or PERFORM statement
contains a breakpoint. An event-next command is issued. This is interrupted when
an —event-end-stepping-range event takes place. The next command can be
abbreviated as “n”.

Example :

(cobcdb)

next

-event-next

-event-end-stepping-range (cobcdb)#0 hello () at
C:/COBOL/COBOLIT/samples/hello.cbl!17

print <variable-name>

displays the value of the variable in human readable format.
Example:

print message-line

S1 = @hello.WORKING-STORAGE.message-line [11]"XXXXXXXXXXX"
(cobcdb)

The information returned is in the format:
S1=@module-name.section-name.variable-name[size]”[string]”
Where:

@ COBOLT Page 291

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

module-name is the program-id of the module being executed.
section-name is the section containing the variable being displayed.
size is the size, in bytes of the variable.

string is the contents of the variable in human-readable format.

printh <variable-name>

displays the value of the variable in hexadecimal format.

Example:

printh message-line

$1 = @hello. WORKING-STORAGE.message-line [22]"5858585858585858585858"
(cobcdb)

The information returned is in the format:
S1=@module-name.section-name.variable-name[size]”[string]”
Where:

module-name is the program-id of the module being executed.
section-name is the section containing the variable being displayed.
size is the size, in bytes of the variable.

string is the contents of the variable in hexadecimal format.

quit
causes an exit from the debugger.
Example:
(cobcdb)
quit
C:\COBOL\COBOLIT\samples>
replace

allows the user to replace the prefix of the pathname to the source file associated with the compiled
object.

The replace command may be used with the following parameters:

>replace <oldprefix> : <newprefix> Affects the output of the list command.
Example: replace /dirA : /dirB

>replace <no arguments> Resets the list command.

>replace ? Produces a list of active replacements

@ COBOLT Page 292

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

>replace <oldprefix> : <newprefix>

The replace <oldprefix>:<newprefix> command affects the output of the >list command.
Other commands such as >info sources or >break still use the original pathname as it is stored in
the binary code of the program.

Examples: >replace /dirA:/dirB

In this example, /dirA and /dirB are prefixes of a pathname to the source file that is associated
with the compiled object. In this example, the >list command would replace the location of source
code associated with the compiled object from /dirA/dev/sources to /dirB/dev/sources.

Where two or more replace commands are executed, the commands are stacked internally.
Consider this case, where three replace commands are executed:

replace /dirA: /dirB
replace /dirC : /dirD
replace /dirE : /dirF

This provides a list of three possible replacements. Only the first matching replacement will be
executed.
>replace ?
The replace ? command produces a list of active replacements.
Following our previous example, we would see:
/dirA : /dirB

/dirC : /dirD
/dirE : /dirF

>replace <no arguments>

The replace <no arguments> command re-sets the list command, removing all replacements
established in the debugging session.

set

allows the user to set a <set parameter> to a different value.
The set command requires a <parameter>.
Parameters for the set command are:

prompt<prompt-string> Sets the debugger prompt to <prompt-string>

@ COBOLT Page 243

@

CO BOL_'T COBOL-IT Compiler & Runtime

Reference Manual Version 4.1

var <variable-name> <variable-value> Sets the value of <variable-name>
varh <variable-name> <variable-value> Sets the value of <variable-name> in hex notation

set prompt <prompt string>

sets the COBOL-IT Debugger prompt. The default setting for the COBOL-IT
Debugger

prompt is (cobcdb).

Example :

(cobcdb)

event:13556

-event-end-stepping-range #0 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!9
set prompt >>>

>>>

set var <variable-name> <variable-value>

sets variable content for variable-name to variable-value. Values are converted to
the appropriate type. A number stored in a PIC 999 field will be converted before
storing.

Example :

(cobcdb)

set var message-line "hello hello"

$1 = @hello. WORKING-STORAGE.message-line [11]"hello hello"

(cobcdb)

set varh <variable-name> <variable-value-hex>

step

sets variable content for variable-name to variable-value-hex.
<variable-value-hex> must be a valid hexadecimal string. Note that in a valid
hexadecimal string, a single character space is recorded with two characters, so
the total string length of <variable-value-hex> must be exactly two times the
length of <variable-name>.

(cobcdb)

set varh ws-dummy 41

S1 = @hello. WORKING-STORAGE.ws-dummy [1]"A"

(cobcdb)

causes execution of the program to execute a single step, and then break. An
event-step command is issued. This is interrupted when an —event-end-stepping-
range event takes place. The step command can be abbreviated as “s”.

