
COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 1

COBOL-IT® Developer Studio
Getting Started

The Debugger Perspective
Version 2.1

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 2

ACKNOWLEDGMENT .. 4

COBOL-IT DEVELOPER STUDIO TOPICS ... 5

Introduction ... 5

COBOL-IT Developer Studio License terms .. 5

DEPENDENCIES .. 6
The COBOL-IT Developer Studio Distribution ... 6

THE DEBUGGER PERSPECTIVE ... 8

Configuration of the Debugger Perspective .. 8
Window>Preferences>Run/Debug>Perspectives ... 8
Window>Preferences>General>Keys ... 9

Important Debugging Operations .. 10
Opening the Debugger Perspective ... 10
The Debug View ... 12
Step/Run/Terminate Functions ... 13
The Variables View .. 17
Breakpoints ... 21
Expressions ... 23
Code Editor Functions .. 24

COBOL-IT Debugger Reference .. 25

The Views in the COBOL-IT Debugger Perspective .. 25

The Debug View ... 25

The COBOL-IT Program View .. 27

The Variable View ... 28

The Breakpoints View ... 30

The Expressions View.. 31
Qualified names in the Expression View .. 32

The Outline View ... 34

The Console View .. 34

The Tasks View .. 35

The Problems View .. 36

Attaching the Debugger to a Running Process .. 36
Key concepts ... 37

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 3

Launch, and Pause the Runtime using CALL « C$DEBUG » ... 37
Attach the Debugger from the Developer Studio .. 38
Create a New COBOL Project .. 39
Select Debug Attach Function .. 39
Edit Source Lookup Path ... 40
Debug in the Developer Studio ... 43
Disconnecting the Debugger ... 44
Programs used in this sample .. 44

Attaching a “C” debugger to a running process ... 45
-G .. 45
-fnostrip... 46
Overview... 46
Pre-requisites .. 46
Sample Programs .. 46
Compile and link the sample programs ... 47
Create a New COBOL project .. 48
Add C/C++ nature to the project ... 49
Launch the newcall executable ... 53
The Debug Attach function ... 54
The Reverse Attach Window .. 55
The COBOL-IT Debugger Attach .. 56
C/C++ Debug Configuration .. 57
Create a new C/C++ Attach to Application .. 58
C/C++ Debug Configuration- Main Tab ... 59
C/C++ Debug Configuration- Debugger Tab ... 60
C/C++ Debug Configuration- Source Tab .. 61
C/C++ Debug Configuration- Common Tab .. 62
Select newcall from list of running applications ... 63
The Debugger Window- Two Debugging Sessions .. 64
The Debugger Window- Focus on C Debugger Thread 1... 65
The “C” Debugger- Set a Breakpoint ... 66
Step Into the C Function (F5) ... 67
The “C” debugger ... 68
In parting ... 72

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 4

Copyright 2008-2020 COBOL-IT S.A.R.L. All rights reserved. Reproduction
of this document in whole or in part, for any purpose, without COBOL-IT's

express written consent is forbidden.

Contact Information:
The Lawn
22-30 Old Bath Road
Newbury, Berkshire, RG14 1QN
United Kingdom
Tel: +44-0-1635-565-200

Microsoft and Windows are registered trademarks of the Microsoft Corporation. UNIX is a
registered trademark of the Open Group in the United States and other countries. Other brand
and product names are trademarks or registered trademarks of the holders of those trademarks.

Acknowledgment

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 5

Introduction

COBOL-IT Developer Studio License terms

This document describes how to install and how to use the COBOL-IT Developer Studio,
which is COBOL-IT’s eclipse-based development environment, designed to support users of the
COBOL-IT Compiler Suite. COBOL-IT is based on OpenCOBOL, originally developed by
Keisuke Nishida and maintained since 2007 by Roger While. In 2008, COBOL-IT forked its
own compiler branch, with the intention of developing a fully featured product and offering
professional support to the COBOL user industry.

The copyright for the COBOL-IT Developer Studio® is wholly owned by COBOL-IT.
Unauthorized reproduction of the software without the express written consent of COBOL-IT
is prohibited.

For more information, please contact us at: contact@cobol-it.com

COBOL-IT Corporate Headquarters are located at

231, rue Saint-Honore
75001 Paris
Tel: +33.1.75.43.05
Email: contact@cobol-it.com

COBOL-IT, COBOL-IT Compiler Suite, CitSQL, CitSORT, CitXML, and COBOL-IT
Developer Studio are trademarks or registered trademarks of COBOL-IT.
Eclipse is a trademark of the Eclipse Foundation.
IBM, and AIX are registered trademarks of International Business Machines Corporation.
Linux is a registered trademark of Linus Torvalds.
Windows, Visual Studio, and Visual Studio Express are registered trademarks of Microsoft
Corporation.
Java and Solaris are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of The Open Group
HP is a registered trademark of Hewlett Packard, Inc.
Red Hat is a registered trademark of Red Hat, Inc.
SUSE is a registered trademark of Novell, Inc.
All other trademarks are the property of their respective owners.

COBOL-IT Developer Studio Topics

mailto:contact@cobol-it.com
mailto:contact@cobol-it.com

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 6

The COBOL-IT Developer Studio Distribution

Dependencies
Dependencies for the Developer Studio are:

Dependency Comment

“C” compiler The COBOL-IT Compiler requires a “C” compiler. While most
Linux>Unix installations will include a “C” compiler, many Windows
installations will not. Windows users can download the Visual Studio
from www.microsoft.com.