Example:

@|COBOUIT Page 294

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

stop

(cobcdb)
step
-event-step
(cobcdb)-event-end-stepping-range #0 hello () at
C:/COBOL/COBOLIT/samples/hello.cbl!14

up -[n]

causes execution to stop (break) at the next statement

changes the current frame. When you have several levels of CALLs, the info
functions relate to the current module. In a CALL’ed subprogram, up —[n] can be
used to change the frame back to a previous CALL'ing module. Info locals can then

be viewed for that calling module.

In the example below, the bt command shows 3 frames, with frame 0 being the
current frame in a called sub-program, and the info locals command showing the
state of the variables in the subprogram. up -1 sets the frame to the calling

program, so that info locals can be viewed for the calling program.

bt

#0 subpgm () at C:/COBOL/COBOLIT/samples/subpgm.cbl!7

#1 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!25

#2 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!17

(cobcdb)

info locals

@subpgm.WORKING-STORAGE
@subpgm.WORKING-STORAGE.RETURN-CODE = [10]"+000000000"
@subpgm.WORKING-STORAGE.TALLY = [10]"+000000000"
@subpgm.WORKING-STORAGE.SORT-RETURN = [10]"+000000000"
@subpgm.WORKING-STORAGE.NUMBER-OF-CALL-PARAMETERS =

[10]"+000000000"
@subpgm.WORKING-STORAGE.COB-CRT-STATUS = [4]" "

(cobcdb)

up -1

#1 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!25

(cobcdb)

info locals

@hello.WORKING-STORAGE
@hello.WORKING-STORAGE.RETURN-CODE = [10]"+000000000"
@hello.WORKING-STORAGE.TALLY = [10]"+000000000"
@hello. WORKING-STORAGE.SORT-RETURN = [10]"+000000000"

@ COBOLT

Page 295

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual Version 4.1

@hello.WORKING-STORAGE.NUMBER-OF-CALL-PARAMETERS =
[10]"+000000000"

@hello.WORKING-STORAGE.message-line = [11]"XXXXXXXXXXX"

@hello.WORKING-STORAGE.ws-dummy = [1]" "

@hello.WORKING-STORAGE.ctr = [6]"000000"

@hello.WORKING-STORAGE.COB-CRT-STATUS = [4]"0000"
(cobcdb)

version

returns the version of the cobcdb/COBOL-IT runtime.
Example:

(cobcdb)

version

~"COBOL-IT cobcdb 3.6.4\n"

Adone

(cobcdb)

Debugger Events

-event-breakpoint-hit

Returned when a breakpoint is hit.

-event-continue

Returned by the continue command. Terminated by —event-breakpoint-hit.

-event-contreturn

Returned by the contreturn command. Terminated by —event-end-stepping-range.

-event-end-stepping-range

Returned when one of the debugger step commands (step, next, contreturn) reaches the end
of its stepping range.

-event-next

Returned by the next command. Terminated by —event-end-stepping-range.

-event-program-exited

Returned by the kill command.

@ COBOLT Page 296

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

-event-step

Returned by the step command. Terminated by —event-end-stepping-range.

Our Sample Programs

For the purposes of this documentation, we are using a very short hello.cbl program as a
reference.

(The program contains an ACCEPT FROM COMMAND-LINE statement, to illustrate this
functionality in cobcdb.)

To compile: >cobc —g hello.cbl
>cobc —g subpgm.cbl
To run: >cobcdb hello (or)
To run with parameters: >cobcd hello hello-world

hello.cbl

000001 identification division.

000002 program-id. hello.

000003 environment division.

000004 data division.

000005 working-storage section.

000006 77 message-line pic x(11) value spaces.
000007 77 ws—-dummy pic x value spaces.
000008 77 ctr pic 9(6) wvalue O.

000009 procedure division.

000010 main.

000011 accept message-line from command-line.
000012 if message-line not = spaces

000013 display message-line line 10 col 10
000014 else

000015 display "hello world" line 10 col 10
000016 end-if.

000017 perform para-1.

000018 display "returned from para-1" line 14 col 10.
000019 display "next line" 1line 16 col 10.
000020 accept ws—-dummy line 16 col 30.

000021 stop run.

000022 para-1.

000023 move all "X" to message-line.

000024 display "in para-1" line 12 col 10.
000025 call "subpgm".

@ COBOLT Page 297

@ CO BOL-'T COBOL-IT Compiler & Runtime
Reference Manual

Version 4.1

subpgm.cbl

000001
000002
000003
000004
000005
000006
000007
000008
000009

identification division.

program-id. subpgm.

environment division.

data division.

working-storage section.

procedure division.

main.
display "In Subpgm" line 20 col 10.
goback.