COBOL-IT Compiler
Suite

The COBOL-IT Compiler Suite, Standard Edition can be downloaded
at the COBOL-IT Online Portal. For access to the COBOL-IT Online
Portal, please contact your sales representative at sales@cobol-it.com.

Java Runtime
Environment (JRE)

The COBOL-IT Developer Studio Kepler build can be run with the
Java Runtime Environment (JRE) Version 1.6 or greater. The
COBOL-IT Developer Studio Neon build can be run with the JRE
Version 1.8 or greater.

Eclipse Eclipse is included with the download of Developer Studio.

For Windows-based installations, the COBOL-IT Developer Studio, Enterprise Edition can be
downloaded from the COBOL-IT online portal with a login and password provided by your
sales representative.
The COBOL-IT Developer Studio, Enterprise Edition is available with Subscription. The
COBOL-IT Developer Studio, Enterprise Edition provides functionality with the installation of
several Perspectives:

• Developer Studio Perspective in which users set up and build COBOL projects, using a
locally installed version of the COBOL-IT Compiler Suite Enterprise Edition. The
Developer Studio Perspective additionally provides access to Code Coverage and
Profiling Tools.

• Debugger Perspective providing access to a feature-rich COBOL debugger both locally,
and on Remote Systems

• Remote Systems Perspective, allowing use of Compiler, Runtime, and Debugger
functionalities installed on remote servers.

http://www.microsoft.com/
mailto:sales@cobol-it.com

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 7

• Git and RSEGit Perspectives, providing users with full access to the Git/Github Source
Code Control System.

• Data Displayer Perspective, providing access to a tool for browsing and modifying data
in indexed, sequential and relative files.

• Planning Perspective, providing access to the Mylyn Task Manager.

• For more information about the usage of Git/RSEGit, Data Displayer, Mylyn Task
Manager, and Code Coverage, see the Getting Started with the Developer Studio- The
Utilities Manual.

• Using the COBOL-IT Developer Studio requires a license for both the COBOL-IT
Compiler Suite Enterprise Edition, and COBOL-IT Developer Suite.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 8

Window>Preferences>Run/Debug>Perspectives

Configuration of the Debugger Perspective

The Debugger Perspective

Set “Open the associated perspective when launching” to “Always”. This will have the effect of

causing the Debugger Perspective to open when clicking on the Debug toolbar button, or
pressing F11.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 9

Debugger Hot Keys can be configured in the Window>Preferences>General>Keys interface.
Pre-set Debugger Hot Keys include:

Debugger Function Hot Key Usage

Step Into F5 The Step Into function single steps through lines
of code. The Step Into function enters
paragraphs/subprograms that are the targets of
PERFORM / CALL statements.

Step Over F6 The Step Over function can be executed when
positioned on a PERFORM or CALL statement.
The Step Over Into function causes
paragraphs/subprograms that are the targets of
PERFORM / CALL statements to be executed,
and then Steps to the next line of code.

Step Return F7 The Step Return function can be executed when
positioned inside a paragraphs/subprogram that
is the target of a PERFORM / CALL statement.
When executed, the rest of the code in the
paragraph/section/subprogram is executed, and
the program returns to the next line after the
PERFORM / CALL statement.

Resume F8 Resumes the execution of the program.

Debug
F11 Runs a source file in Debug mode. Select a

program, and click on the Debug toolbar button
or press F11. The Debugger Perspective is
launched, a console window is opened, and
execution is suspended on the first line of code
in the procedure division, which is marked in the
COBOL-IT Program View with an arrow
indicator.

Terminate Ctrl+F2 Terminates the program being debugged.

Run Ctrl+F11 Runs the program, skipping all breakpoints.

Toggle Breakpoint Ctrl+Shift+B Sets a breakpoint where one does not previously
exist, or removes a breakpoint where one does
previously exist. Press Ctrl+Shift+B to either
create a breakpoint, or remove an existing
breakpoint. The Toggle Breakpoint function
causes the Breakpoints View to be updated.

Window>Preferences>General>Keys

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 10

Open Perspectives Tab

The Debugger Perspective can be opened through the Open Perspectives dialog window.

Click on the Open Perspectives push-button in the upper-right corner of the Developer Studio,
select Other…, and then click on COBOL-IT Debugger in the Open Perspective Window. This
opens the Debugger Perspective directly.

Press the Debug button, or press Fn+F11

Select a source file that has been set up in the project, and press the Debug toolbar button,
or hold down the Fn key and press F11. Note that by default, the Debug function is associated
with the F11 key in the Window>Preferences>General>Keys interface, as described above.

The Debug function uses the default compiler flags associated with the program to compile it, if
a Build is required, and then uses the runtime configuration described for the program to set the
appropriate environment variables. Pressing the Debug button or pressing Fn+F11 then will
initiate the execution of the selected program in the Debugger Perspective.

Opening the Debugger Perspective

Important Debugging Operations

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 11

Use the Debug As function
The Debug As function is similar to the Run As function. A Debug Configuration can be
configured to contain environment variables needed for debugging purposes.

We name our new Debug Configuration “holidaysIX.dbg” and associate our new Debug
Configuration with the program “holidaysIX.cbl”.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 12

The Debug View

The Runtime tab contains default runtime settings. No changes are necessary.

The Source tab is useful if the debugger needs to locate your source file. No changes are
necessary.

The Environment tab allows you to set runtime environment variables that are only useful in
debugging situations. In the case below, we can see that COB_FILE_TRACE is set to Y, for
example. To use this debug configuration, click Apply, and then click Debug.

In the image below:

 holidaysIX.dbg is the name of the debug configuration

 COBOL Program is the class of program running
 Region(0) is the first thread running in the Program
 HOLIDAYSIX () line 32 represents the compiled object/current line of execution
 C:/COBOL/COBOLIT…./eclipse.exec_script1.bat is the name of the batch file

executing the debugger process.

When focus is on the compiled object, as in the image above, all of the debug functions on
the toolbar are enabled. In this mode, user steps/runs through the program, stopping at
breakpoints. Note that the current line of execution is recorded in the Debug View Window.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 13

Single-Step

With the cursor positioned on a line of code, use the Single-Step/Fn+F5 function to advance to
the next line of code. In this case, the cursor will then be positioned on line:
33: PERFORM load-indexed-file.

Step Over

With the cursor positioned on a PERFORM or CALL statement, use the Step Over/Fn+F6
function to cause all of the code in the target of the PERFORM/CALL to be executed, and then
advance to the next line of code. In this case, the cursor will then be positioned on line:
35: CLOSE holidaysIX.

Step/Run/Terminate Functions

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 14

Step Return
With the cursor positioned inside the target of a PERFORM statement, on a line of code,

use the Step Return/Fn+F7 function to execute the rest of the code in the target paragraph, and
then advance to the next line of code. In this case, the cursor will then be positioned on line:
35: CLOSE holidaysIX.
This action of the Step Return (F7) command will pause on Format 1/Format 2 ACCEPT
Statements, and will pause on breakpoints.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 15

Resume
The Resume (F8) command causes the program to run normally until it reaches a

breakpoint or until the program is terminated. When a breakpoint is reached, the program re-
enters a debugging mode, and stepping operations can be resumed. In this case, the cursor will
then be positioned at the breakpoint on line:
36: DISPLAY “all done” line 21 col 30.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 16

Terminate
The Terminate command terminates debugging session, and terminates the program at the
current line of execution.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 17

Refreshing the Variable View

By default, the COBOL-IT Debugger Perspective is configured to Auto-Refresh the
Variable view.

If you have a very large Working-Storage Section, this may not be desirable. Under these

conditions, it could be preferable for the user to select the Manual Refresh on the Variables
View toolbar, and use the Expressions View for auto-refresh of selected variables.

Change the value of a variable

In the Variable View, you can change the value of a variable by selecting the variable in
the Variable View, right-clicking, and selecting Change Value… In the Change Value dialog
screen, type over the existing value, and the Variable View will be updated with the new value.
Debugging can proceed with the new variable value.

The Variables View

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 18

Verify that the change has been made, and continue with debugging.

Change the hexadecimal value of a variable
The COBOL value dialog screen allows the user to set the value of a variable in either

Hexadecimal or Text. In the Variable View, you can change the COBOL value of a variable by
selecting the variable in the Variable View, right-clicking, and selecting Edit hexadecimal
value… The Set Value (hex) dialog screen allows you to enter a new value for the selected
variable. Type over the existing value, and the Variable View will be updated with the new
value. Debugging can proceed with the new variable value.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 19

Create a Watch for a variable
You can add a Variable to the Expressions View by selecting the variable in the Variable
View, right-clicking, and selecting Watch…. The Variable and its current value are
transferred into the Expressions View Window. De-select “Auto-refresh” when using
Expressions for best performance.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 20

Open the Expressions View to limit the number of variables you are following.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 21

Toggle Breakpoints from within the Editor Window

You can toggle a line breakpoint (set or unset) by double-clicking in the left-most column of
the Editor Window. This is the column to the left of the line-number columns, and is where the
small circle that represents a breakpoint can visually be seen in your source code.

Toggle Breakpoints from within the Breakpoints View Window
When you have created a breakpoint, you will see that it has been added to the Breakpoints View
window, and that the enabling checkbox is checked. To remove a breakpoint from the
Breakpoints View, select the breakpoint, open the right-click dropdown menu, and select the
Remove function.

Disable a breakpoint
You can Disable a breakpoint by right-clicking on the breakpoint in the COBOL-IT Program
View, and selecting the Disable function, or by right-clicking on the breakpoint declaration in the
Breakpoints View screen, and selecting the Disable function, or by de-selecting the breakpoint’s
enabling checkbox in the Breakpoints View screen. Note- Disabling a breakpoint is different
than removing a breakpoint in that it can subsequently be enabled. You can enable a disabled
breakpoint using the same right-click interfaces used to disable the breakpoint.

Skip all breakpoints

You can disable all breakpoints by clicking on the Skip All Breakpoints pushbutton on the
Breakpoints View toolbar.

Run>Add COBOL Label Breakpoint…
Select the Run function on the main menubar, right-click, and select Add COBOL Label
Breakpoint… from the dropdown menu. Enter the label name of a paragraph or section and
click OK. With a COBOL Label Breakpoint, a breakpoint condition occurs every time that the
label is encountered.