@|COBOLIT

Page 298

COBOL-IT Compiler & Runtime

CO BO |-_|T Reference Manual

G5

WwWwWw.cobol-it.com

June, 2020

COBOLUIT

Page 299

	Acknowledgment
	Compiler & Runtime Reference
	The COBOL Compiler: cobc
	Informational Flags
	–check-codepage <codepage-id>
	--help
	–list-codepage
	--list-intrinsics
	--list-mnemonics
	--list-reserved
	--version, -V

	Standard Flags
	-b
	-c
	-codepage <codepage-id>
	-conf=[+]<file>
	-constant "key=value"
	-debug
	–debugdb [=<DebugDB-name>]
	-dump-config
	-err <file>
	-ext<extension>
	-fixed
	-free
	-g
	-initcall=<program-name>
	-l <lib>
	-linkage-desc=[program.xsd]
	-m
	-makesyn "oldvalue=newvalue"
	-o <file> | <dir>
	-preprocess=<CMD> [input file]
	-save-temps (=<dir>)
	-source-codepage <codepage-id>
	-std=<dialect>
	-sysin=<input file>
	–sysout=<output file> [,S/L [,Min [,Max]]]
	-t <file> | <dir>
	-use-extfh <NAME>
	-use-extsm <NAME>
	-v
	-x
	--xdd-prefix=<dir>
	-C
	-D <define>
	-E
	-G
	-I <path>[,ext1,ext2,.,extn][@<LibName>] | <command-file>
	-L <directory>
	-MF <file>
	-MT <target>
	-O, -Os, -O2
	-R <directory>
	-S
	-Wc CC_opt
	-Wl LD_opt

	Guidelines for Searching and Locating COPY files
	Guidelines for enforcing bounds-checking
	Guidelines for optimizing performance
	-O compiler flags
	Optimizations enabled with the –O compiler flag
	COB_OPTSIZE_FLAG
	The CALL statement
	The PERFORM statement
	Resolving File Names
	Removing debug-oriented compiler flags
	Optimizing compiler flags set by default

	Guidelines for use of -preprocess=cmd
	Compiler -f Flags
	-f77-opt
	-faccept-with-auto
	-faccept-with-update
	-falign-8
	-fall-external-call
	-fall-external-link
	-falloc-unused-linkage
	-fas400-like
	-fauto-load-symb
	-fautolock
	-fauto-sprwr
	-fbdb
	-fbinary-byteorder-big-endian
	-fbinary-byte-order-native
	-fbin-opt
	-fbin-opt-strict
	-fcall-comp5-as-comp
	-fcall-lowercase
	-fcall-opt
	-fcall-uppercase
	-fcarealia-sign
	-fC-cmd-line
	-fC-data-init
	-fcheckpoint
	-fcics
	-fcmp-inline
	-fcmp-opt
	-fcobol-lines
	-fcompat-display-to-int
	-fcompute-ibm
	-fcompute-ibm-trunc
	-fcontinuation-line
	-fcopy-default-leading
	-fcopy-exec-replace
	-fcopy-mark
	-fcopy-partial-replace
	-fctree
	-fctree-field-numbering
	-fctree-no-full-qualification
	-fcurdir-include
	-fdebugdb
	-fdebug-exec