Breakpoints

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 22

Run>Add COBOL Value Change Breakpoint
Select the Run function on the main menubar, right-click, and select Add COBOL Value Change
Breakpoint… from the dropdown menu. Enter the variable name, and click OK. With a
COBOL Value Change Breakpoint, a breakpoint condition occurs every time that the value of
this variable changes. The COBOL Value Change Breakpoint can be used with a variable being
watched in the Expressions View.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 23

Expressions

Add a new expression

To add a new expression, you can click on the “Add new expression” button on the Expressions
toolbar, or you can click on the in-line “Add new expression” function. Clicking on the inline
“Add new expression” function allows the user to type the expression directly into the “Name”
column.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 24

Show Line Numbers
You can Show or Hide Line Numbers by right-clicking in the left-most column of the Editor
Window, and checking or unchecking the Show Line Numbers function.

Transferring control to console on ACCEPT
The behavior of the COBOL-IT Debugger when positioned on an ACCEPT statement is worth
noting. When stepping through code, the current line is marked by an arrow in the left-most
column of the current line. The source code on the line is colorized (green) before the code is
executed.

Normally, the single-step process will move this arrow, and this colorized source line by line
through the code. However, in the case of the ACCEPT statement, the debugger must pause, and
wait for input from the console.

In the case above, press F5 to single-step. This executes the ACCEPT statement, but does not
move the line. The debugger signals the user that it is paused and waiting for input by changing
the colorization of the current line. See below:

At this point, the user must raise the console, and perform the operation that terminates the
accept. In this case, hit the [Enter] key.

Code Editor Functions

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 25

The Debug View

The functionality of the COBOL-IT Debugger Perspective is presented through the View
interfaces. A quick overview of the main Views in the COBOL-IT Debugger Perspective is
instructive:

Debugger Perspective View Functionality
The Debug View A view of the stack executing in the Debugger
The COBOL-IT Program View A COBOL-IT Code Editor which is animated

during debugging
The Variable View Working-Storage, Linkage Section, File

Section can be expanded to see values
The Breakpoints View Lists status of all breakpoints
The Expressions View Lists all Watches that have been set
The Outline View An Outline of the active source file
The Console View Consoles include the COBOL-IT Compiler,

runtime, and debugger consoles.
The Tasks View Provides an interface for tracking tasks
The Problems View Provides a clickable interface for locating

compiler errors in source code.

The Debug View shows a stack view of the execution of your program. In the graphic below,
you can see the the program is currently executing at line 32 in the the program HOLIDAYSIX.

COBOL-IT Debugger Reference

The Views in the COBOL-IT Debugger Perspective

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 26

The Debug view toolbar

The functions that are presented on the Debug View toolbar help manage the visual display of
the call stack in the View, and the commands used to navigate inside a debugging session.

 Remove all terminated launches Clears terminated launches from the Debug

View
 Connect to a process Initiates a Remote Debugging session.

 Resume (F8) Resumes the execution of the program.

 Suspend Suspends execution of the program, and re-enters
the debugger.

 Terminate (Ctrl+F2) Terminates the currently running process.

 Disconnect Terminates a Remote Debugging session.

 Step Into (F5) The Step Into function single steps through lines
of code. The Step Into function enters
paragraphs/subprograms that are the targets of
PERFORM / CALL statements.

 Step Over (F6) The Step Over Into function causes
paragraphs/subprograms that are the targets of
PERFORM / CALL statements to be executed,
and then Steps to the next line of code.

 Step Return (F7) The Step Return function causes code in a
paragraph/section/subprogram to be executed,
and then Steps to the next line of code after the
parent PERFORM/CALL statement.

 Drop to Frame Not Supported in the COBOL-IT Debugger
Perspective

 Instruction Stepping Mode Not Supported in the COBOL-IT Debugger
Perspective

 Use Step Filters Not Supported in the COBOL-IT Debugger
Perspective

 View Menu Drops down a view of Menu options

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 27

The COBOL-IT Program View is a COBOL Code Editor that is responsive to the commands
described in the Debug View. In the graphic below, note the arrow positioned on line 32.
This marks the line of code that the debugger will execute next. Note also the circle
positioned on line 37. This marks a breakpoint, that is set within the source code.

The COBOL-IT Program View Toolbar

The functions that are presented on the COBOL-IT Program View toolbar allow the user to
either Minimize or Maximize the Code Editor Window.

The COBOL-IT Program View

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 28

The Variable View provides a graphical user interface in which the variables/values of the File
Section, Working-Storage Section, and Linkage Section are displayed. The Right-Click drop-
down menu from a selected Variable in the Variable View provides:

Select All Ctrl+A Select all variables and copy to clipboard
Copy Variables Select one or more variables and copy to clipboard
Find... Search for a variable name in the Variable View
Change Value... Modify the value (Ascii) of a variable
Edit hexadecimal value… Modify the value (Hexadecimal) of a variable
Watch Copy a variable into the Expressions View

The Variable View Toolbar

The functions that are presented on the Variable View toolbar allow the user to expand/collapse
groups of variables. Options exist for Auto-Refresh and Manual Refresh of variable values.