	-fdebugging-line
	-fdebug-parser
	-fdecimal-optimize
	-fdisam
	-fdisplay-dos
	-fdisplay-ibm
	-fdiv-check
	-febcdic-charset
	-femulate-vms
	-fexclusivelock
	-fexec-check
	-fexpand-exec-copy
	-fexpand-sql-include
	-ffast-figurative-move
	-ffast-op
	-ffcdreg
	-ffdclear
	-ffile-auto-external
	-ffold-copy-lower
	-ffold-copy-upper
	-ffp-opt
	-ffree-thread-safe-data
	-ffunctions-all
	-ffunctions-all-intrinsic
	-fgcc
	-fgcc-bug
	-fgcc-goto
	-fgcc-O-bug
	-fgcos-mode
	-fgen-xdd
	-fglobal-typedef
	-fibm-listing-macro
	-fibm-mainframe
	-fibm-sync
	-fimplicit-init
	-finclude-main
	-fincomplete-subscript
	-findex-optimize
	-finitialize-fd
	-finitialize-opt
	-fkeep-copy-statement
	-fkeep-org-src-line
	-fkeep-unused
	-fline-seq-dos
	-flink-only
	-flisting-sources
	-floosy-comment
	-fls-expand-tab
	-fmain
	-fmain-as-object
	-fmainframe-vb
	-fmakesyn-patch-preprocess
	-fmanuallock
	-fmem-info
	-fmfcomment
	-fmf-compat-parser
	-fmf-ctrl-escaped-parser
	-fmf-file-optional
	-fmf-gnt
	-fmf-hostnumcompare
	-fmf-int
	-fmf-relativefile
	-fmodule-name-entry
	-fmodule-uppercase
	-fmove-all-edited
	-fno-cbl-error-proc
	-fno-realpath
	-fnostrip
	-fnotrunc
	-fnull-param
	-fnumeric-compare
	-fnumval-validate
	-fobj-cit
	-fodo-slide
	-foptimize-move
	-foptimize-move-call
	-foptional-file
	-fperform-osvs
	-fprepro_cut_line
	-fprinter-crlf
	-fprofiling
	-fprotect-linkage
	-fraw-by-value
	-fraw-pic9-display (Internal use only)
	-fread-into-copy
	-fready-trace
	-frecmode-f
	-frecmode-v
	-frecord-depending-iso
	-fregion0
	-frelativefile-bigendian
	-freplace-additive
	-freturn-opt
	-fround-fp
	-frw-after-preprocess
	-frw-mode-nopf
	-frw-mode-nopf-dos
	-fsafe-linkage
	-fsequential-line
	-fshare-all-autolock
	-fshare-all-default
	-fshare-all-manulock
	-fsign-ascii
	-fsign-ebcdic
	–fsign-leading
	–fsign-separate
	-fsimple-trace
	-fsource-location
	-fsplit-debug-mark
	-fstack-check
	-fstatic-call
	-fstrict-compare-low
	-fstrict-record-contains
	-fsyntax-only
	-fthread-safe
	-ftrace
	-ftrace-ts
	-ftrace-upon-sysout
	-ftraceall
	-ftrap-unhandled-exception
	-ftruncate-listing
	-funstring-use-move
	-futf-8
	-futf16-le
	-fvalidate-dep-on
	-fvalidate-only
	-fvalue-of-id-priority
	-fvalue-size-is-auto
	-fvbisam
	-fvms-error-handler
	-fxparse-event

	Guidelines for handling Linkage Section parameters
	Guidelines for modifying default handling of the LOCK MODE
	Guidelines for use of Checkpoints
	Guidelines for use of Profiler
	Dumping Profiling Data at the Module Level
	Using the PRAGMA statement to produce Profiling Reports
	Info profiling debugging command
	Attaching a program compiled with -fprofiling to a running process

	Guidelines for thread-safe programs
	Compiler –w Flags
	-w
	-Wall
	-Warchaic
	-Wbdb
	-Wcall-params
	-Wconstant
	-Wimplicit-define
	-Winformation
	-Wlinkage
	-Wobsolete
	-Wparentheses
	-Wredefinition
	-Wstrict-typing
	-Wsuggestion
	-Wterminator
	-Wtruncate
	-Wunreachable

	Compiler Configuration File
	77-opt:[yes/no]
	accept-but-ignore-comp6-signed:[yes/no]
	accept-with-auto:[yes/no]
	accept-with-update:[yes/no]
	align-8:[yes/no]
	all-external-call:[yes/no]
	all-external-link:[yes/no]
	alloc-unused-linkage:[yes/no]
	as400-like :[yes/no]
	assign-clause: [COBOL2002 / mf / ibm / external]
	auto-initialize:[yes/no]
	auto-load-symb:[yes/no]
	autolock:[yes/no]
	bdb:[yes/no]
	bin-opt:[yes/no]
	bin-opt-strict:[yes/no]
	binary-byteorder: native / big-endian
	binary-size: 2-4-8 / 1-2-4-8 / 1--8
	binary-truncate:[yes/no]
	bitfield-first-is-lsb: [yes/no]
	call-comp5-as-comp:[yes/no]
	call-lowercase: [yes/no]
	call-opt: [yes/no]
	call-uppercase: [yes/no]
	carealia-sign: [yes/no]
	C-cmd-line:[yes/no]
	C-data-init:[yes/no] [Internal use only]
	check-linkage-bound: [yes/no]
	checkpoint: [yes/no]
	cics: [yes/no]
	cmp-inline:[yes/no]
	cmp-opt:[yes/no]
	cobol-lines: [yes/no]
	codepage: <codepage-id>
	comp5-byteorder: [native/big-endian]
	compat-display-to-int:[yes/no]
	complex-odo:[yes/no]
	compute-ibm:[yes/no]
	compute-ibm-trunc: [yes/no]
	console-is-sysfile: [yes/no]
	constant: "key=value"
	continuation-line
	copy-default-leading:[yes/no]
	copy-exec-replace[yes/no]
	copy-partial-replace:[yes/no]
	crtstatus-map:[cit-value] [user-value]
	ctree: [yes/no]
	ctree-field-numbering: [yes/no]
	ctree-no-full-qualification: [yes/no]
	curdir-include: [yes/no]
	datacompress: <integer>
	debug-exec: [yes/no]
	debugging-line:[yes/no]
	debug-parser: [yes/no]
	decimal-optimize:[yes/no]
	defaultbyte:[any integer]
	defaultcall:[any integer]
	disam:[yes/no]
	display-dos:[yes/no]
	display-ibm:[yes/no]
	displaynumeric-edited-mf50: [yes/no]
	displaynumeric-mf50:[yes/no]
	div-check: [yes/no]
	ebcdic-charset: [yes/no]
	emulate-vms [yes/no]
	exception checking
	exclusivelock: [yes/no]
	exec-check: [yes/no]
	exit-program-forced:[yes/no]
	expand-exec-copy:[yes/no]
	expand-sql-include:[yes/no]
	external-link: <function name>
	external-mapping:[yes/no]
	fast-figurative-move: [yes/no]
	fcdreg: [yes/no]
	fdclear:[yes/no]
	file-auto-external:[yes/no]
	filename-mapping:[yes/no]
	first-tab-width:[any integer]
	flat-extfh: <DRIVER NAME>
	flat-extfh-lib: <library to use for this extfh driver>
	fold-copy-lower: [yes/no]
	fold-copy-upper:[yes/no]
	fp-opt:[yes/no]
	free-thread-safe-data: [yes/no]
	fstatus-map:[cit-status] = [custom-status]
	full-cancel:[yes/no]
	functions-all:[yes/no]
	functions-all-intrinsic:[yes/no]
	gcc:[yes/no]
	gcc-O-bug:[yes/no]
	gcc-bug:[yes/no]
	gcc-goto:[yes/no]
	gcos-mode:[yes/no]
	gen-xdd:[yes/no]
	global-typedef:[yes/no]
	ibm-listing-macro:[yes/no]
	ibm-mainframe:[yes/no]
	ibm-sync:[yes/no]
	identifier-length:<max-length>
	ignore-global-in-local-storage: [yes/no]
	ignore-with-rollback: [yes/no]
	implicit-init: [yes/no]
	Include-main: [yes/no]
	incomplete-subscript:[yes/no]
	index-optimize:[yes/no]
	indirect-redefines:[yes/no]
	initcall:<program-name>
	Initialize-fd:[yes/no]
	initialize-filler:[yes/no]
	initialize-opt:[yes/no]
	initialize-pointer:[yes/no]
	initialize-to-value:[yes/no]
	isam-extfh: <DRIVER NAME>
	isam-extfh-lib: <library to use for this extfh driver>
	keep-copy-statement:[yes/no]
	keep-org-src-line:[yes/no]
	keep-unused:[yes/no]
	key-dup-always-22:[yes/no]