 Show Type Names Not Supported in the COBOL-IT Debugger
Perspective

 Show Logical Structure COBOL data items are all presented in their
logical structures, and can be expanded and
collapsed.

 Collapse All (Ctrl+Shift+Numpad-
Divide)

Collapses all structures back to their parent
Sections (Working-Storage, File, Linkage)

 Refresh Manual Refresh function. In programs with
large numbers of variables, avoids degradation

The Variable View

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 29

 of performance associated with Auto-Refresh.

 Auto Refresh Auto-Refresh function. Working Storage, File
Section, and Linkage Section are auto-refreshed
in real time, while debugging the program.

 Add Global Variables Not Supported in the Debugger Perspective

 Remove Selected Global Variables Not Supported in the Debugger Perspective
 Remove All Global Variables Not Supported in the Debugger Perspective

 View Menu Drops down a view of Menu options

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 30

The Breakpoints View is a single interface for managing all of the breakpoints in all of the
programs that you have open in the Debugger Perspective. Breakpoints can be set at line
numbers, on labels, or on variable value change.

Hit Count
When you create a breakpoint, you can assign a Hit Count for it. Hit Count is a number.
If you set the hit count for a breakpoint to 5, for example, then the breakpoint will occur after the
condition has been hit 5 times.

The Breakpoints View Toolbar

The functions that are presented on the Breakpoints View toolbar allow the user to manage
breakpoints. Selected breakpoints can be removed, all breakpoints can be removed, .

The Breakpoints View

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 31

The Expressions View

 Remove Selected Breakpoints Removes breakpoints that have been selected by
clicking in the checkbox in the left-most
column.

 Remove All Breakpoints Removes all breakpoints.

 Show Breakpoints Supported by
Selected Target

Shows all breakpoints set in the COBOL
programs.

 Go To File for Breakpoints Transfer focus to file at Breakpoint

 Skip All Breakpoints Disable (but do not remove) all breakpoints.

 Expand All Not Supported in the COBOL-IT Debugger
Perspective

 Collapse All Not Supported in the COBOL-IT Debugger
Perspective

 Link With Debug View Not Supported in the COBOL-IT Debugger
Perspective

 View Menu Drops down a view of Menu options

The Expressions View is an interface for managing a select number of variables. If you wish to
have an auto-update capability of just a small number of variables, and the performance penalty
of running the debugger with Auto-Refresh on for all variables is too high, you can use the
Expressions View to minimize the number of variables on Auto-Refresh.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 32

The debugger supports qualified names, such as data-element-1 in group-2 in the Expression
View. Navigate to a qualified description of othe data item in the source code, right-click and
select Watch from the dropdown menu.

The qualified data item is copied to the Expression View.

Qualified names in the Expression View

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 33

The Expressions View Toolbar

The functions that are presented on the Expressions View toolbar allow the user to manage
Expressions. Expressions can be created, collapsed, expanded, and removed.

 Show Type Names Not Supported in the COBOL-IT Debugger
Perspective

 Show Logical Structure COBOL data items are all presented in their
logical structures, and can be expanded and
collapsed.

 Collapse All (Ctrl+Shift+Numpad-
Divide)

Collapses all structures .

 Create a new Watch Expression Opens dialog window in which a new Watch
Expression can be described. Note that Watch
Expressions can also be added from within the
Variable View, by right-clicking on a variable,
and selecting “Watch” from the dropdown menu.

 Remove Selected Expressions Removes expressions that have been selected by
clicking on them.

 Remove All Expressions Removes all expressions listed in the
Expressions View.

 View Menu Drops down a view of Menu options

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 34

The Console View

The Outline View is an interface for viewing the source file in Outline form. The Outline View
is linked to the COBOL-IT Program View, as clicking on any of the entries in the Outline View
highlights the corresponding line of code in the COBOL source file.

The Outline View Toolbar

The Outline View Toolbar contains an Alphabetic Sort function.

 Focus on Active Task Not Supported in the COBOL-IT Debugger
Perspective

 Sort Sorts the Outline view alphabetically

 View Menu Drops down a view of Menu options

The COBOL-IT Compiler Console View allows you to view the output of the compiler
command that has been executed.

The Outline View

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 35

The Tasks View

The Console View Toolbar

The Console View Toolbar allows you to manage the selection of open consoles, and provides
the ability to clear the console.

 Clear Console Clears all text from the open console window.

 Scroll Lock Not Supported in the COBOL-IT Debugger
Perspective

 Pin Console Not Supported in the COBOL-IT Debugger
Perspective

 Display Selected Console Allows selection of a console from a dropdown
list to be the active console in the output
window. For example, select the COBOL-IT
Compiler console to see output from the
Compiler on Build operations.

 Open Console Adds a new console to the Display Selected
Console dropdown list of available consoles.

The Tasks View toolbar provides access to the Mylyn Task Manager. For details on how to use
the Task Manager, see Getting Started with the Developer Studio- The Utilities.

The Tasks View Toolbar

 Focus on Active Task Places focus in active source file.

 View Menu Drops down a view of Menu options

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 36

Attaching the Debugger to a Running Process

The Problems View provides a clickable interface for returning from reported compiler errors to
their location in the source file.

The Problems View Toolbar

 Focus on Active Task Places focus in active source file.

View Menu Drops down a view of Menu options

Is it possible to attach the COBOL-IT Debugger to a program, or subprogram that is running, at a
selected place in the program or subprogram ?