	keycompress: [integer between 0 and 9]
	larger-redefines-ok:[yes/no]
	line-seq-dos:[yes/no]
	line-seq-mf:[yes/no]
	line-seq-notrunc:[yes/no]
	line-seq-recording-mode:[yes/no]
	line-seq-unix:[yes/no]
	link-only: [yes/no]
	listing-sources: [yes/no]
	local-storage-guard: 8 (internal use only)
	loosy-comment[yes/no]
	ls-expand-tab:[yes/no]
	ls-ignore-record-size:[yes/no]
	ls-utf16:[yes/no]
	main:[yes/no]
	main-as-object:[yes/no]
	mainframe-vb:[yes/no]
	makesyn: oldvalue=newvalue
	makesyn-patch-preprocess: [yes/no]
	manuallock: [yes/no]
	max-literal-expand: 32 (internal use only)
	mem-info: [yes/no]
	mfcomment: [yes/no]
	mf-compat-parser: [yes/no]
	mf-ctrl-escaped-parser: [yes/no]
	mf-file-optional:[yes/no]
	mf-gnt: [yes/no]
	mf-hostnumcompare:[yes/no]
	mf-int:[yes/no]
	mf-relativefile :[yes/no]
	module-load-priority:[yes/no]
	module-name-entry: [yes/no]
	module-uppercase: [yes/no]
	move-all-edited: [yes/no]
	move-high-low-to-displaynumeric [error/zero/value]
	move-picx-to-pic9:[cit / mf50 / mf40 / mvs / raw / iso / none]
	move-spaces-to-comp3:[error/space/zero]
	move-spaces-to-displaynumeric:[yes/no/error]
	move-to-group-separated:[yes/no]
	name:[any string]
	no-realpath: [yes/no]
	non-ibm-5.2-syntax: [(ok or yes)/(error or no)/warning]
	nostrip: [yes/no]
	notrunc: [yes/no]
	not-reserved:[any reserved word]
	null-param: [yes/no]
	numeric-compare: [yes/no]
	numeric-group: [yes/no/warning]
	numval-validate: [yes/no]
	obj-cit: [yes/no]
	odo-slide: [yes/no]
	optimize-move: [yes/no]
	optimize-move-call:[yes/no]
	optional-file: [yes/no]
	pack-comp-4:[yes/no]
	perform-osvs:[yes/no]
	prepro_cut_line: [yes/no]
	pretty-display:[yes/no]
	printer-crlf:[yes/no]
	profiling:[yes/no]
	protect-linkage:[yes/no]
	quote:[any single character]
	raw-by-value: [yes/no]
	raw-compare: [yes/no]
	raw-pic9-display: [yes/no]
	read-at-end-mf:[yes/no]
	read-into-copy: [yes/no]
	ready-trace:[y/n]
	recmode-f:[yes/no]
	recmode-osvs:[yes/no]
	recmode-v:[yes/no]
	record-depending-iso:[yes/no]
	redefine-identifier: [error / warning / ok]
	region0: [yes/no]
	relativefile-bigendian:[yes/no]
	relax-bounds-check:[yes/no]
	relax-level-hierarchy:[yes/no]
	relaxed-syntax-check:[yes/no]
	replace-additive:[yes/no]
	return-opt:[yes/no]
	round-fp:[yes/no]
	rtncode-size: <integer>
	rw-after-preprocess:[yes/no]
	rw-mode-nopf:[yes/no]
	rw-mode-nopf-dos:[yes/no]
	safe-linkage:[yes/no]
	screen-exceptions:[yes/no]
	screen-raw-keys:[yes/no]
	sequential-line:[yes/no]
	share-all-autolock:[yes/no]
	share-all-default:[yes/no]
	share-all-manulock:[yes/no]
	sign-ascii:[yes/no]
	sign-ebcdic:[yes/no]
	sign-leading:[yes/no]
	sign-separate:[yes/no]
	signed-comp6-as-comp3:[yes/no]
	simple-trace:[yes/no]
	source-location:[yes/no]
	split-debug-mark:[yes/no]
	spzero:[yes/no]
	stack-check:[yes/no]
	static-call:[yes/no]
	static-link:[function-name]
	sticky-linkage:[yes / no / fixed / variable]
	strict-compare-low: [yes/no]
	strict-record-contains:[yes/no]
	synchronized-double-word-bound:[yes/no]
	synchronized-propagate-to-occurs: [yes/no] (Internal Use Only)
	synchronized-propagate-to-occurs-with-group-size: [yes/no] (Internal Use Only)
	syntax-only:[yes/no]
	syntax-support:[ok / archaic / obsolete / skip / ignore / unconformable / error]
	tab-width:[integer]
	tally-register:[yes/no]
	text-column:[integer]
	thread-safe:[yes/no]
	trace:[yes/no]
	trace-ts: [yes/no]
	trace-upon-systout: [yes/no]
	traceall:[yes/no]
	trap-unhandled-exception:[yes/no]
	truncate-listing:[yes/no]
	unstring-use-move:[yes/no]
	use-defaultbyte:[yes/no]
	utf16-le:[yes/no]
	utf-8:[yes/no]
	validate-dep-on: [yes/no]
	validate-odo:[yes/no]
	validate-only:[yes/no]
	value-of-id-priority: [yes/no]
	value-size-is-auto: [yes/no]
	variable-rec-pad-mf:[yes/no]
	vbisam: [yes/no]
	vms-error-handler: [yes/no]
	when-compiled-function-all :[yes/no]
	wnone:[yes/no]
	xparse-event:[yes/no]
	zero-length-trim:[yes/no]