C$DEBUG is a library routine which can be called using either the PID of the runtime session,
or the value of the environment variable COB_DEBUG_ID. Prior to calling C$DEBUG, the
program should acquire the value of the PID / COB_DEBUG_ID.

You may acquire the value of the PID of the runtime session by calling the C$PID library
routine, using a PIC 9(n) parameter. The parameter must be numeric, and large enough to hold
the value of the Process ID.

For example :
77 ws-pid PIC 9(5).
…..
CALL « C$PID » USING ws-pid.
CALL « C$DEBUG » USING ws-pid.

The Problems View

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 37

Key concepts

Launch, and Pause the Runtime using CALL « C$DEBUG »

You may also call C$DEBUG USING the value of the runtime environment variable
COB_DEBUG_ID. Using the runtime environment variable COB_DEBUG_ID to hold the
value of this parameter has an advantage if you prefer to set the value of the parameter yourself.
Acquire the value of COB_DEBUG_ID programmatically before calling the C$DEBUG library
routine. The parameter must be numeric, and large enough to hold the value of the value of the
runtime environment variable COB_DEBUG_ID.

For example :
77 ws-did PIC 9(5).
…..
ACCEPT ws-did FROM ENVIRONMENT « COB_DEBUG_ID ».
CALL «C$DEBUG » USING ws-did.

After a call to C$DEBUG is made, the executing program, or subprogram is paused. In this
state, the COBOL-IT Debugger may be attached to this runtime process from the COBOL-IT
Developer Studio.

In order to attach to the COBOL-IT Debugger, the program containing the call to C$DEBUG
library routine must be compiled with –g.
The COBOL-IT Developer Studio will request the location of the source file associated with the
program/subprogram that has been paused by the C$DEBUG command, for purposes of
debugging.
The COBOL-IT Developer Studio attaching to the paused runtime session requires a COBOL
Project, and requires that some configuration. Recommended settings are :
Window>Preferences>Run/Debug>Perspectives>Open the associated perspective when lauching
(Always)

In our example, we have a program, debugid.cbl, which calls a subprogram, subpgm.cbl, which
retrieves the PID of the runtime session, and then calls C$DEBUG to pause the runtime session.
We will run these programs from a batch file, as follows :

runit.bat
SET COB_LIBRARY_PATH=.\object
cobcrun debugid

This will return the screen below. Note that in your case, the Process ID will likely be different.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 38

Attach the Debugger from the Developer Studio

The Developer Studio must be configured to enter the Debugger Perspective when launching the
debugger. In Window>Preferences>Run/Debug>Perspectives, set “Open the associated
perspective when launching” to “Always”.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 39

Select Debug Attach Function

In the Navigator Window, right-click on the Project, and select COBOL>Debug Attach from the
dropdown list. In the Debug Configuration for Reverse Attach Window, select the entry with the
PID that matches the PID of the paused runtime session. Click “Debug”.

Create a New COBOL Project

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 40

Edit Source Lookup Path

The Developer Studio opens in the Debugger Perspective. Note that there is a message, in red,
that Source Not Found. To associate the the source code of subpgm.cbl with the project, click on
the Edit Source Lookup Path… button.

On the Edit the Source Lookup Path Screen, the Default setting is your current Project Path. If
the source files are not in your Project Path (they probably are not), click the Add button.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 41

After clicking the Add button, select File System Directory, Click Ok.

Use the Browse button to locate the Source Location

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 42

Your selection will appear in the Edit Source Lookup Path window . Click OK.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 43

You are now ready to debug in the Developer Studio :

Use the Debugger toolbar buttons to debug your program.

Debug in the Developer Studio

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 44

Programs used in this sample

You may wish to disconnect the debugger and continue running your program.

To disconnect the debugger, select the highest level of your session in the debugging view, titled
.debug-attach. This will enable the “Disconnect” toolbar button to the right of the Terminate
button. Click on the Disconnect button to disconnect the COBOL debugger without terminating
the runtime session.

debugid.cbl

identification division.
program-id. debugid.
environment division.
data division.
working-storage section.
procedure division.
main.

display "In debugid" line 8 col 10.
call "attachit".
display "Back in debugid" line 12 col 10.
stop run.

attachit.cbl

identification division.

Disconnecting the Debugger

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 45

-G

Attaching a “C” debugger to a running process

program-id. attachit.
environment division.
data division.
working-storage section.
77 ws-pid pic 9(5).
procedure division.
main.

display "Pausing in attachit" line 9 col 10.
ACCEPT ws-pid from environment "COB_DEBUG_ID".

* CALL "C$PID" using ws-pid.
DISPLAY "DEBUG ID IS " ws-pid line 10 col 10.
CALL "C$DEBUG" using ws-pid.
DISPLAY "Carry on in the debugger" line 11 col 10.
EXIT PROGRAM.

runit.bat

SET COB_DEBUG_ID=12345
SET COB_LIBRARY_PATH=C:\COBOL\COBOLIT\Samples
cobc -g debugid.cbl
cobc -g attachit.cbl
cobcrun debugid

Produces debugging information in the output, allowing “C”-level debugging.

To perform “C” level debugging, use the COBOL-IT Developer Studio.

COBOL-IT translates COBOL to “C” and uses the host “C” compiler to compile the translated
source. As preparation, compile your COBOL programs with the –G compiler flag. “C”
modules should be compiled for debugging as well.

The –G COBOL compiler flag allows the COBOL program to be include information for the “C”
debugger. This corresponds to the gcc –g compiler flag.

Using the Debug Attach functionality of the Developer Studio to Attach the COBOL Debugger
to an Application, you can enter the COBOL Debugger, then start the “C” debugger, and
proceed your debuggeing with both the “C” and COBOL debuggers running.

The Eclipse IDE for C/C++ Developers, and “C” compiler are required for this exercise.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 46

Overview

Pre-requisites

Sample Programs

Causes objects and object and executable files to NOT be stripped.
Stripping an object or an executable is the action of removing system level debugging
information. The –fno-strip compiler flag is enabled by the –G compiler flag.

Attaching a “C” Debugger to an Application is a functionality provided by Eclipse, when the
Eclipse IDE for C/C++ Developers plug-in is installed, and the gdb debugger is installed on your
system.

As preparation, compile your COBOL programs with the –G compiler flag. The –G COBOL
compiler flag allows the COBOL program to be include information for the “C” debugger.
This corresponds to the gcc –g compiler flag. “C” modules should be compiled for debugging as
well.

We will create an executable called “newcall”, linking a “C” library compiled for debugging
with a COBOL program compiled to allow for “C” debugging.

We will start our executable from the command-line, use the Debug Attach functionality of the
Developer Studio to Attach the COBOL Debugger to the Application.

At that point, we will start the “C” debugger, and continue with both the COBOL and “C”
debuggers running. We will enter a CALL’ed “C” function, and use the “C” debugger. When
finished debugging, we can return to the COBOL program, and resume using the COBOL
debugger.

The following must be installed on your Linux machine:

COBOL-IT Compiler Suite Enterprise Edition
COBOL-IT Developer Studio
C/C++ Development Tooling
The gdb source level debugger

c_printf.c
c_printf is called from our main COBOL program.
We will switch to the “C” debugger before executing the CALL of this function.

-fnostrip

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 47

Compile and link the sample programs

int c_printf (char * format , char * var)
{

printf (format, var);
return 0;

}

newcall.cbl

The CALL “C$DEBUG” statement allows us to attach the COBOL
debugger to a process. After attaching the COBOL debugger to
the process, we will then switch to the “C” debugger for the
CALL to c_printf.

IDENTIFICATION DIVISION.
PROGRAM-ID. NEWCALL.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ws-dummy PIC x.
PROCEDURE DIVISION .
MAIN.

DISPLAY "NEWCALL Started"
CALL "C$DEBUG" USING 12345
DISPLAY "The PROGRAM will pause here" line 10 col 10.
CALL "c_printf" USING "%s" "Hello"
DISPLAY "Set another breakpoint here" line 12 col 10.
EXIT PROGRAM.

Compile c_printf.c with debugging information, and create a shared library called “clibs.so”.
As a shortcut, you can use cobc to compile the “C” program. In this case, use the –G compiler
flag.

>cobc –G c_printf.c

c_printf.so is compiled with debugging information.

Compile newcall.cbl with COBOL debugging information (-g) and C debugging information (-
G). Link c_printf.so and create an executable (-x) called newcall.
> cobc newcall.cbl –g –x c_printf.so –G

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 48

Create a New COBOL project

This creates an executable module called newcall, in which c_printf.so is linked to the main
module.

Drag and drop into the project folder: c_printf.c, c_printf.so, newcall.cbl and the executable
newcall.

Open newcall.cbl in the code editor and set a breakpoint:

Image 1- The COBOL Project, with files and breakpoint

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 49

Add C/C++ nature to the project. The project needs to be both a COBOL Cobol and C/C++
project at the same time.

In the C/C++ Perspective , select File>New>Convert to a C/C++ Project.

This will open the Convert to C/C++ Project Wizard:

Add C/C++ nature to the project

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 50

In the C/C++ Perspective, open the C file and set a breakpoint:

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 51

In the COBOL Perspective, in the navigator window, configure the visibility of the “c”

folder by de-selecting it:

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 52

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 53

Run newcall from the command-line

> ./newcall

newcall pauses after the CALL C$DEBUG command.

Image 2- Newcall is paused

At this point, re-enter the Developer Studio.

Launch the newcall executable

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 54

Right-click on the Project name, and select Cobol from the menu.
Then Select Debug Attach.

Image 3

The Debug Attach function

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 55

From the Reverse Attach Window, select Newcall.
Click on the Debug button.

Image 4- The Reverse Attach Windows

The Reverse Attach Window

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 56

Since the source file is in the project, newcall is opened directly into the COBOL-IT Debugger
Perspective.

Image 5- The COBOL-IT debugger is running.

The COBOL-IT Debugger Attach

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 57

To start the “C” debugger, return to the Developer Studio Perspective. In the Navigator
Window, select the Project by clicking on it. Right-click on the Project to open the drop-down
menu. From the drop-down menu, select Debug As, and then the Debug Configurations
function.

The Debug Configurations contain the interfaces to configure the C/C++ Attach to Application
Functionality.

Image 6- Select Debug As/Debug Configurations

C/C++ Debug Configuration

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 58

Select C/C++ Attach to Application by clicking on it. Click on the “New” button on the toolbar
above the panel on the left to create a new configuration.