	Compiler Environment Variables
	COB_AR <program>
	COB_ARFLAGS <ar flags>
	COB_CC <program>
	COB_CFLAGS <cc flags>
	COB_CONFIG_DIR<directory>
	COB_CONSOLE_CP=<codepage-id>
	COB_COPY_DIR<directory>
	COB_EXTRA_FLAGS
	COB_LDADD <ld flags>
	COB_LDFLAGS <ld flags>
	COB_LIBS <libs>
	COB_OPTIMIZE_FLAG<cc flags>
	COB_OPTSIZE_FLAG=[optimization flag]
	COB_STDUNIX <1/0>
	COB_SUNSTUDIO12=[Y/N]
	COBCPY <directory list>
	COBCTMP=<directory>
	COBITOPT=[string of command-line compiler flags]
	COBOPT=[string of command-line compiler flags]
	COBOLITDIR=<directory>
	TMPDIR or TMP=<directory>

	COBOL-IT Runtime Options
	COBOL-IT runtime parameters
	--checkpoint <file>
	--console, -c
	--debug, -d
	--debug, -d --remote -r
	--help,-h
	--reload
	--version, -V

	COBOL-IT runtime environment variables
	COB_CALL_CASE=xul [where x=exact match, u=uppercase, l=lowercase]
	COB_LOAD_CASE=xul [where x= exact match, u=uppercase, l=lowercase]
	COB_CONSOLE_CP=<code page>
	COB_CURRENT_DATE
	COB_DEBUG_ALLUSER=1
	COB_DEBUG_ID=<debug-id>
	COB_DEBUG_MODULES=<program-id1>:<program-id2>….
	COB_DEBUG_STARTUP_FILE=<filename>
	COB_DEBUG_TMP=<directory>
	COB_DISPLAY_PRINTER=<filename>
	COB_DUMP=<filename>
	COB_ERROR_FILE=<filename>
	COB_EXTFH=<EXTFH Entry>
	COB_EXTFH_FLAT=<EXTFH Entry>
	COB_EXTFH_INDEXED=<EXTFH Entry>
	COB_EXTFH_LIB=[list of shared libraries]
	COB_FILE_CASE=[UPPER|LOWER]
	COB_FILEMAP_CASE=[UPPER/LOWER]
	COB_FILE_PATH=[PATH]
	COB_FILE_RELATIVE_MF=Y
	COB_FILE_TRACE=[Y/N]
	COB_FULL_CANCEL=[Y/N]
	COB_KEY_DUP_ALWAYS_22=[Y/N]
	COB_LIBRARY_PATH =[PATH]
	COB_LOAD_CASE=[UPPER/LOWER]
	COB_LOAD_PRIORITY=[Y/N]
	COB_LS_DOS=[Y/N]
	COB_LS_FIXED=[Y/N]
	COB_LS_NULLS=[Y/N]
	COB_NO_DOT_DAT
	COB_NO_SIGNAL=[Y/N]
	COB_PAD_BUG=[0/1]
	COB_PRE_LOAD=[list of modules]
	COB_PROFILING_DIR
	COB_PROFILING_EACH_MODULE
	COB_RTL_CP=<codepage>
	COB_RUNTIME_CHECK_TRACE=[Y/N/Module list separated by ; or : (Windows)]
	COB_SCREEN_DISABLE_REFORMAT=[Y/N]
	COB_SCREEN_ESC=[Y/N]
	COB_SCREEN_EXCEPTIONS=[Y/N]
	COB_SCREEN_INPUT_BOLDED=[Y/N]
	COB_SCREEN_INPUT_FILLER=[char]
	COB_SCREEN_INPUT_INSERT_TOGGLE=[Y/N]
	COB_SCREEN_INPUT_REVERSED=[Y/N]
	COB_SCREEN_INPUT_UNDERLINED=[Y/N]
	COB_SCREEN_RAW_KEYS=[Y/N]
	COB_SCREEN_UPDATE_FIRST_KEY_ERASE=[Y/N]
	COB_STDUNIX=[Y/N]
	COB_SWITCH_0... COB_SWITCH_16
	COB_SYNC=[Y/N]
	COB_VAR_REC_PAD=[Y/N]
	COBLPFORM="n:n:n: : : : : : : : :n"
	COBOLITDIR=<directory>
	TMPDIR or TMP=<directory>