Image 7- New C/C++ Attach to Application

Create a new C/C++ Attach to Application

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 59

The Name of your configuration is pre-filled.
Enter the full path, and name of your C/C++ Application.
In our case, this is the newcall application.

Image 8- The Main Tab

C/C++ Debug Configuration- Main Tab

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 60

No changes need to be made on the Debugger tab.
Note that gdb is named as the debugger.
gdb must be installed on your Linux machine.

Image 9- The Debugger Tab

C/C++ Debug Configuration- Debugger Tab

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 61

Click on the Add button. In the Add Source Windows, select “File System Directory”. Click Ok.
On the Directory Selection screen, select project1. Click Ok.

Image 10- The Source Tab

C/C++ Debug Configuration- Source Tab

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 62

No changes need to be made on the Common tab.
Select Apply. Click on the Debug button to enter the Debugger.

Image 11- The Common Tab

C/C++ Debug Configuration- Common Tab

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 63

The system opens a list of running applications. Search by name or PID. Select newcall, click
Ok. Control returns to the debug window.

Image 12- Search and select from the list of running
applications

Select newcall from list of running applications

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 64

There are 2 debugging sessions in the Debug Window. One of the sessions is the COBOL
debugger, and the other is the “C” debugger. You are debugging the same application, but some
of the lines are being tracked by the COBOL debugger, and some by the “C” debugger.

Image 13- Two Debugging Sessions

The Debugger Window- Two Debugging Sessions

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 65

Within the “C” debugger, there are 2 threads. Thread 2 is the COBOL Debugger Runtime.
Thread 1 is the program running. Select Thread 1 by clicking on it.
Now, you can open c_printf and see the “C” Debugger.

Image 14- Focus on the “C” Debugger

The Debugger Window- Focus on C Debugger Thread 1

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 66

Set a breakpoint in c_printf.c.
The breakpoint will be displayed in the breakpoint window.
Return to newcall.cbl, and we will enter the “C” function, using the Step Into (F5) function.

Image 15- Set a breakpoint in the “C” compiler

The “C” Debugger- Set a Breakpoint

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 67

With the Cursor on the CALL “c_printf” statement, use the Step Into (F5) function to step into
the “C” program.
Open c_printf.c to debug.

Image 16- Step into the “C” debugger

Step Into the C Function (F5)

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 68

Now, you can debug on the “C” side. Variable values are in the Variable window. You can use
the Step Functions.
The “C” debugger will stop on breakpoints.
Use the Continue function to return to the COBOL program. Set a breakpoint in the COBOL
program and resume using the COBOL debugger.

[Image 17]- Stopping on a breakpoint in the “C” Debugger

Cobol and C/C++ debugging

yyyyy

1. Open project debug configurations:

The “C” debugger

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 69

2. Configure C/C++ debug attach as shown below, note that only Main tab is

important. Press apply and debug.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 70

3. Now under Debug perspective in second debug stack frame you can find C source

files from “c” folder which were configured on step 6.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 71

4. Now there are two running debuggers. You should click "Resume" in both

debuggers and you will see that debugger will stop on breakpoint in C program.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 72

In parting…

5. Now you can debug C program and when you need to switch to a breakpoint in

Cobol source file you can just click “Resume” in C debugger and debugger will stop

on next Cobol breakpoint.

C/C++ Attach to Application is included with the Eclipse IDE for C/C++ Developers, and
required.
Gdb cannot be run as a remote debugger. Both your main COBOL program and “C” program
must be compiled with the –G compiler flag.

Attaching to the Debugger when calling COBOL from “C”
C$DEBUG is a COBOL routine, so it can only be called from within a COBOL program. In a CICS
environment, what is needed is a mechanism to set up the reverse attach debugger connection before
the program is called. Can COBOL-IT provide an API function that can be called before the program
is called, so that when the runtime is started from « C », the runtime can set the breakpoint at the start
of the program, and attach to the debugger with the specified debug-id ?

Yes- Before stating the entry COBOL program, call :

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 73

cob_runtime_debugger_activate(rtd, did);

Where did is the debug ID used in eclipse to connect to the debugger. The runtime will then stop on the
next COBOL statement.

COBOL-IT Developer Studio– Getting Started
The Debugger Perspective Version 2.1

Page 74

www.cobol-it.com
June, 2020

http://www.cobol-it.com/

	COBOL-IT® Developer Studio Getting Started
	Dependencies
	The Debugger Perspective
	Open Perspectives Tab
	Press the Debug button, or press Fn+F11
	Use the Debug As function
	Single-Step
	Step Over
	Step Return
	Resume
	Refreshing the Variable View
	Change the value of a variable
	Change the hexadecimal value of a variable
	Create a Watch for a variable
	Toggle Breakpoints from within the Editor Window
	Toggle Breakpoints from within the Breakpoints View Window
	Add a new expression
	The Debug view toolbar
	The COBOL-IT Program View Toolbar
	The Variable View Toolbar
	Hit Count
	The Breakpoints View Toolbar
	The Expressions View Toolbar
	The Outline View Toolbar
	The Console View Toolbar
	The Tasks View Toolbar
	The Problems View Toolbar
	runit.bat
	c_printf.c
	newcall.cbl