	File Status Codes
	Runtime Error Codes
	Data Memory allocation
	BINARY, COMPUTATIONAL
	BINARY-CHAR, BINARY-CHAR SIGNED
	BINARY-CHAR UNSIGNED
	BINARY-C-LONG, BINARY-C-LONG SIGNED
	BINARY-C-LONG UNSIGNED
	BINARY-DOUBLE, BINARY-DOUBLE SIGNED
	BINARY-DOUBLE UNSIGNED
	BINARY-LONG, BINARY-LONG SIGNED, SIGNED-LONG, SIGNED-INT
	BINARY-SHORT BINARY-SHORT SIGNED SIGNED-SHORT
	BINARY-SHORT UNSIGNED UNSIGNED-SHORT
	COMPUTATIONAL-1
	COMPUTATIONAL-2
	COMPUTATIONAL-3 PACKED-DECIMAL
	COMPUTATIONAL-4
	COMPUTATIONAL-5
	COMPUTATIONAL-6
	COMPUTATIONAL-X
	DISPLAY
	INDEX
	POINTER PROGRAM-POINTER

	Using EXTFH-Compliant Indexed File Systems
	VBISAM
	-fvbisam
	vbisam: [yes/no]

	BerkeleyDB
	-fbdb
	bdb: [yes/no]

	D-ISAM
	-fdisam
	disam: [yes/no]
	dcheck

	C-Tree ACE
	Documentation
	Installation
	Compiling
	Running
	Start/Stop Engine
	Data file location

	Reserved Word List
	Intrinsic Function List
	COBOL-IT® Library Routines
	C$CALLERNAME
	C$CHDIR
	C$COPY
	C$DEBUG
	C$DELETE
	C$FILEINFO
	C$JUSTIFY
	C$MAKEDIR
	C$NARG
	C$PARAMSIZE
	C$PID
	C$SLEEP
	C$TOLOWER
	C$TOUPPER
	CBL_ALLOC_DYN_MEM
	CBL_ALLOC_MEM
	CBL_AND
	CBL_CHANGE_DIR
	CBL_CHECK_FILE_EXIST
	CBL_CLOSE_FILE
	CBL_COPY_FILE
	CBL_CREATE_DIR
	CBL_CREATE_FILE
	CBL_DEBUGBREAK
	CBL_DELETE_DIR
	CBL_DELETE_FILE
	CBL_ERROR_PROC
	CBL_EQ
	CBL_EXIT_PROC
	CBL_FLUSH_FILE
	CBL_FREE_MEM
	CBL_FREE_DYN_MEM
	CBL_GET_CURRENT_DIR
	CBL_IMP
	CBL_NIMP
	CBL_NOR
	CBL_NOT
	CBL_OC_NANOSLEEP
	CBL_OPEN_FILE
	CBL_OR
	CBL_READ_FILE
	CBL_RENAME_FILE
	CBL_TOLOWER
	CBL_TOUPPER
	CBL_WRITE_FILE
	CBL_XOR
	SYSTEM
	X”91” function 11
	X”91” function 12
	X”91” function 15
	X”91” function 16
	X”F4”
	X”F5”

	The Runtime Data Structure (rtd)
	The COBOL-IT Region Interface
	Overview
	The REGION API
	The Sample Programs

	What cobc does
	Creating a shared object/dll (Windows)
	Creating an executable (.exe) (Windows)
	Compiling a “C” program with cobc (Windows)

	Compatibility Topics
	cobmf
	Overview of cobmf
	>cobmf [return]
	Cobmf options
	Using the –CIT option with cobmf
	What cobmf does
	How cobmf handles the –C “[directive]” compiler flag
	COBOPT

	Table of equivalents to cob compiler flags
	Table of equivalents to compiler directives

	The COBOL-IT Debugger Engine (cobcdb)
	Conventions Used
	The Debugger Prompt
	Source Location
	Variables names

	Usage of the COBOL-IT Debugger:
	command-line parameters
	program name
	options
	-listdid
	-n
	-p <did>
	-r host:port
	-trace
	-w <did>
	-y tty

	Debugger Commands
	break
	break [-t] label
	break [-t] module!label
	break [-t] module!line-nr
	break [-t] module!0
	bt
	continue
	contreturn
	delete <x>
	frame <frame-number>
	info
	info locals
	info profiling
	info sources
	info target
	kill
	list
	next
	print <variable-name>
	printh <variable-name>
	quit
	replace
	>replace <oldprefix> : <newprefix>
	>replace ?
	>replace <no arguments>

	set
	set prompt <prompt string>
	set var <variable-name> <variable-value>
	set varh <variable-name> <variable-value-hex>
	step
	stop
	up -[n]
	version

	Debugger Events
	-event-breakpoint-hit
	-event-continue
	-event-contreturn
	-event-end-stepping-range
	-event-next
	-event-program-exited
	-event-step

	Our Sample Programs
	hello.cbl
	subpgm.cbl

